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This article is a brief summary of my plenary talk at the World Biomaterials Congress in Chengdu, Sichuan, China, June 1–5, 
2012. It highlights the trend to design and develop biomaterial implants and devices that are more compact and more efficient, as 
they “shrink” from the macro- to the micro- and down to the nano-scale. 
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Biomaterials are composed of many different types of mate-
rials and their combinations. The different types of materi-
als include synthetic polymers, metals, ceramics, glasses 
and carbons. They also include natural materials, such as 
polymers of natural origin, and animal and human tissues 
and organs. Implants and devices may be constructed of one 
or a combination of such biomaterials. The recent trend in 
the past decade is to design and construct medical devices 
and instruments to be as compact and efficient as possible. 
This has led to the “shrinking” of numerous biomaterial 
devices and implants and their components from the macro- 
to the micro- to the nano-scale (Figure 1). This includes drug 
delivery systems, diagnostic assays, cell culture platforms and 
tissue engineering scaffolds, molecular separation systems, 
and imaging and imaging/therapeutic feed-back systems that 
may image or sense and respond with delivery of one or more 
therapeutic drugs. This article briefly highlights some nano- 
scale examples of these biomaterial applications, with several 
figures from my plenary talk.  

1  Drug delivery systems (DDS)  

The field of drug delivery systems (DDS) represents a good  

example of how such devices have shrunk from macro-
scopic to microscopic to the nano-scale. Figure 2 shows a 
list of examples of such DDS, descending from the macro-
scopic systems, such as skin patches and implanted tubes of 
contraceptive drugs, that were approved for clinical use in 
the 1980s, to the microscopic systems of degradable micro-
particles of PLGA approved in the 1990s, and down to the 
nano-carriers that are actively being pursued even today. As 
one of the earliest examples of micro-scale DDS, surface- 
coated DDS have been in the clinic since the 1960s. There 
are many nanocarriers that have been developed in the past 
50 years, but most that are used clinically have only been 
approved in the past 15 years (an exception is PEGylation 
of drugs and drug carriers, which entered the clinic in the 
mid-1980s). A list of nanocarriers is given in Figure 3 along 
with schematic cartoons of some of them. Many of the 
nano-scale DDS have also been conjugated with targeting 
ligands to stimulate their uptake into target cells. Despite 
this long list of nanocarriers, there are only a limited num-
ber of polymer compositions that have been approved for 
use in nano-scale DDS (“approved” is meant to include 
clinical trials as well as approved for clinical use). The more 
recent polymeric nanocarriers are being designed to biode-
grade in order to enhance their elimination from the body 
via the kidneys after the drug has been delivered [1–12]. 
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Figure 1  (Color online) Defining the “NANO” region. 

 

 

Figure 2  (Color online) Size evolution of controlled drug delivery sys-
tems (DDS) into the clinic from the 1960s to the present. 

 

Figure 3  (Color online) Drug nanocarriers (1970s–today). 

 

2  Diagnostic devices 

There is much current activity to develop new micro-scale 
and nanoscale assay devices that are rapid, inexpensive, 
disposable, and also “semi-quantitative”, i.e. able to quickly 
diagnose the probable cause of a fever, in order for treat-
ment to begin right away. Many of the latest systems are 
paper-based, lateral flow strips that evolved from the origi-
nal glucose dip-stick. Figure 4 shows one example of mag-
netic and gold “smart polymer” nanoparticles (NPs) that 
may be used in such devices. Much of the current work has 
been stimulated and supported by the Bill and Melinda 
Gates Foundation. Paper diagnostics have also been sepa-
rately and individually promoted as “Diagnostics for All” 
by Whitesides and co-workers [14] of Harvard University. 
A very recently reported device is said to be able to se-
quence DNA by drawing the DNA through a nano-pore 
device; it is called the “Oxford Nano-Pore” device [13–19]. 

3  Cell culture platforms 

Figure 5 shows schematically the evolution of cell culture 
platforms from the macroscopic to the microscopic and  

 
Figure 4  (Color online) Smart PNIPAAm-coated magnetic nanoparticles 
(NPs) and smart capture gold NPs for lateral flow strip diagnostic assays [13].  

down to the nano-scale. Okano and co-workers [21,22]  
radiation-grafted the thermally-responsive polymer, PNIP- 
AAm to cell culture surfaces, and they cultured confluent 
cell sheets on those surfaces at 37°C. They lifted the    
cell sheets off the surfaces by lowering the temperature to 
room temperature, and then successfully applied the cell 
sheets to repair of corneal and cardiac tissues. Nano-scale 
fibers are also being applied to the design of tissue engi-
neering scaffolds, an exciting and rapidly expanding field 
[20–27]. 
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Figure 5  (Color online) Evolution down in size (and up in area) of cell culture platforms [20].  

 

4  Molecular separation systems 

Separation of small toxins (e.g. urea, uric acid and creati-
nine) from blood is essential for patients undergoing dialysis 
for kidney failure (http://en.wikipedia.org/wiki/Artificial_ 
kidney). Figure 6 shows the hollow fiber separation system 
that evolved from the rotary dialyser and the coil dialyser.  

 

 
Figure 6  (Color online) Evolution of the rotary and coil dialysers to the 
“nm thin skin” hollow fiber artificial kidney. 

This system is known as the hollow fiber artificial kidney 
(HFAK) dialyser. The “thin skin” hollow fiber membrane 
evolved from water desalination research and development, 
and it has a nm scale thin skin on the inside of the hollow 
fiber. Nano-porous membranes have also been developed 
for rapid dialysis, and the pore sizes in those membranes are 
only a few nm in diameter [28]. 

5  Imaging and imaging + therapeutics  
(“the-ranostics”) systems 

These interesting combination diagnostic and delivery sys-
tems are described in Figure 7. It is clear that applications of 
many different NPs are involved in such systems, especially 
quantum dot fluorescence emitters and their nano-technol- 
ogies. There is much work going on to develop useful 
“feed-back” systems combining imaging and delivery sys-
tems with NPs such as Quantum Dots [29–46]. 

 
 

 

Figure 7  (Color online) Quantum dots (QDs), magnetic NPs, gold and silver NPs & gold-coated QDs have many diagnostic & therapeutic uses [38–45]. 
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Figure 8  (Color online) DNA will be even more involved in the future in 
biomaterial “pico-technology”. 

6  DNA will be critical to future nano- and pico- 
scale applications 

DNA is likely to be the key molecule in the future nano- 
scale applications. This is presented in Figure 8. Useful 
medical predictions will be applied to individual genomic 
assays and will be based on computer analysis of DNA data 
from large populations. This rapidly expanding and im-
portant field is called pharmacogenomics, or “personalized 
medicine” (http://en.wikipedia.org/wiki/Pharmacogenetics; 
http://www.pharmacogenomicsforum.org/files/2P17AlexPar
ker.pdf:2010). 
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