
   
 

© The Author(s) 2013. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
*Corresponding author (email: songzhaoliang78@163.com) 

Article 

Geochemistry July 2013  Vol.58  No.20: 24802487 

 doi: 10.1007/s11434-013-5785-3 

Biogeochemical sequestration of carbon within phytoliths of wetland 
plants: A case study of Xixi wetland, China 

LI ZiMin1, SONG ZhaoLiang1,2,3,4* & JIANG PeiKun1,2 

1 School of Environment and Resources, Zhejiang Agricultural and Forestry University, Lin’an 311300, China; 
2 Zhejiang Provincial Key Laboratory of Carbon Cycling in Forest Ecosystems and Carbon Sequestration, Zhejiang Agricultural and Forestry 

University, Lin’an 311300, China; 

3 Laboratories for Earth Surface Processes, Ministry of Education, Beijing 100871, China; 

4 College of Urban and Environmental Sciences, Peking University, Beijing 100871, China 

Received November 9, 2012; accepted January 30, 2013; published online April 10, 2013 

 

As an important long-term terrestrial carbon sequestration mechanism, biogeochemical sequestration of carbon within phytoliths 
may play a significant role in the global carbon cycle and climate change. The aim of this study is to explore the potential of car-
bon bio-sequestration within phytoliths produced by wetland plants. The results show that the occluded carbon content of phyto-
liths in wetland plants ranges from 0.49% to 3.97%, with a CV (coefficient of variation) value of 810%. The data also indicate 
that the phytolith-occluded carbon (PhytOC) content of biomass for wetland plants depends not only on the phytolith content of 
biomass, but also the efficiency of carbon occlusion within phytoliths during plant growth in herb-dominated fens. The fluxes of 
carbon bio-sequestration within phytoliths of herb-dominated fen plants range from 0.003 to 0.077 t CO2 equivalents t-e-CO2  
ha−1 a−1. In China, 0.04×106 to 1.05×106 t CO2 equivalents per year may be sequestrated in phytoliths of herbaceous-dominated 
fen plants. Globally, taking a fen area of 1.48×108 ha and the largest phytolith carbon biosequestration flux (0.077 t-e-CO2 ha−1 a−1) 
for herb-dominated fen plants, about 1.14×107 t CO2 equivalents per year would have been sequestrated in phytoliths of fen plants. 
If other wetland plants have similar PhytOC production flux with herb-dominated fen plants (0.077 t-e-CO2 ha−1 a−1), about 
4.39×107 t-e-CO2 a

−1 may be sequestrated in the phytoliths of world wetland plants. The data indicate that the management of 
wetland ecosystems (e.g. selection of plant species) to maximize the production of PhytOC have the potential to bio-sequestrate 
considerable quantities of atmospheric CO2. 
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The global concentration of atmospheric CO2 has increased 
significantly from ~280 to 391 ppmv since 1750 as a result 
of human activities such as fossil fuel combustion, defor-
estation, biomass burning and land use change [1]. As glob-
al increase of atmospheric CO2 concentration may cause 
dangerous climate change [2], various approaches that can 
securely reduce and sequestrate carbon emissions are being 
pursued, and among the most promising is the terrestrial 
biogeochemical carbon sequestration [2,3]. 

One relatively stable form of organic carbon that is bio-

geochemically sequestrated within the silica biomineralisa-
tion features of terrestrial plants and that can accumulate in 
soil after the decomposition of that vegetation is the phyto-
lith occluded carbon (PhytOC) fraction [4]. The PhytOC is 
more stable and can sustain much longer than other organic 
carbon fractions in the soil because of its strong ability to 
resist decomposition [4–9]. For example, it has been re-
ported that PhytOC in soil and sediments ranges in age from 
0 to 8000 a BP [4]. One previous work found that PhytOC 
remained in soil for 13300 ± 450 a BP [10]. As an important 
part of terrestrial carbon, it can reach 82% of total carbon in 
some soil and sediments after 2000 years of litter leaf de-
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composition [4]. 
Phytoliths have great potential to sequestrate atmospheric 

CO2 through the formation of PhytOC [11–15], and play a 
crucial function in the long-term terrestrial carbon cycle [3, 
4] and climate change [16–18]. The fluxes of millet, wheat 
and sugarcane for phytolith carbon bio-sequestration range 
up to 0.038 [14], 0.246 [13] and 0.36 t-e-CO2 ha−1 a−1 [11], 
respectively. In particular, the flux of carbon occluded 
within phytoliths of bamboo ranges up to 0.709 t-e-CO2 
ha−1 a−1, and current global bamboo forests (22 million ha) 
can securely sequestrate 1.56×107 t of atmospheric CO2 per 
year. Researchers have suggested that if all potentially ara-
ble land (4.1 billion ha) is exploited to grow bamboo or 
other similar grass crops, the global potential of phytolith 
carbon bio-sequestration would approximately be 1.5 billion 
t-e-CO2 a−1 equivalent to 11% of the current increase in 
atmospheric CO2 [12]. The data indicate that the manage-
ment of plants with high PhytOC content to maximize bio-
mass production could adequately improve the secure ter-
restrial carbon sequestration [12,13]. However, current es-
timation of global phytolith carbon bio-sequestration poten-
tial by Parr et al. [12] is based on a very small dataset. Un-
der realistic conditions, much more work should be done 
before the strategy of PhytOC enhancement can be applied 
to sequestrate globally significant amounts of CO2. 

The widespread wetland ecosystem with fast plant 
growth and high biomass is an important terrestrial carbon 
sink, and plays an important role in global carbon cycle 
[19–21] and global climate change [22–24]. As one of the 
important constituents of terrestrial ecosystems, wetlands 
store 15% of the total terrestrial carbon though it occupies 
only about 1% of the terrestrial surface [25]. Furthermore, 
the wetlands are mainly dominated by Poaceae, which are 
known to be proficient silica accumulators [26–29]. How-
ever, to our best knowledge, the potential of wetland phyto-
liths in the long-term biogeochemical sequestration of at-
mospheric CO2 has not been quantified globally and even 
regionally. The main purpose of this study is to examine the 

rates of silica accumulation and carbon bio-sequestration 
within the phytoliths of wetland plants.  

1  Materials and methods 

1.1  Collection of wetland plant materials 

The Xixi wetland (30°3′35″–30°21′28″N, 120°0′26″– 
120°9′27″E), a rare urban natural wetland with an area of 
10.64 square kilometers, is located in the west part of 
Hangzhou, Zhejiang Province, China (Figure 1) [30,31]. It 
has rich ecological resources and simple natural landscapes 
densely crisscrossed with scattered ponds, lakes and 
swamps [32]. The site has a subtropical humid monsoon 
climate with an average annual precipitation of 1400 mm, 
an annual mean temperature of 16.2°C. The site is com-
posed of paddy soil, boggy soil, and deposited soil [33]. 

The entire Xixi wetland is mainly dominated by herba-
ceous plants (Triarrhena sacchariflora, Phragmites austra-
lis, Cortaderia selloana, Arundo donax, Phyllostachys pro-
pinqua, Cyperus alternifolius, Arthraxon hispidus, etc.). 
Some trees (Salix spp, Melia azedarach, Broussonetia pa-
pyrifera, Morus, etc.) and shrubs (Clerodendrum trichoto-
mum, Lonicera japonica, Rosa multiflora, etc.) are growing 
around the edges of the river base [34]. According to the 
classification system of Scott and Jones [35], the Xixi wet-
land is classified as fen [36–38]. 

In this study, three replicates of the 18 plant species be-
longing to different growth types (riparian plants, shallow 
water emergent plants and floating-leaf aquatics) (Figure 1 
and Table 1) were randomly sampled at different sites of 
Xixi wetland to determine the variations of phytolith accu-
mulation and to examine the global phytolith carbon bio- 
sequestration potential in wetland ecosystem. All collected 
plants were the herbaceous species that have large above- 
ground net primary productivity (ANPP) in Xixi wetland. 
They were collected at maturity in October, 2011, to ensure 
valid comparison and to obtain maximum flux of phytolith  

 

 

Figure 1  The location of Xixi wetland and sampling site.  
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accumulation [39–41]. 

1.2  Determination of Phytolith and PhytOC contents 

The root of the collected plants was discarded and the rest 
of the samples such as the stem, leaf, and spike were placed 
in an ultrasonic bath for 15 min, rinsed three times with 
ultrapure water, dried at 75°C for 48 h, and then cut into 
small pieces (<5 mm). The phytolith samples were extracted 
by microwave digestion procedures [42]. This process was 
followed by a Walkley-Black type digest to thoroughly re-
move extraneous organic materials in the samples [12,43]. 
The possible extraneous organic materials outside of the 
phytolith cells were examined with 0.8 mol/L potassium 
dichromate. If the color of solution did not change within 5 
min, it showed that the extraneous organic materials outside 
of the phytoliths were thoroughly removed. The phytoliths 
extracted were oven-dried at 75°C for 24 h in a centrifuge 
tube of known weight. The samples were allowed to cool 
and then weighed to obtain the phytolith quantities. The 
extracted phytolith samples were checked with an optical 
microscope (Olympus CX31, Japan) to ensure that all ex-
traneous organic materials were thoroughly removed 

[12–15,44,45]. Based on the methods of Kroger et al. [46], 
the dried phytolith samples were treated with 1 mol/L HF at 
55°C for 60 min to dissolve phytolith-Si. The organic car-
bon released from phytoliths after HF treatment was dried at 
45°C and determined for carbon content using the classical 
potassium dichromate method [47]. The organic carbon data 
was monitored with standard soil samples of GBW07405. 
The precision is better than 7%. 

2  Results 

As Table 1 shows, the phytolith content of biomass has a 
significant variation (1.01%–7.69%) among the 18 plant 
species. The phytolith contents of biomass for riparian 
plants (2.32%–7.56%, average 4.88%) and shallow-water 
emergent plants (1.01%–7.69%, average 4.14%) are higher 
than that (1.88%–2.11%, average 2.00%) for floating-leaf 
aquatics. The occluded carbon contents of phytoliths from 
riparian plants (0.49%–3.94%, average 1.59%) and shallow- 
water emergent plants (1.10%–2.33%, average 1.56%)   
are also higher than that (0.91%–1.94%, average 1.42%) 
from floating-leaf aquatics (Table 1). There are substantial  

Table 1  The content and production of phytoliths and PhytOC together with biomass in 18 plants 

Growth types Plants species 
The phytolith 

content 
mean (s. d) (%) 

The occluded 
carbon content 
of phytoliths 

mean (s. d) (%) 

PhytOC content 
of biomass (dry 

weight) 
mean (s. d) (%) 

Estimated PhytOC 
fluxes 

(kg-e-CO2 ha−1 a−1) 

Biomass 
(t-ha−1 a−1) (Max) 

Riparian 
plants 

Leersia sayanuka Ohwi 5.29 (1.64) 2.66 (1.75) 0.14 (0.114) 0.076–0.745 0.080 [48] 

Setaria viridis 7.56 (0.23) 0.87 (0.50) 0.07 (0.040) 0.012–0.043 0.011 [49] 

Eleusine indica  4.11 (0.07) 1.50 (0.11) 0.06 (0.005) 0.365–0.432 1.181 [50] 

Digitaria ternata 6.88 (0.17) 1.06 (0.08) 0.07 (0.007) 0.462–0.565 0.200 [51] 

Arthraxon lanceolatus 5.51 (0.27) 2.91 (0.77) 0.16 (0.050) 12.342–23.562 3.060 [52] 

Arthraxon hispidus 3.40 (0.52) 3.97 (0.11) 0.13(0.024) 11.893–17.279 3.060 [52] 

Cynodon dactylon 6.35 (0.27) 0.64 (0.03) 0.04 (0.003) 15.602–18.132 11.500 [53] 

Trifolium incarnatum  2.32 (0.70) 0.49 (0.11) 0.01 (0.006) 1.321–5.286 9.010 [54] 

Echinochloa crusgalli 2.59 (0.69) 1.20 (0.11) 0.03 (0.011) 0.058–0.125 0.083 [55] 

Paspalum paspaloides 4.78 (0.22) 0.60 (0.30) 0.03 (0.013) 0.052–0.131 0.083 [55] 

Mean (s.d) 4.88 (1.78) 1.59 (1.18) 0.07 (0.052)   

Total    42.183–66.298 28.268 
Shallow- 

water  
emergent 
plants 

Canna indica  1.01 (0.31) 1.10 (0.11) 0.01 (0.005) 3.775–11.325 20.590 [56] 

Cyperus alternifolius  1.51 (0.59) 1.70 (0.19) 0.03 (0.013) 21.213–53.701 34.060 [57] 

Arundo donax  4.22 (0.27) 1.31 (0.62) 0.06 (0.030) 19.558–58.674 17.780 [58] 

Cortaderia selloana 7.69 (0.03) 1.50 (0.24) 0.12 (0.019) 59.253–81.547 16.000 [59] 

Phragmites australis 6.60 (0.54) 2.33 (0.30) 0.15(0.032) 103.321–159.359 23.880 [60] 

Triarrhena sacchariflora 3.84 (0.18) 1.42 (0.34) 0.05 (0.016) 37.400–72.600 30.000 [61] 

Mean (s. d) 4.14 (2.66) 1.56 (0.43) 0.07 (0.055)   

Total    241.083–426.91 142.310 
Floating-leaf 

aquatics 
Halerpestes cymbalaria 2.11 (0.26) 0.91 (0.07) 0.02(0.004) 58.186–87.278 99.180 [62] 

Salvinia natans 1.88 (0.36) 1.94 (0.77) 0.04(0.021) 0.320–1.029 0.460 [63] 

Mean (s. d) 2.00 (0.17) 1.42 (0.73) 0.03(0.012)   

Total    58.506–88.307 99.640 
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variations (0.01%–0.16%) of PhytOC contents of biomass 
(dry weight) for the 18 plant species (Table 1). The PhytOC 
contents of biomass for riparian plants (0.01%–0.16%, av-
erage 0.07%) and shallow-water emergent plants (0.01%– 
0.16%, average 0.07%) are much higher than that (0.02%– 
0.04%, average 0.03%) of floating-leaf aquatics (Table 1). 

As Figure 2 shows, no obvious correlation (R2=0.0005, 
P>0.05) exists between the phytolith content of biomass and 
the occluded carbon content of phytoliths in the 18 plant 
species. There is a weak positive correlation (R2=0.3477, 
P<0.05) between the phytolith content of biomass and the 
PhytOC content of biomass among the 18 plant species 
(Figure 3). A strong positive correlation (R2=0.6066, P< 
0.01) exists between the occluded carbon content of phyto-
liths and the PhytOC content of biomass among the 18 plant 
species (Figure 4). 

3  Discussion 

3.1  Mechanisms of carbon occlusion within phytoliths 
of wetland plants and its application 

Although the PhytOC content of biomass for different 
plants varies greatly, the factors controlling it remain to be 
found. Recent studies [11–14] indicate that the PhytOC  

  

 

Figure 2  Correlation of the phytolith content of biomass for plants and 
occluded carbon content of phytoliths in the 18 plant species. 

 

Figure 3  Correlation of the phytolith content of biomass and the PhytOC 
content of biomass for plants. 

 

Figure 4  Correlation of occluded carbon content of phytoliths and the 
PhytOC content of biomass for plants. 

contents of biomass for sugarcane, bamboo, wheat, and 
millet have no direct relationship with the actual content of 
silica (phytoliths) taken up by the plant, and mainly depend 
on the efficiency of the carbon occlusion within phytoliths 
during plant growth. However, the positive correlations 
between the phytolith content of biomass and PhytOC con-
tent of biomass (R2=0.3477, P<0.05) (Figure 3), and be-
tween the occluded carbon content of phytoliths and the 
PhytOC content of biomass (R2=0.6066, P<0.01) among the 
18 wetland plants (Figure 4) indicate that the PhytOC con-
tent in wetland plants might depend on both the content of 
phytoliths and the nature of silica occluding carbon within 
cells of the phytoliths during plant growth. Thus, all factors 
that influence the phytolith content of biomass and the effi-
ciency of carbon sequestration within phytoliths may influ-
ence the PhytOC content of biomass for plants [15]. For 
example, factors including species, location, disease re-
sistance, and nutrient requirements may play a crucial role 
in the accumulation of phytoliths during plant growth [15, 
64,65]. The different shapes of phytoliths between different 
plants (e.g. between Poaceae and Leguminosae) may also 
cause differences in the occluded carbon content of phytoliths 
because of differences in specific surface area (Table 1) [15, 
66,67]. However, these indirect factors remain to be exam-
ined in further studies. 

It is possible to enhance the PhytOC content of biomass 
for plants by selecting plant species of high-phytolith con-
tent and high-phytolith carbon occlusion efficiency [12,13] 
and by regulating silicon nutrient supply. Although some 
plants have low phytolith carbon occlusion efficiency, it is 
still possible to improve the PhytOC content of biomass for 
plants by regulating silicon supply during plant growth. 
Some studies also demonstrate that the silica (phytoliths) 
content of biomass for plants can be effectively improved 
by adding silicon fertilizers [68–72], calcium-magnesium 
phosphate fertilizer [73], straws [74], and slag mucks [75]. 
Thus, it is possible to enhance the PhytOC content of bio-
mass for plants by regulating silicon nutrient supply for 
some plants in artificial management ecosystems [15]. 
However, compared with regulation of silicon nutrient sup-
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ply, the selection of plant species with high phytolith con-
tent and high phytolith carbon occlusion efficiency has a 
better opportunity to improve the amount of bio-seques- 
trated carbon during land use and land-use change 
[12,13,76]. As Table 1 shows, the occluded carbon content 
of phytoliths among 18 plants species ranges from 0.49% to 
3.97%, a relative variation of 810%. Therefore, these results 
show that the selection of species with high-phytolith con-
tent and high-occluded carbon content of phytoliths would 
lead to substantial enhancement of PhytOC content of bio-
mass for plants [11–13]. This is also applicable for other 
plant species with significant variation of phytolith content 
and the occluded carbon content of phytoliths, such as sug-
arcane [11], bamboo [12] and wheat [13]. 

3.2  Carbon sequestration potential within phytoliths of 
wetland plants 

The annual biomass production for each of the 18 plant spe-
cies was not available for the study site in Xixi wetland. 
However, our estimated above-ground net primary produc-
tivity (ANPP) of some wetland communities is within the 
range of the published data of biomass (Table 1). Thus, the 
published ANPP of similar wetland communities was used 
in conjunction with the PhytOC content of biomass to esti-
mate the potential of each plant PhytOC fluxes (Table 1). 
Because of the difference of the PhytOC content of biomass 
and ANPP among different plants, the potential plant Phy-
tOC fluxes range from 0.012 to 159.359 kg-e-CO2-ha−1 a−1 
(Table 1). The mean contents of phytoliths and phytolith 
occluded carbon for floating-leaf aquatics are much less 
than that of shallow-water emergent plants. The total flux 
(241.083–426.91 kg-e-CO2-ha−1 a−1) of PhytOC in shallow 
water emergent plants with the high-phytolith content, 
high-carbon occluded within phytoliths and high-biomass 
are significantly greater than that of riparian plants and 
floating-leaf aquatics. The flux (103.321–159.359 kg-e- 
CO2-ha−1 a−1) of PhytOC in Phragmites australis with high-
er content of phytolith and occluded carbon within phyto-
liths is much larger than that of other plants. So, it is signif-
icantly important to select a plant (e.g. Phragmites australis) 
with the high-phytolith content, high-carbon occluded 
within phytoliths and high-biomass grow to improve the 

total flux of PhytOC for plants in wetland ecosystems. 
PhytOC sequestration flux of fen plant show that of 

herb-dominated fen ecosystem. According to the PhytOC 
sequestration flux of millet [14] and the global millet plant-
ing-area, the potential global total PhytOC sequestration 
rate of millet is estimated.  

The published ANPP data of herb-dominated fen plants 
may be highly variable for different geographical locations 
and species [77–79]. For example, the estimated ANPP in 
mature herb-rich fen stands range from 1 to 29 t ha−1 a−1 by 
Wheeler and Shaw [36]. Using the published ANPP data 
(1–29 t ha−1 a−1) of herb-dominated fen [36] and the mean 
PhytOC content of biomass for plants dry weight, the po-
tential of PhytOC sequestration flux (0.003–0.077 t-e-CO2 
ha−1 a−1) is quantified in herb-dominated fen ecosystem 
(Table 2). Compared with other studies (Table 2), the po-
tential flux (0.003–0.077 t-e-CO2 ha−1 a−1) of the phytolith 
carbon sequestration in this study is likely to be smaller than 
that of bamboo, wheat, sugarcane and rice [11–13,15]. The 
main causes are likely that the herb-dominated fen plant’s 
ANPP or the occluded carbon content within phytoliths is 
less than that of bamboo, wheat, sugarcane and rice. 

According to the published fen area (1.37×107 ha) by 
NBSC [80] and our studied PhytOC sequestration flux 
(0.003–0.077 t-e-CO2 ha−1 a−1) from herb-dominated fen 
plants (Table 2), it is estimated that the potential rates of 
CO2 occluded within phytoliths of herb-dominated fen 
plants vary from 0.04×106 to 1.05×106 t CO2 equivalents 
per year in China. Taking the world fen area (1.48×108 ha) 
[81] and the largest phytolith carbon bio-sequestration flux 
(0.077 t-e-CO2 ha−1 a−1) of CO2 occlusion within phytoliths 
from herb-dominated fen plants, about 1.14×107 t CO2 
equivalents per year would have been sequestrated in phy-
toliths of fen plants globally. As for the 5.7×108 ha of the 
world’s wetlands [81], assuming a similar phytolith carbon 
bio-sequestration flux of 0.077 t-e-CO2 ha−1 a−1, the global 
potential rate for phytoliths carbon sequestration is estimat-
ed to be 4.39×107 t-e -CO2 a

−1. 
Although this study only chooses some Poaceae and oth-

er vegetation types to determine the variation of the PhytOC 
fluxes in herb-dominated fen ecosystems, the estimation of 
global potential CO2 sequestration rate (4.39×107 t) of phy-
toliths in wetland plants is much higher than that of bamboo  

Table 2  Comparison of estimated PhytOC fluxes and global total PhytOC rate in different ecosystems 

World ecosystems 
PhytOC content of biomass 

(dry weight) (%) 
PhytOC sequestration fluxes 

(t-e-CO2 ha−1 a−1) 
Potential global total PhytOC  

sequestration rates (t-e-CO2 a
−1) 

References 

Fen 0.01–0.25 0.003–0.077 1.14×107 this study 

Rice 0.04–0.28 0.026–0.125 1.94×107 [15] 

Bamboo 0.24–0.52 0.008–0.709 1.56×107 [12] 

Sugarcane 0.31–1.54 0.12–0.36 0.72×107 [11] 

Wheat 0.06–0.60 0.006–0.246 5.3×107 [13] 

Millet 0.04–0.27 0.008–0.038 0.27×107 [14] 
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[12], sugarcane [11], millet [14] and rice [15] (Table 2). In 
fact, the PhytOC as a relatively stable organic carbon 
formed within many plants has considerable potential for 
the bio-sequestration of atmospheric CO2 [11–15]. As phy-
toliths can be conserved in significant quantities for thou-
sands of years in some soils [82–84], the PhytOC may be 
considered as an important part of soil stable organic carbon 
and plays an important role in long-term carbon sequestra-
tion [4] and mitigation of global climate change [10–14]. 
However, this study is based on one particular type of 
herb-dominated fen but there are other types of wetlands 
with different vegetation compositions under different soil 
and climate conditions, and more studies need to be done to 
determine whether our conclusions can be extrapolated to 
other types of wetland ecosystems. 

4  Conclusions 

In this study, our results reveal that the occluded carbon 
content within phytoliths has substantial variation (0.49%– 
3.97%) in the 18 wetland plants. The data also show that the 
PhytOC content of biomass for plants mainly depends on 
the efficiency of the carbon occluded within phytoliths dur-
ing plant growth, and secondarily on the phytolith content. 
The potential PhytOC flux for fen plants ranges from 0.012 
to 159.359 kg-e-CO2 ha−1 a−1. The selection of species with 
high-phytolith content and high-occluded carbon content of 
phytoliths for plants would lead to substantial enhancement 
of the PhytOC content of biomass for plants. 

The potential PhytOC sequestration fluxes vary from 
0.003 to 0.077 t-e-CO2 ha−1 a−1 in herb-dominated fen eco-
systems. In China, herb-dominated fen plants may seques-
trate 0.04×106 to 1.05×106 t CO2 equivalents per year. Giv-
en the global fen area of 1.48×108 ha and the largest flux 
(0.077 t-e-CO2 ha−1 a−1) of the CO2 occlusion within phyto-
liths of herb-dominated fen plants, we estimate that about 
1.14×107 t CO2 equivalents per year would have been se-
questrated in phytoliths of fen plants. Our study results re-
veal that the 5.7×108 ha of the world’s wetlands, assuming a 
similar phytoliths carbon bio-sequestration flux (0.077 
t-e-CO2 ha−1 a−1) of herb-dominated fen plants, about 4.39× 
107 t-e -CO2 a

−1 may be sequestrated in phytoliths of wet-
land plants. However, more studies on the capacity of the 
PhytOC accumulation in other wetland plants are needed to 
quantify the global phytolith carbon bio-sequestration po-
tential. 
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