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Submarine groundwater discharges (SGD), consisting of groundwater flow from both terrestrial and marine origins, is an im-
portant source of nutrients, contaminants, and other chemicals to the coastal waters, and has significant impacts and implications 
on coastal environment and ecology. This paper reviews the recent advances in quantifying the tide-induced SGD in various beach 
aquifers around the world by means of mathematical modeling, laboratory experiments, and field observations or their combina-
tions. Numerous studies have shown that (1) the order of magnitude of SGD around the world estimated by radium isotope tracers 
typically ranges from 102 to 103 m3 d1 m1 of the shoreline, (2) SGD is mainly of marine origin, i.e. the re-circulated seawater 
across the aquifer-sea interface, and (3) tide is one of the major forces driving seawater-groundwater circulation. The order     
of magnitude of the tidal contributions to SGD from beach aquifers reported in the literature is only 10 m3 d1 m1 length of shore-
line, at least one order of magnitude smaller than the total SGD estimated by radium isotope tracers. This is obviously in contra-
diction with (3). The possible reasons for this contradiction may include (1) underestimation of the shoreline length due to ne-
glecting many headlands, bays and banks of tidal rivers, and (2) negligence of the seawater-groundwater exchange from the sea-
bed ranging from the nearshore areas to the continental shelf. Further research is needed to understand more about the contra- 
diction. 

submarine groundwater discharges (SGD), radium isotope tracer method, numerical model of beach aquifer, density- 
dependent flow, tide-induced SGD 
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Submarine groundwater discharge (SGD) is defined as any 
and all flow of water on continental margins from the sea-
bed to the coastal ocean, regardless of fluid composition or 
driving force [1]. Basically, SGD is composed of the terres-
trial freshwater and circulated seawater driven by various 
forces. The driving forces of SGD can be classified into 
three groups: (1) terrestrial hydraulic gradients, (2) sea level 
variations and (3) density gradients (e.g. density difference 
between the groundwater and seawater induced by salinity 
or temperature gradients). The terrestrial driving force of 
SGD is determined by the inland hydraulic gradients in the 

coastal aquifers which may have both temporal and spatial 
variations. The marine driving forces of SGD include vari-
ous sea level variations such as tides [2–11], waves [12–14], 
and storms [15–17], etc. The differences in salinity and 
temperature between seawater and groundwater may cause 
significant pore water density gradients in coastal aquifers 
which may in turn result in seawater-groundwater circula-
tion [6,18–22]. Besides the above-mentioned three main 
SGD driving forces, Santos et al. [23] also discussed several 
other SGD driving forces such as ripple and other bed form 
migration, fluid shear, bioirrigation and bioturbation, gas 
bubble upwelling, and sediment compaction. 

Although SGD has been driven by many temporally and 
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spatially overlapped terrestrial/oceanic forces, the total SGD 
at large scales can be evaluated quantitatively using natural 
radium [24–27] or radon [28–33] as tracers of groundwater 
discharge to coastal waters. The typical values of SGD es-
timated around the world range from 102 m3 to 103 m3 d1 
m1 length of shorelines, which will be expressed as “m2/d” 
hereafter. For example, Moore estimated that SGD along 
the southeastern US coast is about 100–300 m2/d [24,34], 
and about 1000 m2/d [35] along the coast of Sicily/    
Mediterranean; Liu et al. [25] estimated that SGD along the 
308 km coastline east of the Pearl River Estuary ranges 
from 1104 to 1201 m2/d. 

A major part of SGD is of marine origin, i.e., sea-
water-groundwater circulation across the aquifer-sea inter-
face [4,24,36–38]. During the circulation of seawater, sea-
water mixes with the terrestrially-derived groundwater and 
chemicals, leading to various biogeochemical interactions in 
the pore water in rocks and soils. Therefore, SGD is an im-
portant source of nutrients, contaminants, chemicals and 
trace elements to the coastal waters [1,24,38–40] and has 
considerable impact on the quality and the ecosystem of the 
receiving seawater [41–44]. 

Although groundwater seepage into the oceans occurs in 
many environments and there has been an explosion of the 
SGD literature in the past 10 years [45], SGD studies have 
been carried out in the relatively wealthy regions of the 
world and those from South America, Africa, India, or Chi-
na are still very limited [30,46,47]. SGD originates from 
coastal aquifers and then enters the coastal seawater. SGD is 
a field rooted in hydrogeology, but so far this field has been 
dominated by oceanographers, while hydrogeologists are 
not well represented in SGD studies [48]. Hydrogeologists 
can improve SGD studies by quantitative analysis of 
groundwater flow dynamics in coastal aquifers. This com-
plements the current, mainly tracers-orientated studies 
adopted by oceanographers, who tend to focus on the SGD 
at the surface, i.e. after entering seawater. The involvement 
of hydrogeologists would lead to a more complete picture of 
subsurface flow conditions and the effect of this flow field 
on coastal processes [45,48]. Tide-induced groundwater 
flow is considered to be one of the major components of 
SGD [4]. Based on these considerations, this paper reviews 
the work on quantifying tidal contributions to SGD by hy-
drogeologists with emphasis on mathematical modeling 
combined with field and laboratory observations. We hope 
that our efforts may help both hydrogeologists and ocean-
ographers to exchange their ideas and results in the study of 
SGD.  

1  Tidal effects on salinity distributions in 
coastal aquifers  

For coastal aquifers, salinity distribution determined by the 
pore water density-gradients and dispersion is an issue as 

important as groundwater hydraulics and has been studied 
by many researchers. As early as the beginning of last cen-
tury, Ghyben [51] and Herzberg [52] proposed the well- 
known Ghyben-Herzberg approximation of the freshwa-
ter-saltwater interface, which states that under hydrostatic 
condition, if the seawater density is greater than that of 
freshwater by a percentage of 2.5% (or 1/40), the freshwa-
ter-saltwater interface depth below mean sea level is 40 
times the water table elevation above sea level.  

Cooper [18] showed that the freshwater-saltwater inter-
face is actually a dispersion zone where the water salinity 
gradually changes from freshwater on the landward side to 
seawater on the seaward side. The existence of this disper-
sion zone causes a perpetual seawater-groundwater circula-
tion from the floor of the sea to the dispersion zone and 
back to the sea. Glover [53] presented a more realistic ana-
lytical expression of the freshwater-saltwater interface 
which takes into account the freshwater recharge, the aqui-
fer’s hydraulic conductivity and the density difference be-
tween the seawater and freshwater.  

Ataie-Ashtiani et al. [2] simulated the tidal effects on sea 
water intrusion in unconfined aquifers using numerical 
model modified from SUTRA [54]. They showed that the 
tidal activity forces the sea-water to intrude further inland 
and it also creates a thicker dispersion zone than would oc-
cur without tidal effects. Boufadel [55] conducted laborato-
ry experiments and numerical simulations to investigate the 
effects of tides and buoyancy on beach hydraulics. Two 
distinct salt plumes were observed: the classical saltwater 
wedge described by Cooper [18] and a new saline plume 
“hanging” immediately beneath the beach surface. Between 
these two plumes forms a freshwater discharge path, 
through which fresh groundwater discharges near the low 
tide mark. This actually explains the field observations that 
the major portion of the seaward groundwater seepage usu-
ally occurs in the shallow part of the submerged beach 
[56–60]. The salt plume hanging beneath the beach surface 
forms a small scale seawater-groundwater circulation: sea-
water infiltrates into the beach in the upper intertidal zone 
and exits near the low tide mark. This typical salinity struc-
ture of two-plume sandwiched freshwater discharge path 
was confirmed by many other recent studies including la-
boratory experiments [5,61], field observations [62,63], 
numerical simulations [6,7,64,65] and combinations of ex-
periments and numerical simulations [7,8,40,49,50,66,67].  

For aquifers with sufficiently small freshwater discharge 
rate and/or depth, the freshwater discharge path may disap-
pear and the two plumes merge into one, the scenario con-
sidered by Ataie-Ashtiani et al. [2] or by Li et al. [8]. In the 
extreme case of very large freshwater recharge from inland, 
the upper, the tide-induced salt plume may be very small or 
disappear, as was shown by the laboratory experiment and 
numerical simulation of Zhang et al. [68], Volk et al. [69], 
and Brovelli et al. [70]. The tide-induced salt plume can be 
very thin and significantly dynamic with respect to tidal 
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variations in gravel beaches where a surface layer much 
more permeable than the lower layer exists [9, 11,71,72].  

These studies contributed significantly to the fast ad-
vances in quantifying the relationship among the salinity 
structure, the inland freshwater recharge, the density effect 
and the tidal actions in coastal aquifers.  

2  Mechanism of the tide-induced SGD and 
challenges in quantifying it 

The mechanism of the tide-induced SGD is simple: the 
seawater enters the sea-land interface during rising and high 
tides and leaves the interface during falling and low tides 
[3,7,8,32,49,50]. However, it is very difficult to quantify 
this process in various coastal aquifer systems due to the 
nonlinearity and complexity caused by various factors such 
as density difference between seawater and freshwater, the 
spring-neap variation of the tidal fluctuations, heterogeneity 
and anisotropy of the aquifer, the beach slope or topography, 
capillary effects and variable-saturation in the vadose zone, 
seepage face, disturbance of animals and plants, pore water 
dispersions, spatial and temporal variations in inland re-
charge, etc.  

In order to investigate which of these factors have been 
considered in the literature studying the tide-induced sea-
water-groundwater interaction in the intertidal zone, a 
summary is given in Table 1 for some representative publi-
cations. All of them are two-dimensional vertical cross- 
sectional models. Most of them are numerical simulations 
of the field data. Various numerical codes were used such as 
SEAWAT, MARUN, SUTRA, and COMSOL. One can see 
that even the widely-used numerical code SEAWAT has its 
own weakness because it does not simulate seepage face 
and unsaturated flow. On the other hand, although the nu-
merical code MARUN can simulate seepage face and un-
saturated flow, it has no graphical input/output interfaces. It 
is therefore an urgent task and great challenge for hydroge-
ologists to develop a density-dependent groundwater flow 
code which is not only able to efficiently deal with the 
above-mentioned nonlinearities and complexities, but also 
has friendly graphical output and input interfaces. 

3  Tide-induced SGD from beach aquifers 

Although there are numerous publications related to the 
analytical and numerical studies of tide-induced sea-
water-groundwater circulations, many of them did not ex-
plicitly address the issue of SGD (Table 1). In this section, 
only the studies that explicitly reported the tidal contribu-
tions to SGD will be reviewed in a chronological order.  
Most of these studies are based on numerical models and 
simulations, and only a few are based on analytical studies 
[3,73,74]. 

In 1999, Robinson and Gallagher [75] did the first work 
to quantify the SGD in the intertidal zone using a densi-
ty-dependent, variably-saturation numerical model with 
comparison to field observations of the water table, salinity 
and measured discharge rate. However, they did not report 
the total SGD in the intertidal zone. 

In 2003, Li and Jiao [3] quantified tidal contributions to 
SGD in a multi-layered coastal aquifer system with vertical 
sea-land interface using a simplified analytical model ig-
noring density-effect. They concluded that part of the sea-
water entering the unconfined aquifer may leak into the 
underlying confined aquifer and then return to the sea. The 
tide-induced SGD through the confined aquifer is signifi-
cant (0.38–1.06 m2/d) when tidal amplitude is 1 m, the di-
mensionless leakage ranges from 0.005 to 0.05 and trans-
missivities of the confined and unconfined aquifers equal 50 
m2/d. Chuang et al. [73] refined the results of Li and Jiao [3] 
in 2012. For a coastal leaky aquifer system when tidal am-
plitude is 1 m, leakance is 0.05 1/d and transmissivities of 
the confined and unconfined aquifers equal 2000 m2/d, the 
tide-induced SGD is 23.0 m2/d, among which, 20.0 m2/d 
through the unconfined aquifer, and 3.0 m2/d through the 
confined aquifer.  

In 2005, Prieto and Destouni [76] simulated three very 
deep coastal aquifers (50–150 m) subjected to diurnal tide 
with amplitude of 0.65 m using the numerical model 
SUTRA [54] and obtained a maximum tidal contribution to 
SGD of about 2000 m2/a (5.48 m2/d).  

In 2007, Robinson, Li and Barry [6] made comprehen-
sive analyses for tidal contributions in a hypothetical ho-
mogenous coastal aquifer using the numerical model 
SEAWAT 2000 [77]. They concluded that the tide-driven 
SGD is comparable to the density-driven SGD for several 
aquifer systems with typical hydrogeological parameter 
values. Robinson et al. [7] used the same numerical model 
and found that significant tide-driven SGD is expected 
when the ratio of tidal to inland forcing is large. Their nu-
merical simulations using typical coastal aquifer parameters 
give a tide-induced SGD value ranging from about 0.5 to 
8.5 m2/d (Figure 8b of their paper). The analysis also indi-
cates that tidal effects increase density-driven sea-
water-groundwater circulation rates due to enhanced con-
vective flow within the saltwater wedge. Robinson et al. [50] 
used the same numerical model to simulate salt-freshwater 
dynamics in a subterranean estuary during the whole 
spring-neap tidal cycle, and they obtain an estimation of 3.3 
m2/d for the tidal contribution to SGD during spring tides, 
and 2.2 m2/d during the neap tides. 

In 2008, Li et al. [8] investigated the tide-induced sea-
water-groundwater circulation in shallow, homogeneous 
and isotropic beach aquifers using a dimensionless formula-
tion of the finite element model MARUN [78]. Numerical 
simulation results in one nondimensionalized coastal aquifer 
with fixed beach slope of 10%, dimensionless tidal ampli-
tude of 1 were applied to analyze tidal contributions to 
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SGD in various beaches with different hydraulic conductiv-
ities (104103 m/s), different beach slopes (3.16%– 
31.6%), different tidal amplitudes (0.3–2 m) and different 
tidal periods (diurnal or semidiurnal). They found that the 
tidal contributions to SGD increase with the tidal amplitude, 
beach hydraulic conductivity and decrease as the terrestrial 
inland recharge increases. In most cases the tidal contribu-
tions to SGD increase with the beach slope. The maximum 
tidal contributions to SGD per tidal cycle range from 0.23 
A*2 to 3.28 A*2 for all different values of the beach slope, 
tidal amplitude A*, and beach hydraulic conductivity. For 
example, for semidiurnal tides with amplitude of 1.0 m, the 
maximum tidal contributions to SGD per tidal cycle can be 
as large as 3.28 m2 per tidal cycle or about 6.5 m2/d.  
Based on field observations, Colbert et al. [32] obtained an 
estimation of 1.0 ± 0.3 m2/d for the tidal contribution in a 
beach at the head of Catalina Harbor, CA. Using the given 
beach slope of 0.045 and the diurnal tidal amplitude of 
about 0.8 m, the numerical simulation results of Li et al. [8] 
ranges from 0.192 to 1.472 m2/d when the hydraulic   
conductivity increases from 5.5 to 55 m/d, which gives a 
reasonable estimation of the tide-induced seawater-ground- 
water circulation and beach hydraulic conductivity. Gibbes et 
al. [79] simulated the observed tide-induced water table fluc-
tuations in an intertidal sandbank in Moreton Bay, Australia 
and obtained an estimation of tide-induced SGD of     
1.626 m2/d. 

In 2009, Li et al. [80] simulated the seawater-groundwater 
interactions in a coastal unconfined aquifer in the northeast-
ern Gulf of Mexico using the numerical code SEAWAT- 
2000. They obtained the quantitative estimations of tidal 
contributions of SGD of 16 cases under different tidal ranges 
and inland watertables, which ranges from 2.19 to 4.41 m2/d.  

In 2010, Xia et al. [9] used the numerical model 
MARUN [78] reproduced the field observed watertable, 
pore water salinity and lithium tracer concentration accu-
rately in a two-layered gravel beach in Knight Island, Prince 
William Sound, Alaska. The tidal contribution to SGD over 
a spring-neap tidal cycle was about 2.1 m2/d. Guo et al. [11] 
obtained an estimation of about 9 m2/d used the same nu-
merical model in another heterogeneous gravel beach near 
that of Xia et al. [9]. The tidal range in the area is about 4.6 
m. The difference between these two estimates is mainly 
due to the fact that one-third of the intertidal zone of the 
gravel beach studied by Xia et al. [9] is vertical impermea-
ble bedrock cliff.  

In the same year, Riedel et al. [81] simulated the water 
table fluctuations at a well-studied tidal flat margin in the 
German Wadden Sea using the numerical model SUTRA. 
They obtained the values of tidal contribution to SGD over 
12 months with the average and maximum being 0.97 m3 
and 1.59 m3 m1 of shoreline length per tide, respectively 
(or equivalently, about 1.9 and 3.2 m2/d, respectively). King 
et al. [82] used analytical models for the groundwater tidal 
prism to obtain an estimate of the tidal contribution of SGD 

of 21.6 m2/d for a region of the South Atlantic Bight. 
In 2011, Nakada et al. [83] used the numerical model 

SEAWAT 2000 to describe the hydrogeology in a tidal flat 
and adjacent sea water. From their simulated spatial distri-
bution of SGD (Figure 6(a) and (c)) the tidal contribution to 
SGD can be estimated to be ~20 m2/d.  

In 2012, Xia and Li [42] used the numerical model 
MARUN reproduced the field observed watertable in two 
transects (one is mangrove transect and the other is tidal flat) 
in mangrove marshes in Dongzhaigang National Nature 
Reserve, Hainan, China. They identified that both transects 
have a mud-sand two-layered structure: a surface zone of 
low-permeability mud and an underlying high permeability 
zone that outcrops at the high and low tide lines. Seawater 
infiltrated the high-permeability zone through its outcrop 
near the high intertidal zone, and discharged from the tidal 
river bank in the vicinity of the low tide line. The simulated 
tidal contribution to SGD was 2.15 m2/d for the mangrove 
transect and 6.0 m2/d for the tidal flat transect. Considering 
that most of the tidal rivers in estuaries are winding and 
have very long banks, these processes may provide consid-
erable contribution to the total submarine groundwater  
discharge. 

4  Summary and future work 

In summary, it is an urgent task and great challenge for hy-
drogeologists to develop a groundwater flow code which 
not only has friendly graphical output and input interfaces, 
but also is able to efficiently deal with the nonlinearities and 
complexities in modeling groundwater influenced by sea-
water such as density difference between seawater and 
freshwater, the spring-neap variation of the tidal fluctua-
tions, heterogeneity and anisotropy of the aquifer, the beach 
slope or topography, capillary effects and variable-saturation 
in the vadose zone, seepage face, disturbance of animals 
and plants, pore water dispersions, spatial and temporal 
variations in inland recharge, etc. Tidal contributions to 
SGD from beach aquifers are less than 10 m2/d for most of 
the above-mentioned studies, with the minimum being 0.5 
m2/d, maximum being 23 m2/d and the average only being 
11.8 m2/d, much smaller than the typical value range of the 
total SGD around the world (102–103 m2/d) obtained by the 
Radium isotope methods. This is obviously in contradiction 
with the common sense that tide is one of the major forces 
driving seawater-groundwater circulation. The future re-
search may focus on the possible reasons for this contradic-
tion, which may at least include the following. 

(1) When Ra isotope methods were used to estimate the 
SGD per unit length of the shoreline, the length of the 
coastline might be significantly underestimated by neglect-
ing many headlands, banks of tidal rivers and bays in dif-
ferent scales along the shoreline. A proper re-evaluation of 
the shoreline length in a scale resolution comparable to the 
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intertidal zone is necessary in order to include the 
tide-induced SGD in various headlands, bays and banks of 
tidal rivers. Such a re-evaluation may produce a much long-
er coastline length which decreases significantly the current 
estimation of SGD per unit length of the shoreline.  

(2) When the Radium isotope methods were used to es-
timate the total SGD, the cross-shore width of the consid-
ered coastal area is very large (hundreds of kilometers of the 
whole seabed of the continental shelf). The tidal contribu-
tion to SGD considered here is only limited near the inter-
tidal zone (i.e. the tide-induced seawater-groundwater cir-
culation in the unconfined beach aquifer), which only has a 
cross-shore width ranging from tens of meters to several 
kilometers. In reality, however, seawater may be “pushed” 
into the seabed sediments during rising and high tides and 
released from seabed sediments during falling and low tides 
due to the elastic compression and expansion of the sea-
water, which corresponds to the seawater-groundwater cir-
culation in the confined aquifer. Although this kind of flux 
is small, it occurs in a much greater area (the whole seabed 
of the continental shelf) and may have considerable contri-
butions to SGD.  
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