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Adaptive evolution plays a role in the functional divergence and specialization of taste receptors and the sense of taste is thought
to be closely related to feeding ecology. To examine whether feeding ecology has shaped the evolution of taste receptor genes in
vertebrates, we here focus on Taslr gene family that encodes umami (Taslrl and Taslr3 heterodimer) and sweet (Taslr2 and
Tas1r3 heterodimer) taste receptors. By searching currently available genome sequences in 48 vertebrates that contain 38 mam-
mals, 1 reptile, 3 birds, 1 frog, and 5 fishes, we found all three members of TasIrs are intact in most species, suggesting umami
and sweet tastes are maintained in most vertebrates. Interestingly, the absence and pseudogenization of TasIrs were also discov-
ered in a number of species with diverse feeding preferences and distinct phylogenetic positions, indicating widespread losses of
umami and/or sweet tastes in these animals, irrespective of their diet. Together with previous findings showing losses of tastes in
other vertebrates, we failed to identify common dietary factors that could result in the taste losses. Our results report here suggest
the evolution of TasIrs is more complex than we previously appreciated and highlight the caveat of analyzing sequences predicted
from draft genome sequences. Future work for a better understanding of taste receptor function would help uncover what ecologi-
cal factors have driven the evolution history of TasIrs in vertebrates.
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The evolution of animal chemosensory receptors has been
investigated extensively, because chemosensation (olfaction
and taste) is needed to find food, mates, offspring, predators,
and is thus essential for the survival of individuals [1-3].

It is generally thought that natural selection drives the
functional divergence and specialization of taste receptor
genes to provide dietary information from food, and the
taste perception is thus believed to be closely related to
feeding ecology in animals. The evolution of taste receptor
genes has been of great interest among molecular evolu-
tionists since the genetic basis of taste perception was char-
acterized in mice in the last decade [4-7]. Five basic taste
modalities in vertebrates were discovered: sweet, umami,
bitter, sour and salty, each taste is able to sense chemical
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compounds via specific taste receptor cells, which function
through either ion channels (sour and salty) or G pro-
tein-coupled receptors (GPCRs) (sweet, umami, and bitter)
[7]. Of them, sweet, umami, and bitter tastes are of particu-
lar interest, because their respective receptor genes are well
characterized, and defective taste receptor genes were demons-
trated to impair the taste function viatransgenic rescue ex-
periments and behavioral studies [7-9], suggesting absence
or inactivation of the receptor genes must cause inability of
taste. Despite that there is no convincing evidence showing
any vertebrates lack bitter taste receptor genes (Tas2rs), the
losses of sweet and umami taste receptor genes (Taslrs)
have attracted extensive attention recently [8—14].

Taslrs or Taslr family consist of three members (Taslrl,
Taslr2, Taslr3) in most vertebrates [8]. Functional experi-
ments have discovered that TasIrl and TasIr3 combine to
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form a heterodimer of the umami taste receptor, whereas
Taslr2 and Taslr3 form another heterodimer and function
as the sweet taste receptor [15,16]. Sweet and umami tastes
enable animals to recognize diets with nutritious carbohy-
drates and proteins respectively, and thus are pivotal for the
survival of animals. Interestingly, genetic data showing ab-
sence/presence of intact Taslrs are concordant with behav-
ioral findings showing indifference/preference of certain
diets. For example, cats are indifferent to sugar due to inacti-
vation of TasIr2, a subunit of sweet taste receptor [9]. This
concordance has stimulated the inference of taste sensitivi-
ties from gene fragments and genome sequences [8—14,17].
However, this concordance between genetic and behavioral
evidence has been challenged recently [12,14,18]. For exam-
ple, pseudogenization of Taslrl in the giant panda may be
due to its dietary switch from meat to bamboo, whereas
herbivorous horse and cow still possess an intact Taslrl
[12]. To probe the generality of the consistency between
Taslr functionality and feeding ecology, and to gain a
comprehensive picture of Taslrs evolution in vertebrates,
more sampling across vertebrates are required to address
these questions. By searching 48 currently available verte-
brate genome sequences, we here show that there is no
common dietary reason that is responsible for the losses of
Taslrs in a number of vertebrates, the evolution of the TasIrs
is more complex than we previously thought.

1 Materials and methods

We used published vertebrate TasIr genes as query sequences
and performed TblastN to search for Taslrl, TaslIr2, and
Taslr3 in 48 currently available vertebrate genome se-
quences in Enseml genome database (http://www.ensembl.
org) (Table 1). To identify the 6 exons in each TasIr gene,
we downloaded the specific genomic scaffold containing
Taslrs, and conducted Blast 2 between each exon and the
scaffold. Blast hit sequences were extended to both 5’ and 3’
directions along the genome scaffolds to attempt to identify
the entire coding regions. All 6 exons were assembled and
compared with published Taslrs from closely related spe-
cies using ClustalX 1.81 [19], indels (insertions/deletions)
were recorded from the alignments. Newly identified Tasirs
were classified as 3 categories: intact, partial, and defective
(Table 1). First, sequences containing no frame-shift muta-
tions were examined by the TMHMM method [20] to check
the presence of the protein transmembrane domains, the
gene would be considered as intact if all seven transmem-
brane domains were predicted. Second, sequences contain
no frame-shift mutations but possess unfinished sequencing
regions (i.e. multiple “N” in the genome location) were
considered as putatively intact or partial if the gene frag-
ments are longer than 40% of the complete coding se-
quences. Third, sequences contain frame-shift mutations
that cause multiple premature stop codons were classified as
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defective. Additionally, when we found no or too short blast
hits (shorter than 300 base pairs), we would consider Tasirs
may be absent from the genomes if we could still identify
the two neighbouring genes adjacent to each TaslIr.

2 Results and discussion

We searched currently available genome sequences of 48
vertebrate species across 5 Classes 25 Orders of vertebrates,
containing 38 species of mammals, 1 species of reptiles, 3
species of birds, 1 species of amphibians, and 5 species of
fishes (Table 1, Figure 1). After aligning our newly acquired
Taslr sequences with the orthologues from their closely re-
lated species, we examined the intactness of the new se-
quences and predicted their functionality, results are shown
in Tables 1, 2, and Figure S1. We identified 36Tasirl,
35Taslr2, and 36Tasir3 sequences that appear to be intact
or partial (putatively intact due to incomplete genome se-
quencing), indicative of functional genes. We confirmed
previous findings, and showed that all three Taslrs are
pseudogenized in dolphin [17]; Taslr2 is absent from
chicken, clawed frog, horse, pig [11,15]; TasIr2 is defective
in cat [9]; TasIrl is pseudogenized in panda and bats [11,14];
all three Taslrs in the frog and Taslrl and Taslr3 in the
zebrafish are absent from the genomes [8]. Interestingly,
despite that we found the two neighboring genes next to
Taslrs in the draft genomes, we failed to identify Tas/r2 in
horse, marmoset, armadillo, turkey, and zebra finch, and
TasIr3 is absent from horse, rabbit, tree shrew, tarsier, and
sloth, these absences suggest widespread losses of involved
taste function. Additionally, indel mutations were detected in
a number of species, including TasIrl genes of mouse lemur,
tarsier, kangaroo rat, tree shrew, pig, hyrax, tenrec, platypus,
and wallaby, and TasIr2 genes of pika, tarsier, hyrax, and
elephant, and Tas/r3 genes of alpaca, marmoset, hyrax, and
wallaby as well (Table 2, Figure S1). These indel mutations
are random because of relaxation of selective constraint, they
could occur at each exon, but most indels were discovered in
exon 3 and exon 6, because both exons represent the longest
coding regions of Taslrs. For example, exons 3 and 6 make
up 73.9% of the complete coding sequence of human Tas/Irl,
while the remaining 4 exons are composed of the rest 26.1%.
Indels that are not multiple of 3 nucleotides result in altered
open reading frame (ORF) and premature stop codons, both
of which are hallmarks of pseudogenes. Among the indels,
we failed to determine shared ORF-disrupting mutations,
suggestive of independent defects. We observed ORF-dis-
rupting mutations and premature stop codons that lead to
loss of at least one functional domain of these receptors in
the above species, and we thus predict that these genes are
defective or nonfunctional (Table 2, Figure S1).

Because Taslrl is required for umami taste, Taslr2 is
essential for sweet taste, and Taslr3 is needed for both of
the tastes, absence or disruption of Taslrs that encode these
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Figure 1 Species tree showing TasIrl, Taslr2 and Taslr3 functionality. Pseudogenes or gene losses were indicated by black (this study) and gray (previ-

ous studies) squares.

receptors must result in loss or greatly reduction of sweet
and umami tastes. On the basis of our new observations
(Table 1), we infer that both sweet and umami tastes are lost
in pig, horse, rabbit, tree shrew, marmoset, mouse lemur,
tarsier, hyrax, while pika, armadillo, elephant, turkey, and
zebra finch have only lost sweet reception, kangaroo rat,
tenrec, platypus lack umami detection (Figure 1). Combin-
ing with published findings that argued losses of tastes in
other vertebrates, we failed to discover a common dietary
factor that is responsible for the loss of a specific taste, it
seems that loss of tastes could occur in any species, regard-
less of feeding preferences. For example, umami taste is
absent from the piscivorous (dolphin), omnivorous (pig),
herbivorous (kangaroo rat) animals (Table 1, Figure 1).
Hence, we cannot explain why sweet and/or umami tastes
are dispensable in these vertebrates based solely on diets.
However, pseudogenization of Taslrl in the giant panda
indeed coincides with its dietary switch from meat to bam-
boo, suggesting Taslrl plays a role in the feeding ecology
of the bamboo-eating species [11]. Moreover, extreme nar-
rowness of diets has rendered vampire bats’ tastes useless,
and resulted in pseudogenization of all three Tas!rs in these
exclusive blood feeders [12]. Together, the evolution of
taste receptor genes is sometimes explained by feeding
ecology, is sometimes inconsistent to our hypothesis pro-
posed from dietary differences [12,18]. The complexity of
the potential ecological factors impacting Taslrs evolution
suggests that our current understanding of the physical
functions of TasIrs is still far from complete. Interestingly,
it was discovered that the sweet taste receptors play a role in
the gut and the bitter taste receptors could help breathe eas-
ier in the lungs, suggesting such reasons instead of diet
might explain the evolution of taste receptor genes in verte-

brates. It would be helpful to understand the functions of
these genes or tastes in detail using mice with some taste
receptor genes being knocked out in future.

Note that draft genome sequences are not sufficient to
conclude whether a gene is intact or defective, numerous
sequencing errors could occur in the publicly available ge-
nome database. For example, indels of the megabat TasIrl
inferred from its draft genome are quite different from those
observed from the new sequencing result [14]. According to
the known functions of TaslIrs, because Taslr3 is essential
for both umami and sweet tastes, Taslrl and Taslr2 would
be useless if Taslr3 is lost, it is unlikely that Taslrl and
Taslr2 are intact while Taslr3 is absent from the rabbit
genome (Table 1). Similarly, the functionality of Tas/rs in
alpaca, horse, marmoset, mouse lemur should be checked
by re-sequencing in future (Table 1). Meanwhile, the gene
annotations in the genome database are sometimes incorrect.
For example, the dolphin Tas/r2 is annotated as an intact
gene in Ensembl [12], it is indeed a pseudogene inferred
from its draft genome [17]. While available genome assem-
blies provide an opportunity for sequence analysis, caution
should be taken if we draw conclusions from the draft ge-
nome sequences. This said, in the case of Taslrs evolution,
the loss of TasIrl in most, if not all, bats with diverse diets
(blood, insects, or fruits) provided strong evidence that
TaslIrs evolution is sometimes cannot be explained by diets
[14]. Our results report here suggest the evolution of TasIrs
is more complex than we previously appreciated and high-
light the caveat of analyzing sequences predicted from draft
genome sequences. Future work on more accurate and com-
plete functional characterizations of taste receptors would
help uncover what ecological factors have shaped the evo-
lution history of TasIrs in vertebrates.
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