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A new grain topology-size relationship in three-dimensional (3D) polycrystalline microstructures has recently been established by 
considering the effects of non-random first nearest neighbor grains. In this contribution, a generalized form for this relationship is 
presented by considering the interactions of kth (k=1, 2, 3…) nearest neighbor grains, and large scale Monte Carlo-Potts model 
simulation is used to investigate the general neighborhood topological effect on the topology-size relationship. The results show 
that, unlike their first nearest neighbors (k=1), the topological correlations of 3D grains with their kth layers (k2) of near-
est-neighbors may have trivial effect on the topology-size relationship. 
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Many macroscopic properties such as mechanical, thermal, 
magnetic and conductive properties of the material can be 
directly linked to microstructure; therefore, it is very im-
portant to predict the grain microstructure and its evolution 
[1–4]. The size and the shape of grains and their spatial 
correlation are likely to play a significant role in the micro-
structural evolution. Therefore, the grain topology-size rela-
tionship is of fundamental importance for a better under-
standing of polycrystalline materials. In 1985, by applying 
the methods of statistical mechanics to the structure of ran-
dom, space-filling cellular structures, Rivier [5] revealed 
that the maximum entropy inference under a few constraints 
yields structural equations of state, relating the topology of 
cells to their size. These equations of state are namely Pe-
rimeter law (for metallurgical grains) and Lewis’s law (for 
ideal soap froths). According to Perimeter law, the average 

radius of grains is proportional to the number of their edges. 
While, in three dimensions (3D), a parabolic relationship 
exists between the grain size and grain topology. DeHoff 
and Liu [6] have proposed a linear relationship between the 
number of grain faces and the mean tangent diameter of 
individual grains in 3D. Thereafter, Abbruzzese and Com-
popiano [7] and Thorvaldsen [8] proposed two independent 
forms of quadratic relationships between the number of 
grain faces and the sphere-equivalent radius of grains in 3D. 
The DeHoff-Liu’s linear model has been verified experi-
mentally by Liu et al. [9] and strongly recommended it 
when the mean tangent diameter is used for grain size. 
Meanwhile, Abbruzzese-Compopiano’s quadratic model [7] 
also agrees well with the experimental results of Liu et al. [9] 
when the sphere equivalent radius is used for grain size in-
stead of mean tangent diameter. The Abbruzzese-Com-     
popiano’s [7] and Thorvaldsen’s [8] quadratic models are 
also consistent with the experimental results of -titanium 
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alloy [10] and aluminum alloy [11] as well as the results of 
surface evolver simulation [12]. These studies considered a 
mean field approach in describing topology-size relation-
ships while neglected the effects of the neighboring grains. 

As neighborhood of grains define their topology [13,14] 
and the interactions of grain neighbors play a vital role 
within the grain networks, grains should not be considered 
to exist in a mean field. The nonrandom nearest neighbor 
correlations in 3D grain structures have been studied both 
experimentally [10,15] and by simulations [12,16]. Recent 
studies strongly suggested the importance of considering the 
effects of first nearest-neighbor grains when studying grain 
growth [10,16] and also predicting the grain topology-size 
relationships. More recently, Luan et al. [17] introduced a 
new grain topology-size equation in three dimensions by 
considering the interactions of first nearest neighbor grains, 
which states that the topologically averaged relative grain 
size Rf /<R> depends on the difference between the number 
of faces of a grain (f) and the mean face number of its near-
est neighbors (m1), that is 

 1( ) ,fR R f m C      (1) 

where Rf is the sphere equivalent radius (grain size) of 
f-faced grains, <R> is the average grain size in 3D system, 
and  and C are constants. 

However, eq. (1) is only concerned about the interactions 
of first nearest neighbor grains (short range topological cor-
relations). For a more precise and unbiased estimation of 
grain size or topology it would be better to consider the in-
teractions of other neighboring grains (long range topologi-
cal correlations) as well. In order to consider the effects of 
kth (k=2, 3…) neighbor grains along with first neighbors, a 
generalized form for eq. (1) is required. In this article, a 
generalized form for grain topology-size relationship (eq. 
(1)) is presented by considering the interactions of kth (k=1, 
2, 3…) nearest neighbor grains, and large scale Monte Car-
lo-Potts model simulation is used to investigate the correla-
tions between grains and their different types of neighbors 
for an ultimate object of studying the general neighborhood 
topological effect on the topology-size relationship of 3D 
grains.  

1  Methods and parameters 

To investigate the long range topological correlations of 
grains, a definition of second, third and even kth nearest 
neighbor grains is desired. As for as we are aware of, there 
exist different opinions about the definition of second and 
third nearest neighbors of grains (or bubbles, cells). Some 
define them as, the grains which can be connected with the 
central grain by a single edge are second nearest neighbors 
and the third nearest neighbors are those which require two 
edges to connect [18–20], while others define them as in 
closed concentric layers of grains around the central grain 

and Some neighbor grains were defined as defects [21,22]. 
In a previous paper [23], the authors introduced a new defi-
nition of second, third or kth nearest neighbors to investi-
gate the topological correlations of 3D grains, which is 
more suitable to study the interactions of kth (k=2, 3…) 
nearest neighbors as compared to other definitions because 
this definition covers the largest number of nearest neigh-
bors in each layer, which is more suitable to study the con-
tribution of all nearest neighbors. In what follows, we adopt 
the same definition.  

A grain structure divides space into N individual grains. 
The neighborhoods of a grain can be thought of as in closed 
concentric layers of grains around it (shell structure). The 
kth layer of a given grain is the set of its kth nearest neigh-
bors. It is well understood that the grains which are adjacent 
to a given grain are its first nearest neighbors. For k>1, the 
kth nearest neighbors are those adjacent to (k1)th layer, but 
do not belong to (k-2)th layer (0 layer means the given grain 
itself). For the sake of simplicity, we illustrated this defini-
tion here in two dimensions (2D) by using a micrograph of 
pure iron, Figure 1 shows the first, second and third nearest 
neighbors (colored orange, green and red respectively) of a 
grain colored purple in concentric layers of grains around it. 
In 3D, the definition of kth nearest neighbors is exactly the 
same as in 2D. We consider there are ck neighboring grains 
in kth layer and Fk is their total number of faces, so the av-
erage number of faces of kth neighbor grains will be  

 .k k km F c  (2) 

We define L1–n as the mean face number for all neighbor 
grains in (1–n)th layers, i.e. 
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where Pn is the total number of grains in (1–n)th layers, 
which equals the summation of ck (k=1–n). For example, for 
first nearest neighbors (n=1), L1–1=m1; for both first and 
second nearest neighbors (n=2), L1–2=(c1m1+c2m2)/P2; and 
similarly for first, second and third nearest neighbors (n=3), 
L1–3=(c1m1+c2m2+c3m3)/P3 and so on. Thus, with the help of 
eq. (3), we can suggest a generalized form for the grain to-
pology-size relationship to consider the effect of both the 
long and short range topological correlations of grains,  

  1 .f nR R f L C       (4) 

Here for n=1, we get L1–1=m1, which is the mean face 
number of first nearest neighbor grains i.e. for n=1, eq. (4) 
takes the form of eq. (1), the proposed grain topology-size 
equation in [17]; which can serve as a special case of this 
general grain topology-size equation (eq. (4)).  

Now, to investigate the effects of kth nearest neighbors 
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Figure 1  Representation of neighbors as concentric layers around a cen-
tral grain (0) colored purple. 

on the central grain (here we take the average number of 
faces of neighbors to describe the neighboring effects), we 
use large scale Monte Carlo-Potts model simulation as de-
scribed in earlier works [24,25]. A continuum microstruc-
ture is mapped onto a cubic lattice with full periodic bound-
ary conditions and with N (400×400×400) sites. Each site in 
the lattice is assigned an index Si(1–N) sequentially, corre-
sponding to the orientation of the grain that it belongs to. 
Sites with the same index are considered to be part of the 
same grain and grain boundary only exists between neigh-
bors with different orientations. The simulation temperature 
is 0.5, and complete details of simulation are described in 
ref. [24]. Large number of grains are sampled in steady- 
state grain-growth structures at different simulation time. 
The grain volume V is determined by counting the lattice 
sites with the same index. The grain size R is defined as the 
sphere-equivalent radius, R=(3V/4)1/3. Here, the normal-
ized sphere equivalent radius R/<R> is used to represent the 
grain size. The number of faces f for a grain is obtained by 
counting the grains which are adjacent to it. The average 
number of faces of each grain’s first, second and third near-
est neighbors (l1, l2, and l3 respectively) are counted and the 
average values of l1, l2 and l3 for f-faced grains are then ob-
tained which are denoted by m1, m2 and m3 respectively.  

2  Results and discussion 

The relationship between the number of grain faces f and 
topologically averaged values of m1, m2 and m3 are shown in 
Figure 2(a)–(c) respectively. It is obvious from Figure 2(a) 
that there exist a strong correlation between grains and their 
first nearest neighbors, i.e. grains with many faces tend to 
surround the grains that have fewer faces; grains with fewer 
faces tend to surround the grains that have many faces, in 
other words, large grains tend to be surrounded by smaller  

 

Figure 2  Plots of the number of faces f of grains vs. average number of 
faces of their first neighbors m1 (a), second neighbors m2 (b), and third 
neighbors m3 (c). 

ones and vice versa. This is what the Aboav-Weaire law 
[13,14] tells us about the grains and their first nearest 
neighbors:  

 1 1 ff
m f

f

  
    , (5) 

where m1 is the average face number of first nearest neigh-
bors for f-faced grains, f is second moment in the distribu-
tion of the number of faces in the system, and <f> is average 
number of faces in the system. The least squares fit of 
Aboav-Weaire law shows a close correlation to the data of 
800 Monte Carlo Steps (MCS) with a correlation coefficient 
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of 0.975 (Figure 2(a)).  
Figure 2(b) and (c) plot the relationship between grains 

and their second and third neighbors respectively at differ-
ent simulation time (800 and 1500 MCS). It is clear that, 
unlike first nearest neighbors, the grains have a very little 
correlation with their second and third nearest-neighbors. 
However, the fluctuation in data for large f-faced grains 
(f >35 on average) is most related to the scatter of the data, 
this is most likely due to a smaller set of statistics for large 
faced grains since they have a much lower likelihood of 
occurrence in the sample. It can also be observed from Fig-
ure 2 that, with increase in topological distance (k) the cor-
relation between grains and their kth neighbors decreases.  

The evidence of strong correlations between grains and 
their first nearest neighbors and very weak (negligible) cor-
relations between the grains and their second and third 
nearest neighbors from the above investigation confirms the 
feasibility of neglecting the topological correlations beyond 
first nearest neighbor grains in obtaining eq. (1) from the 
general grain topology-size relation (eq. (4)). Figure 3 
shows the relationship between topologically averaged rela-
tive values, Rf /<R>, and the difference between the grain 
face numbers and the mean face number of their neighbors 
in (1–3) layers, (f–L1–3). This relationship is similar to that 
obtained between Rf /<R> and (f–m1) in [17], this further 
confirms that the effects of long range topological correla-
tions are trivial. The least squares fit of eq. (4) to the data of 
800 MCS (17521 grains) depicts a linear relationship with a 
correlation coefficient of 0.997. The values of α and C are 
0.05 and 0.99 respectively. Here, we have included a large 
number of grains (17521) than [17] to study the correlations 
between grains more clearly. The results support the feasi-
bility of eq. (1), which considers only the interactions of 
first nearest neighbor grains. Hence eq. (1) may be a suita-
ble choice for the estimation of grain topology or grain size 
in 3D polycrystalline microstructures. 

 

Figure 3  Relationship between the topologically averaged values, Rf /<R>, 
and the difference between the grain face numbers and the mean face 
number of their neighboring grains in (1–3) layers. 

3  Conclusions 

In this contribution, the general neighborhood topological 
effect on the topology-size relationship of grains in 3D poly-   
crystalline microstructures is investigated by using large 
scale Monte Carlo-potts model simulation. The results re-
vealed that a strong correlation exist between grains and 
their first nearest neighbors, while there exist very little 
(negligible) correlation between grains and their kth (k2) 
nearest neighbors (on average). This confirms that the top-
ological correlations of 3D grains with their kth layers (k2) 
of nearest-neighbors may have trivial effect on the topology- 
size relationship, and thus provides support to a new grain 
topology-size equation [17] that only considered the non- 
random first nearest-neighbor interactions.  
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