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Wavelet regression (WR) models are used commonly for hydrologic time series forecasting, but they could not consider uncer-
tainty evaluation. In this paper the AM-MCMC (adaptive Metropolis-Markov chain Monte Carlo) algorithm was employed to 
wavelet regressive modeling processes, and a model called AM-MCMC-WR was proposed for hydrologic time series forecasting. 
The AM-MCMC algorithm is used to estimate parameters’ uncertainty in WR model, based on which probabilistic forecasting of 
hydrologic time series can be done. Results of two runoff data at the Huaihe River watershed indicate the identical performances 
of AM-MCMC-WR and WR models in gaining optimal forecasting result, but they perform better than linear regression models. 
Differing from the WR model, probabilistic forecasting results can be gained by the proposed model, and uncertainty can be de-
scribed using proper credible interval. In summary, parameters in WR models generally follow normal probability distribution; 
series’ correlation characters determine the optimal parameters values, and further determine the uncertain degrees and sensitivi-
ties of parameters; more uncertain parameters would lead to more uncertain forecasting results and hard predictability of hydro-
logic time series. 
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Hydrologic time series forecasting is to reveal the future 
hydrologic regimes and further guide practical water activi-
ties [1,2]. The issue has received tremendous attention pres-
ently. Black-box models with two advantages as low quan-
titative demands of data and simple formulation are used 
commonly [3]. Linear regression (LR) models are the typi-
cal black-box models and developed extensively [4], but 
they are based on the stationarity and linearity assumptions. 
Artificial neural network (ANN) is another important type 
of black-box models. An ANN model can learn complicated 
nonlinear relationships [5]. However, the neural network 
structure is difficult to be determined, even if using trial-to- 

error procedure [6]. In addition, many parameters and neu-
ral network structure lack reliable physical basis, which are 
very important for hydrologic time series forecasting [7]. 

Observed hydrologic series in nature usually show non- 
stationary characteristics under multi-temporal scales. Wavelet 
analysis (WA) can elaborate the characteristics of a series in 
temporal and frequency domains, so it is suitable for han-
dling the nonstationary characters of hydrologic series [8,9]. 
The combination of wavelet analysis with black-box models 
is a prevalent approach to conduct hydrologic time series 
forecasting, and various studies demonstrated the effective-
ness of this practice [10,11]. However, hydrologic processes 
like any other natural processes have uncertainty [12,13], and 
forecasting result with a single optimal value is not convincing 
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[14]. Hydrologic time series forecasting is to estimate an 
uncertain future hydrologic event [15]. Do probabilistic fore-
casting and then evaluate uncertainty would be more effec-
tive approach, since it enables decision-makers and the pub-
lic to make decisions by considering uncertainty explicitly. 

Generally, the uncertain factors influencing hydrologic 
forecasting include data uncertainty [16,17], model structure 
uncertainty [18], and parameter uncertainty [19]. When ap-
plying certain black-box model to hydrologic time series 
forecasting, they usually assume that the statistical proper-
ties of series are temporal persistent, so parameters remain 
constant over time when they are determined. This is often 
unreasonable, because climate and other factors impact hy-
drologic dynamics and may cause the changes of series’ 
statistical properties [14]; moreover, it is also caused by the 
short or even missing length of series. Therefore, parameter 
is a key factor in hydrologic time series forecasting by 
black-box models. Bayesian theory is an universal theoreti-
cal framework for probabilistic forecasting by combining 
with deterministic models [20], and it can quantitatively 
describe the uncertainty of the object studied using known 
information [21,22]. By exploiting the advantage of Bayes-
ian theories, this study is to propose a Bayesian-combined 
wavelet regression model for hydrologic time series fore-
casting, with uncertainty evaluation taken into account. 

1  The AM-MCMC-WR model proposed 

1.1  AM-MCMC-WR modeling processes 

By combining the AM-MCMC (Adaptive Metropolis-Markov 
chain Monte Carlo) algorithm with wavelet regressive mod-
eling, an improved model for hydrologic time series fore-
casting along with uncertainty evaluation is proposed, called 
AM-MCMC-WR. AM-MCMC is employed to estimate pa-
rameters uncertainty in WR model, based on which probabil-
istic forecasting can be conducted. The AM-MCMC algo-
rithm will be described together with wavelet regressive 
modeling processes in the following. The modeling pro-
cesses by AM-MCMC-WR are depicted in Figure 1, which 
contain four main steps: wavelet decomposition of series, 
determination of proper wavelet regression model, AM- 
MCMC sampling process of parameters, and probabilistic 
forecasting. The specific steps are described as 

(1) For the hydrologic series f(t) analyzed, choose suita-
ble wavelet and decomposition level to decompose it into a 
set of sub-signals. 

(2) Identify the deterministic components of series f(t) by 
conducting significance testing of DWT, and combine them 
as fW(t). The result is used as the input data of wavelet regres-
sion model. 

(3) Select proper linear regression model to fit the series 
fW(t):  
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where f(t+) is the value to be forecasted with the forecast-
ing period of , fW(t-i+1) is the past hydrologic value, and i 
is the ith regressive parameter to be estimated with the total 
number of p. 

(4) Estimate the value of parameter i (i=1, 2, …, p), and 
take the result as its initial sample value. 
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then initialization, j=0. 
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parameter sample i*~(i,j,Ci): 
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where j0 is initial sampling number, Sd is a scale factor, ε is 
a small positive number which ensure Ci be a nonsingular 
matrix, C0 is the initial covariance matrix, and Id is a unit 
matrix. 

(7) Compute the acceptance probability of the new pa-
rameter i* using eq. (3): 
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(8) Generate a random number following uniform distri-
bution as u~U(0, 1). If >u, accept i,j+1=i

*; or else, ac-
cept i,j+1=i,j. Then j=j+1. 

(9) Analyze each parameter’s sampling results, and judge 
whether sampling results converge or not. If not, increase 
sampling number and do the same analyses in the steps of 
(6)–(8), until becoming stable. 

(10) Forecast the hydrologic value with certain forecast-
ing period using parameters’ sampling results, and gain the 
probabilistic forecasting result (i.e. probability distribution). 
Finally, evaluate the uncertainty of forecasting results by 
estimating the credible intervals at certain confidence level. 

1.2  Several key problems about AM-MCMC-WR 
modeling 

When applying the above proposed model for hydrologic 
time series forecasting, some key problems should be care-
fully considered: 

Wavelet decomposition of series. Accurate decomposi-
tion of series is a key problem in wavelet regressive model-
ing processes. Wavelet and decomposition level choices are 
two key problems in discrete wavelet decomposition. Sang 
[23] gave a practical guide to discrete wavelet decomposi-
tion. By comparing energy function of hydrologic series 
with the reference energy function, he proposed the meth-
ods for wavelet and decomposition level choice, and signif-
icance testing of DWT. It is used here for accurate decom-
position of hydrologic series, as the basis of wavelet regres-
sive modeling. 

Value range of parameter. Estimating value ranges of  
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Figure 1  The processes of hydrologic time series forecasting along with uncertainty evaluation by the AM-MCMC-WR model proposed.  

parameters is very important for determining proper prior 
PDF of parameter and for accurately describing parameter’s 
uncertainty. Physical properties of hydrologic variables 
should be considered for estimating value ranges of param-
eters, for instance, parameter values must ensure the runoff 
and precipitation values being not smaller than zero. 

Prior PDF of parameter. Selection of parameter’s prior 
PDF is crucial for obtaining reliable sampling results. Both 
uniform and normal probability distributions are used in 
practice. If using the former, it is very important but diffi-
cult to determine parameter’s value range. If using normal 
probability distribution, mean values of parameters can be 



 Sang Y F, et al.   Chin Sci Bull   November (2013) Vol.58 No.31 3799 

estimated by proper method, and standard deviation can be 
valued suitable ratio of mean values, for instance, the ratio 
is 0.5 for two examples in “Case study”. The normal proba-
bility distribution is recommended here, because it can 
avoid the estimation errors of parameters’ value ranges. 

Initial sample value of parameter. Determination of pa-
rameter’s initial sample value is another very important prob-
lem which influences the efficiency of AM-MCMC algo-
rithm [24]. For accelerating the convergence sampling rate, 
in this paper the parameter value estimated by the least- 
square method, but not random value as done in normal 
practices, is used as the initial sample value of parameter. 

Likelihood function. Likelihood function reflects model’s 
performance. The sampling results obtained by AM-MCMC 
would not converge to the posterior PDF if using unreason-
able likelihood function. For the wavelet regressive model-
ing processes, the likelihood function in eq. (4) is used in 
this paper: 

    2 2ˆ( ) ,
N N

L x x
 

    (4) 

where x is the observed data and x̂  is the modeled data; N 
is a parameter determining the weight of the analyzed pa-
rameter in model; the bigger the N is, the bigger weight of 
the analyzed parameter is. 

2  Case study 

2.1  Data 

Two monthly runoff series measured at the Xixian (denoted  

as RS1) and Bengbu (denoted as RS2) hydrologic stations in 
the Huaihe River watershed are used in this study (Figure 2). 
Drainage areas of the two sites are 10190 km2 and 121300 
km2 respectively. The two observed series have the same 
length of 41 years (492 months) from 1961 to 2001. After 
examining the reliability of data, the first 30-year data are 
chosen for calibration and the remaining 11 years are cho-
sen for verification. 

Statistical characters of the two series are presented in 
Table 1. Because the Bengbu station locates at the down-
stream and the Xixian station locates at the upstream, the 
runoff magnitude of the former is much bigger. The two run-
off series show similar scattered variations, but RS1 series 
shows bigger positive skewness; RS2 series shows more ob-
vious autocorrelation than RS1. In the calibration period of 
RS1 series, runoff data fall within the range of 3.27–1560.00 
m3/s, while those in verification period fall within the range 
of 4.16–1030.00 m3/s, being smaller than the former. The 
same results can be found for RS2 series. According to the-
se results, it is thought that extreme runoff values in verifi-
cation data sets can be accurately modeled as long as nice 
models are established using the calibration data sets.  

2.2  Discrete wavelet decomposition results 

The two series were decomposed by significance testing of 
DWT using the “db8” wavelet. Energy functions of the two 
series are compared with the reference energy function, and 
wavelet decomposition results are displayed in Figure 3. 
The sub-signal under “D” levels is reconstructed by detail  

 
Figure 2  The locations of the Xixian and Bengbu hydrological stations in the Huaihe River watershed.  

Table 1  Statistical characters of monthly runoff data measured at the Xixian and Bengbu hydrologic stationsa) 

Stations Data set 
Statistical characters 

xmean (m
3/s) xmin (m

3/s) xmax (m
3/s) Cv Cs R1 R2 

Xixian (RS1) 

calibration 119.07 3.27 1560.00 1.43 3.70 0.32 0.14 

verification 103.31 4.16 1030.00 1.54 3.16 0.38 0.21 

whole 114.84 3.27 1560.00 1.46 3.59 0.34 0.16 

Bengbu (RS2) 

calibration 848.62 0.00 6130.00 1.21 1.93 0.65 0.32 

verification 654.24 0.00 5870.00 1.59 2.73 0.62 0.30 

whole 796.47 0.00 6130.00 1.30 2.13 0.65 0.32 
a) The xmean, xmin, xmax, Cv, Cs, R1 and R2 denote the mean, minimum, maximum, coefficient of variation, coefficient of skewness, lag-1 and lag-2 autocor-

relation coefficients, respectively.  
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Figure 3  Energy functions (left) and wavelet decomposition results (right) of RS1 and RS2 series.  

wavelet coefficients, and the sub-signal under “A” level is 
reconstructed by approximate wavelet coefficients. The sub- 
signals of RS1 series under D1, D6, D7 and D8 have the 
energies falling within 95% confidence interval, so they are 
thought as noise, and the others are the deterministic com-
ponents for modeling RS1 series. The sub-signals of RS2 
series under D1 and D8 are thought as noise, and the others 
are the deterministic components for modeling RS2 series.  

2.3  Modeling processes 

The two runoff series are analyzed by AM-MCMC-WR, LR 
and WR models for comparison. When modeling RS1 and 
RS2 series by LR model, both the input and output data are 
original data. When modeling RS1 series by WR model, the 
input data is the sum of sub-signals under D2, D3, D4, D5 
and A8 (denoted as fW1(t)), and the output data is original 
data; when modeling RS2 series by WR model, the input 
data is the sum of sub-signals under D2, D3, D4, D5, D6, 
D7 and A8 (denoted as fW2(t)), and the output data is origi-
nal data. The input and output data of two series by AM- 

MCMC-WR model are the same as those in WR modeling 
processes. 

Both one-month- and three-month-ahead modeling are 
conducted. The input vectors to LR and WR models are 
determined by analyzing series’ partial correlations. As shown 
in Figure 4, one-month-lag data are used as the input vectors 
of LR and WR models for RS1 series, and two month-lag 
data are used as the input vectors of LR and WR models for 
RS2 series. Parameters of LR and WR models are estimated 
by the least square method. 

In the AM-MCMC sampling process of parameters, the 
initial sampling number is set as 200, and the total sampling 
number is set as 10000 for one-month-ahead forecasting but 
30000 for three-month-ahead forecasting, mainly to ensure 
stable sampling results;  equals 104. Sd equals 2.42/d, where 
d=1 for WR1 model and d=2 for WR2 model. Normal PDF 
is determined as the prior PDF of parameter, the mean of its 
normal PDF is valued as that estimated by the least square 
method, and the standard derivation is valued as 0.5 times 
of the mean value. The elements in matrix C0 equal 30% of 
the standard deviation of the corresponding parameters. 
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Figure 4  Partial autocorrelation functions of RS1 and RS2 series with the 95% confidence interval. 

Three indexes, RMSE (root mean square error), AARE 
(average absolute relative error) and R2 (coefficient of de-
termination), are used to evaluate the forecasting results: 
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where f(i) is observed data with the total number of n and 

mean of ( )f i , and f ′(i) is modeled data. 

2.4  Forecasting results 

The LR and WR models for conducting one-month-ahead 
forecasting of RS1 and RS2 series, denoted as LR1 (1), LR2 

(1), WR1 (1) and WR2 (1), are determined as eq. (6): 
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The prior PDF of the parameter in WR1(1) model is as-
signed as 1~N(0.835, 0.418). The prior PDF of two param-
eters in WR2(1) model is assigned as: 1~N(1.411, 0.706), 
2~N(0.596, 0.298). After the sampling number equals 
4000 and till up to 10000, xmean and Cv (coefficient of vari-
ance) of the sampling results of parameters become stable, 
indicating the convergent sampling results. Statistical char-

acters of parameters’ sampling results are shown in Table 2, 
which indicates that (1) The xmean of parameters’ posterior 
PDFs are very close to those in eq. (6), so optimal parame-
ter results estimated by AM-MCMC are reliable, and sam-
pling results are reliable. Cv values of all posterior PDFs 
differ with 0.5 prior determined, showing the prior and pos-
terior PDF differences of parameters; (2) the xmean and xmode 
values of the posterior PDF of each parameter are similar, 
so it is thought that these parameters follow normal proba-
bility distribution; and (3) scatter degrees vary with the pa-
rameters analyzed. Bigger absolute optimal parameter value 
has smaller scatter degree, and vice versa. Scatter degree to 
some extents reflects the uncertainty and sensitivity of pa-
rameter. If certain input vector in WR model occupies an 
important proportion of original series, its corresponding 
parameter would have small scatter degree (i.e. Cv value) 
and small uncertainty, which means that the parameter has 
high sensitivity; however, if certain input vector in WR 
model occupies an insignificant proportion, its correspond-
ing parameter would have big scatter degree and big uncer-
tainty, and is not sensitive to the final forecasting result.  

Based on parameters’ sampling results, one-month-ahead 
probabilistic forecasting results at the verification period are 
obtained. The results are depicted in Figure 5 and evaluated 
in Table 3. Several conclusions follow: (1) Because xmean 
and xmode values of parameters’ posterior PDFs are similar 
with those estimated by the least-square method, the opti-
mal forecasting results by AM-MCMC-WR and WR mod-
els are also similar. (2) Three models used show different 
performances. The LR model is to directly analyze original 
series, so the results are influenced by noise and insignifi-
cant components in original series. However, when firstly 
separating the deterministic components, the above influ-
ences can be effectively overcome, and forecasting results 
can be improved. Scatterplots in Figure 5 show that fore-
casting results by AM-MCMC-WR and WR models are 
more close to the exact line compared to those by LR model. 
(3) Both optimal and probabilistic forecasting results of RS1 
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Table 2  Statistical analyses of the sampling results of parameters when conducting one-month-ahead forecasting by the AM-MCMC-WR model proposed 

Model Parameter 
Estimated value by the 
leased square method 

Characteristic statistics of sampling result 

xmax xmin xmean xpv Cυ Cs 

WR1 1 0.835 2.868 1.184 0.789 0.649 0.615 0.065 

WR2 
1 1.411 2.776 0.168 1.293 1.385 0.308 0.001 
2 0.596 0.676 2.235 0.605 0.554 0.681 0.182 

 
Figure 5  The results of one-month-ahead forecasting of RS1 (a1) and RS2 (b1) series in the verification period, and scatterplots of RS1 (a2) and RS2 (b2) 
series by LR, WR, and AM-MCMC-WR models.  

Table 3  Comparison of the LR, WR and AM-MCMC-WR models in one-month-, and three-month-ahead forecasting of the RS1 and RS2 series 

Forecasting period Forecasted series Model used 
Index (calibration)  Index (verification) 

RMSE AARE R2  RMSE AARE R2 

One-month-ahead 

RS1 

LR 77.58 0.454 0.810 148.59 0.613 0.385 

WR 73.90 0.452 0.823 119.68 0.498 0.658 

AM-MCMC-WR 70.28 0.413 0.823 119.48 0.466 0.658 

RS2 

LR 521.55 0.404 0.869 836.41 0.544 0.624 

WR 465.71 0.336 0.905 720.79 0.402 0.742 

AM-MCMC-WR 484.17 0.337 0.895 702.56 0.365 0.741 

Three-month-ahead 

RS1 

LR 113.92 0.585 0.641 146.40 0.622 0.384 

WR 91.32 0.493 0.754 129.61 0.524 0.657 

AM-MCMC-WR 84.72 0.494 0.754 138.09 0.522 0.657 

RS2 

LR 786.18 0.527 0.623 831.97 0.631 0.620 

WR 686.07 0.435 0.792 757.00 0.441 0.736 

AM-MCMC-WR 667.01 0.432 0.798 807.25 0.447 0.739 
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and RS2 series can be obtained by the AM-MCMC-WR 
model proposed. Figure 5 indicates that almost all original 
data (especially extreme runoff values) in verification peri-
od fall within the 95% credible interval (CI) estimated by 
the AM-MCMC-WR model, so it is thought that uncertainty 
is well estimated. However, conventional LR and WR mod-
els cannot do this. (4) Forecasting results of RS2 series are 
more accurate than those of RS1 series by any models, and 
uncertainty of the forecasting results of RS1 series is more 
obvious. It is mainly due to their different correlation char-
acters. Since all the three models are based on series’ corre-
lation, those hydrologic series with good correlation would 
have easy predictability. For those hydrologic series with 
bad correlation, they would be difficult to be accurately 
modeled, and the results would have big uncertainty.  

The LR and WR models for conducting three-month- 
ahead forecasting of RS1 and RS2 series, denoted as LR1 (3), 
LR2 (3), WR1 (3), WR2 (3), are determined as eq. (7): 
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In three-month-ahead forecasting, AM-MCMC sampling 
results of parameters are shown in Table 4. The three- 
month-ahead probabilistic forecasting results are presented 
in Figure 6. Compared with one-month-ahead forecasting 
results, we can find that (1) The sampling number ensuring 
stable sampling results should be up to 20000 in three- 
month-ahead forecasting. It is mainly due to more obvious 
parameter uncertainties along with forecasting period in-
crease. (2) The understandings of parameters’ uncertainties 
and sensitivities obtained here are similar as those in one- 
month-ahead forecasting. (3) Compared with Figure 5, Fig-
ure 6 shows that along with the increase of forecasting pe-
riod, forecasting results of RS1 and RS2 series by any mod-
els become worse. It is due to the weak correlations of input 
and output data sets in long-step forecasting by regression 
models. Therefore, it is concluded that the performances of 
regression models become worse with the forecasting peri-
od increasing. Although the optimal forecasting results be-
come worse, the 95% credible interval can also cover al-
most all original data, so uncertainty can be quantitatively 
estimated.  

3  Discussion 

Research on hydrologic time series forecasting has great 
significance in solving practical water activities. When ap-
plying conventional linear regression or wavelet regression 
models to hydrologic time series forecasting, the result is 
single value and cannot effectively consider uncertainty. In 
this paper, an AM-MCMC-WR model was proposed by em-
ploying the AM-MCMC algorithm to wavelet regressive 
modeling processes. Results of two examples verified its 
better performance compared with LR and WR models. 
Some understandings follow:  

In the wavelet regressive modeling processes, absolute 
optimal value of parameter determines its uncertainty de-
gree. Those parameters with bigger absolute optimal values 
would have weaker uncertainty and higher sensitivity, but 
the parameters with smaller absolute optimal values would 
have more obvious uncertainty and lower sensitivity. It is 
due to the correlations between input and output data sets in 
regression model. For the hydrologic series with good cor-
relation characters, its dominant deterministic components 
(i.e. the input vector of WR model) would occupy an im-
portant proportion of original series, and the corresponding 
parameter would have big absolute value, small scatter de-
gree and uncertainty, but high sensitivity. 

Uncertainties and sensitivities of parameters in regres-
sion model determine the uncertainty of probabilistic fore-
casting result. When parameters have weak uncertainties 
and high sensitivities, the probabilistic forecasting result 
would have small uncertainty, whereas if parameters have 
small sensitivities and obvious uncertainties, forecasting re-
sults would have big uncertainties, and the estimated credi-
ble interval with certain confidence level would be much 
big. It indicates the uncertainty consistence between param-
eters and hydrologic time series forecasting. 

Those hydrologic time series with good correlation char-
acters are easier to be modeled than those with weak corre-
lation characters when using linear regression models. It is 
determined by the essence of linear regression models, also 
including wavelet regression model and the AM-MCMC- 
WR model proposed. Generally, those hydrologic series 
with good correlation characters would correspond to the 
parameters with big absolute value, smaller scatter degree 
and uncertainty, and high sensitivity, by which accurate 
result of hydrologic time series forecasting with small un-
certainty can be obtained, that is, the hydrologic series has  

Table 4  Statistical analyses of the sampling results of parameters when conducting three-month-ahead forecasting by the AM-MCMC-WR model proposed 

Model Parameter 
Estimated value by 

leased square method 
Characteristic statistics of sampling result 

xmax xmin xmean xpv Cυ Cs 

WR1 1 0.405 3.194 2.172 0.263 0.229 2.021 0.124 

WR2 
1 0.659 2.504 1.470 0.568 0.467 0.784 0.009 

2 0.210 1.598 2.169 0.271 0.201 1.600 0.021 
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Figure 6  The results of three-month-ahead forecasting of RS1 (a1) and RS2 (b1) series in the verification period, and scatterplots of RS1 (a2) and RS2 (b2) 
series by LR, WR, and AM-MCMC-WR models. 

easy predictability. However, those hydrologic series with 
bad correlation characters would have hard predictability 
when using linear regression models.  

Hydrologic series usually show non-stationary variations 
at multi-temporal scales. When applying linear regression 
model to directly analyze raw hydrologic series, accurate 
forecasting results cannot be gained due to the impacts of 
noise and insignificant components in original series. How-
ever, when firstly separating the dominant deterministic 
components by wavelet analysis, the above influences can 
be overcome, and hydrologic time series forecasting results 
can be improved. Because the AM-MCMC-WR model is 
based on wavelet regressive modeling process, it has the 
identical performance as WR models in obtaining optimal 
forecasting results. Here, it is concluded that wavelet analy-
sis can helpfully guide and improve the accuracy of hydro-
logic time series forecasting. 

4  Conclusions 

The AM-MCMC algorithm and the wavelet regression 

model were used together, and an AM-MCMC-WR model 
for hydrologic time series forecasting along with uncertainty 
evaluation was proposed. By applying to the Xixian and 
Bengbu hydrological stations in the Huaihe River watershed 
for one-month- and three-month-ahead forecasting, the per-
formance of the proposed model was investigated. The re-
sults indicated that uncertainties of parameters and hydro-
logic time series forecasting are objective existences. Com-
pared with conventional linear regression and wavelet re-
gression models which are to estimate the optimal forecast-
ing result, the proposed AM-MCMC-WR model is to do 
probabilistic forecasting, so uncertainty can be quantita-
tively evaluated using proper credible interval. In practical 
application, several detailed issues should be carefully con-
sidered when using the proposed model, such as accurate 
wavelet decomposition of series, and determination of 
proper wavelet regression model. Only after carefully solv-
ing these issues, could reasonable result of hydrologic time 
series forecasting be obtained. 

Although the AM-MCMC-WR model proposed can do 
probabilistic forecasting, it has difficulty in accurately fore-
casting hydrologic extreme values, as clearly shown in the 
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results of two examples. For RS1 and RS2 series, although 
the value ranges of the calibration data set can contain those 
of the verification data sets, accurate forecasting results of 
runoff extreme values cannot be obtained by any of the 
three models used. Factually, forecasting of hydrologic ex-
treme values is a difficult task [3,25]. In the theories of sto-
chastic hydrology [26,27], deterministic components and 
extreme values in hydrologic series are generated by differ-
ent mechanisms [28]. Hydrologic extreme values usually 
show pure random characters and thus could not be accu-
rately forecasted by any deterministic models. To improve 
the forecasting result, it may be more feasible and desirable 
by separating hydrologic extreme values first and then de-
scribing them by proper statistical models. 

Finally, it should be pointed out that this study mainly 
studied parameter uncertainty, but data uncertainty and 
model uncertainty should be further studied. By doing this, 
uncertainty of hydrologic time series forecasting can be 
more comprehensively taken into consideration. 
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