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Genetic variation is generally believed to be important in studying endangered species’ adaptive potential. Early studies assessed 
genetic diversity using nearly neutral markers, such as microsatellite loci and mitochondrial DNA (mtDNA), which are very in-
formative for phylogenetic and phylogeographic reconstructions. However, the variation at these loci cannot provide direct infor-
mation on selective processes involving the interaction of individuals with their environment, or on the capability to resist contin-
uously evolving pathogens and parasites. The importance of genetic diversity at informative adaptive markers, such as major his-
tocompatibility complex (MHC) genes, is increasingly being realized, especially in endangered, isolated species. Small population 
size and isolation make the golden snub-nosed monkey (Rhinopithecus roxellana) particularly susceptible to genetic variation 
losses through inbreeding and restricted gene flow. In this study, we compared the genetic variation and population structure of 
microsatellites, mtDNA, and the most relevant adaptive region of the MHC II-DRB genes in the golden snub-nosed monkey. We 
examined three Chinese R. roxellana populations and found the same variation patterns in all gene regions, with the population 
from Shennongjia population, Hubei Province, showing the lowest polymorphism among three populations. Genetic drift that 
outweighed balancing selection and the founder effect in these populations may explain the similar genetic variation pattern found 
in these neutral and adaptive genes. 
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Genetic variation plays an important role in buffering pop-
ulations against widespread pandemics [1]. Understanding 
how different levels of genetic variation influence the sur-
vival of threatened species is of primal interest to evolu-
tionary and conservation biologists. Dramatic reductions in 
available habitat, together with increasing habitat fragmen-
tation and isolation threatened many species, leading to 
population sizes descending and reduction of genetic diver-
sity [2–5]. Loss of genetic diversity is likely to happen in 
small populations, and this may augment extinction risk due 
to decreased reproductive fitness and adaptive flexibility, 
and increased disease susceptibility [6]. 

Genetic diversity is often measured by neutral markers, 
such as mitochondrial DNA and microsatellites [5], which 
are instructive for phylogenetic and phylogeographic recon-
structions, such as examining dispersal routes of individuals 
and classifying individuals by relatedness and paternity 
analyses [7,8]. However, neutral variation provides little 
direct information on adaptive evolution within and be-
tween populations [9,10]. Meanwhile, the significance of 
genetic variation at informative adaptive genes is increas-
ingly being realized [11,12], as the aforementioned issues 
are relevant to evolutionary ecology and conservation 
[13,14]. Major histocompatibility complex (MHC) genes 
are famous adaptive significance examples, and are of spe-
cial relevance to conservation owing to their role in patho-
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gen resistance [15,16]. The MHC genes are highly poly-
morphic, with an important role in the regulation of the 
immune system and in the recognition and discrimination of 
self from non-self antigens. MHC variability is believed to 
measure the ability of individuals to react to continuously 
evolving pathogens and parasites and thus, reflects evolu-
tionarily-relevant and adaptive processes within and be-
tween populations [5,17]. 

Parasite-driven balancing selection, which encompasses 
heterozygote advantage hypothesis, frequency-dependent 
selection hypothesis and fluctuating selection hypothesis, is 
widely accepted as the main mechanism in maintaining the 
unusually high level of polymorphism in the MHC genes 
[18–20]. Other than balancing selection, reproductive 
mechanisms might be alternative or complementary mecha-
nisms for MHC variation maintenance, such as disassorta-
tive mating and maternal-fetal interactions (reviewed in [5]). 
Two major groups of MHC genes have been widely studied. 
The MHC class I genes, which are expressed on all nucle-
ated somatic cell surfaces, are crucial in the immune de-
fense against intracellular pathogens by binding peptides 
mainly derived from viral proteins and cancer-infected cells. 
MHC class II genes are preponderantly involved in moni-
toring the extracellular environment and primarily ex-
pressed on antigen presenting cells of the immune system, 
such as B cells and macrophages [21]. In mammals, most 
researches have focused on DRB exon 2 and other class II 
genes because they code for parts of the antigen binding 
sites (ABS) that are of significant function [5,22,23]. The 
class II genes are closely linked, and variants at these genes 
are generally in strong linkage equilibrium [24]. Thus, the 
observed MHC II loci pattern represents a proper index of 
MHC variation [25]. 

We studied DRB and neutral genetic variation in the 
golden snub-nosed monkey (Rhinopithecus roxellana), an 
endangered primate endemic to China, which inhabits three 
isolated areas: Sichuan and Gansu provinces (SG); the Qin-
ling Mountains, Shaanxi Province (QL); and the Shen-
nongjia Forestry District, Hubei Province (SNJ) (Figure 1). 
Current census data suggest that fewer than 20000 individu-
als remain, and previous studies have found that SNJ popu-
lation has very low genetic variation and is genetically- dis-
tinct [26,27]. The small population size and isolated status 
that typically characterize the SNJ population make it par-
ticularly susceptible to genetic variation losses through in-
breeding and restricted gene flow. In this study, we de-
scribed genetic variation at the most studied adaptive region 
of the DRB genes in the golden snub-nosed monkey, and 
studied DRB evolution by testing for signatures of balanc-
ing selection, recombination, and trans-species polymor-
phism (TSP). We also compared the genetic variation and 
population structure at neutral genes and DRB. This study 
furthers our understanding of the evolutionary significance 
and conservation implications of MHC in free-ranging 
monkeys. 

 

Figure 1  Distribution of isolated R. roxellana populations. 

1  Materials and methods 

1.1  Sample collection and DNA extraction 

We collected 64 R. roxellana samples (SG population = 25, 
QL population = 22, and SNJ population = 17) (Figure 1), 
in compliance with the relevant institutions and laws of 
China. Muscle and skin samples were also gathered from 
carcasses provided by local museums and nature reserves. 
Skin samples were stored dry. Muscle samples were stored 
in 95% ethanol. Blood samples were collected while trap-
ping individuals for physical examination and were stored at 
−80C. Benches and plastic ware were cleaned with 10% 
bleach and sterile water and then exposed to UV light for 30 
min prior to handling to prevent contamination during DNA 
extraction. The surface of muscle, skin, and hair samples 
were also exposed to UV light for 30 min. We used eight 
extraction controls, and none produced positive amplifica-
tion during subsequent polymerase chain reaction (PCR) 
analysis.  

1.2  MHC amplification, cloning and sequencing 

Primers 5′-TTCTCAGGAGGCCGCCCGTGTGA-3′ and 5′- 
ACCTCGCCGCTGCACTGTGAAGCTC-3′ were designed 
to amplify 270 bp of the MHC II DRB genes. PCR was 
performed in 50 µL reaction mix comprising 2.5 mmol/L 
MgCl2, 10 mmol/L Tris-HCl (pH 8.4), 50 mmol/L KCl, 0.2 
mmol/L each dNTP, 0.4 µmol/L each primer, 1.0 unit Hot-
start-Taq DNA polymerase (Takara Bio, Otsu, Japan), and 
10–100 ng DNA template. The amplification began with 
incubation at 94C for 5 min, followed by 35 cycles of 30 s 
at 94C, 30 s at 54C and 30 s at 72C, offending with an-
extension at 72C for 10 min. Wizard PCR Preps DNA Pu-
rification Kit (Promega, Madison, WI, USA) was used to 
purify PCR products according to the manufacturer’s pro-
tocol. Purified PCR products were cloned into a pMD-18T 
vector (Takara Bio). Positive transformants containing an 
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insert of the predicted length were identified by PCR 
screening and agarose electrophoresis. Eight to 15 clones 
were sequenced on an ABI 377 or ABI-PRISMTM 3100 
Genetic Analyzer (Applied Biosystems Inc.) with the Prism 
BigDyeTM Terminator Ready Reaction Kit (Applied Bio-
systems Inc.). 

1.3  MHC diversity analyses 

All MHC sequences were aligned using ClustalX version 
1.83 [28] and translated into the corresponding amino acid 
sequences using the program Mega 4 [29]. The histocom-
patibility nature of the sequences was verified through a 
homology analysis using BlastN at NCBI (http://www. 
ncbi.nlm.nih.gov). As some sequences obtained could have 
been artifacts of polymerase error during amplification [30], 
we considered a new sequence variant to be an allele when 
it was identified in either two separate PCRs from the same 
individual, or from PCRs from at least two different indi-
viduals [31]. We used Mega 4 to detect the number of vari-
able and parsimony-informative sites (i.e. sites with at least 
two different nucleotides or amino acids) to compute the 
mean number of nucleotide differences. This program was 
also used to derive the overall mean genetic distances of 
nucleotide sequences based on Kimura’s two-parameter 
evolutionary distances, as well as Poisson-corrected amino 
acid distances. Standard errors of the estimates were ob-
tained through 1000 bootstrap replicates. 

The DRB sequences obtained represented alleles from at 
least two loci. In accordance with Miller et al. [16], we re-
ferred to all sequences as alleles even though they may have 
come from different loci. Not all alleles could be assigned 
to each locus in an individual on the basis of their sequence, 
making it impossible to calculate heterozygosity, allele fre-
quencies, and FST at DRB genes. Mean number of alleles 
per individual, total number of alleles per population, and 
average percent difference were used as measures of with-
in-population genetic variation [16]. The locations of the 
putative ABS (i.e. residues whose side chains form the an-
tigen-binding groove) and non-ABS were inferred from the 
human MHC II molecule structure by Reche and Reinherz 
[32]. 

1.4  Phylogenetic analysis and recombination analysis 

Phylogenetic relationship among MHC alleles was con-
structed under maximum likelihood parameters using 
PhyML version 3.0 [33]. Prior to phylogenetic analysis of 
DRB sequences, the best-fitting models of sequence evolu-
tion were chosen on the basis of the Akaike information 
criterion using Modeltest version 3.7 [34]. The analysis re-
vealed that the model K81uf+I+G was most appropriate for 
the DRB data, with a gamma shape parameter α = 0.4484. 
In addition, intra-specific phylogenic structures were in-
ferred using Neighbor-Net method in SplitsTree4 V 4.12.6 

[35]. To estimate the rate of population recombination ρ 
(ρ=4Ner), the composite-likelihood method [36] in LDhat 
[37] was used. The ρ was calculated by crossing over effec-
tive population size (Ne) and rate per generation (r), and was 
estimated without prior information [37]. Even for se-
quences evolving under balancing selection in the presence 
of recombination events, LDhat still works efficiently [38]. 
Additionally, GARD tests incorporated in the HyPhy pack-
age on the Datamonkey website was also used to detect re-
combination signals [39]. 

1.5  Detecting balancing selection 

Two methods were used to detect historical selection. First, 
sliding window calculation of Tajima’s D was calculated in 
DNAsp [40] using a sliding window size of 6 bp, and a step 
size of 2 bp. Second, the Codeml subroutine in the PAML 4 
program suite was used [41]. This procedure, which is be-
lieved to be more sensitive than other methods for detecting 
selection [42], uses maximum likelihood estimation to ex-
amine heterogeneity in ω (ω= dN/dS) [43] among codons 
within a sequence (ω= dN/dS >1 indicating positive selec-
tion). ω were estimated following the protocol of Yang et al. 
[44]. Six different models (M0, M1a, M2a, M3, M7, and 
M8) that integrated different selection intensities among 
sites (and deduced from the data) were tested in this study 
[44,45]. Likelihood-ratio tests comparing nested models 
(M0 vs. M3, M1a vs. M2a, and M7 vs. M8), in which the 
alternative models (M2a, M3, and M8) suggest the presence 
of sites with ω>1.  

2  Results 

A total of 679 clones derived from 64 individuals, repre-
senting three populations of the golden snub-nosed monkey, 
were examined. We identified 37 unique DRB alleles (Ta-
ble 1) and these alleles were named Rhro-DRB*01–37 
(GenBank accession numbers JQ863322–JQ863358) ac-
cording to the nomenclature of Klein et al. [46]. Two to four 
alleles were found in each sample, indicating multi-locus 
amplification. Three among the 37 alleles identified in this 
study were commonly shared among the three populations. 
However, differences in frequency for these shared alleles 
were observed between populations. The nucleotide align-
ment of DRB sequences revealed a total of 80 (29.63%) 
variable sites. No indels causing shifts of the reading frame 
and/or stop codons were detected. The putative amino acid 
translation of this fragment corresponded to 89 amino acids. 
Of these amino acid sites, 35 (39.33%) were parsimo-
ny-informative sites; 41 (46.07%) were variable, and of 
those variable sites, 13 were located in putative important 
antigen-binding positions. There was no indication that ei-
ther locus was a pseudogene. Measures of MHC diversity in 
three populations are summarized in Table 2. Though the  
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heterozygosity at DRB loci was not able to be calculated, 
mean number of DRB sequences per individual could be a 
good estimator of heterozygosity, since homozygous indi-
viduals at two loci will have two alleles while heterozygous 
individuals have four [16]. Similar to neutral variation, 
MHC allelic richness was lower in the SNJ population (Ta-
bles 2 and 3).  

The alleles phylogenetic relationships are shown in Fig-
ures 2 and 3. The alleles relationship was not consistent 
with the population geographical distribution. Also, phylo-
genetic analyses showed alleles did not cluster into different 
species, but were intermixed with each other, which is 
known as TSP (Figure 2). The pseudogenes that download 
from GenBank clustered together, and none of the alleles 
identified in this study clustered with those pseudogenes. 
Population recombination analysis in LDhat revealed that 
the DRB locus had a high recombination rate (ρ = 16). And 
the GARD test showed significant evidence for a recombi-
nation breakpoint within DRB allele (P<0.01). 

Clear signals of historical selection for amino acid re-
placements in the codons involved in antigen binding were 
detected. First, Tajima’s D analysis across the exon 2 se-
quence showed three regions with a significantly positive 
(P<0.05) D value (Figure 4), indicating balancing selection 
has been acting on these regions. The regions (between 
37–52, 93–98 and 215–224) encompass putative ABS sites. 
Second, through comparisons of codon evolution models in 
PAML 4, similar results were obtained (Table 4). On the 
basis of the LRT tests, models integrated positive selection 
(M2a, M8, and M3) fitted our data significantly better than 

other models that did not (Table 5). 

3  Discussion and conclusions 

3.1  Genetic variation of DRB in golden snub-nosed 
monkey 

In the past two decades, the MHC class II genes of some 
primate species were investigated extensively, especially 
those in the rhesus macaque (Macaca mulatta), which is 
widely used in biomedical research to study organ trans-
plantation or human pathogens because of its similarity to 
humans [47]. More recently, extensive research has been 
conducted in non-model primates to assess the adaptive 
genetic variation in populations. For example at DRB loci, 
0.24 alleles per individual were found in the grey mouse 
lemur (Microcebus murinus) [48], 2.06 alleles per individu-
al were identified in Cynomolgus macaques (Macaca fas-
cicularis) [49], and 0.34 alleles per individual were isolated 
in fat-tailed dwarf lemurs (Cheirogaleus medius) [18]. We 
found that the MHC genetic diversity in the golden snub- 
nosed monkey is relatively high (0.58 alleles per individual) 
compared with these previous studies. Two to four alleles 
were found in individuals, indicating at least two DRB loci 
were sequenced in this study. Multiple amplifications are 
common in DRB research because gene duplication is a 
major reason for high polymorphism in MHC genes, and it is 
difficult to sequence a single locus from DRB without ge-
nome data owing to the similarity among loci [19]. Some 
duplicated genes become pseudogenes or have altered 

Table 2  Summary of DRB variation in R. roxellana populations 

 SG QL SNJ 

N 25 22 17 

Number of alleles 24 20 13 

Number of specific alleles 7 6 7 

Mean number of alleles per individual 0.92 0.91 0.76 

Gene diversity 0.95±0.01 0.91±0.02 0.89±0.02 

Mean number of pairwise differences 26.97±11.93 23.53±10.48 19.55±8.81 

Nucleotide diversity (average over loci) 0.10±0.05 0.09±0.04 0.07±0.04 

Table 3  Summary of neutral variation in R. roxellana populationsa) 

Pop 

Control region Microsatellites (unpublished data) 

n N h±SD π±SD 
Tajima’s D 

(P-value) 
Fs (P-value) N 

No. of 

loci 
AR HE±SD HO±SD FIS 

SG 41 15 0.90±0.02 0.02±0.01 1.45 (0.95) 7.67(0.97) 25 16 4.635 0.736±0.022 0.714±0.022 0.017 

QL 23 10 0.84±0.05 0.01±0.007 1.02 (0.87) 3.29 (0.90) 22 16 4.854 0.713±0.036 0.653±0.024 0.071 

SNJ 22 5 0.56±0.10 0.002±0.001 −0.08 (0.51) 1.04 (0.76) 17 16 3.473 0.611±0.038 0.591±0.030 0.030 

All 86 30 0.94±0.01 0.020±0.010 0.42 (0.72) 2.64 (0.86) 64 16 4.321 0.755±0.022 0.660±0.014 0.041 

a) n, Number of individuals; N, number of haplotypes; h, gene diversity; π, nucleotide diversity; AR, allelic richness; HE, expected heterozygosity; HO, 
observed heterozygosity. 
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Figure 2  Maximum likelihood of Rhro-DRB alleles and a representative 
set of other primates alleles. Bootstrap values above 50% are shown. Red 
lines indicate Rhro-DRB allelehaplotypes from this study. Other allelic 
sequences were downloaded from GenBank, which are: Homo sapiens 
(FJ442950, DQ837166, AY271987, AJ311892, AJ293861, AJ238155), 
Pan troglodytes (M96121-M96123, M94944, M96077, M96089, M96084- 
M96087, M94950), Gorilla gorilla (AF031271, AF031275), Macaca mu-
latta (AF17531, AF175315), Mandrillus sphinx (DQ103732).  

functions because of mutations, insertions or deletions [50]. 
We found two alleles (H10 and H23) that had lost three 
bases at 239–241 bp and 242–244 bp, resulting in a loss of 
an amino acid at site 80 and site 81, respectively (Table 1). 
They may come from another locus; as the deletions were 
in-frame and these two genes did not cluster with the 
pseudogenes during the phylogenetic construction (Figure 
2), it appears they are still functional. 

Within populations, the SNJ population had the lowest 

polymorphism at the MHC loci, as was observed for the 
microsatellite and mitochondrial gene analysis (Tables 2 
and 3). Both the number of alleles and the mean number of 
pair-wise differences in the SNJ population were lower than 
other populations and the result was consistent with previ-
ous study [26,51]. Though DRB genes usually display high 
diversity, in cases of small and isolated or bottlenecked 
populations, a lower variation is expected [52]. Similar re-
sults were found in other species such as northern elephant 
seals (Mirounga angustirostris) [53], great crested newt 
(Triturus cristatus) [54], and the black-footed rock-wallaby 
(Petrogale lateralis lateralis) [55]. Genetic drift is the rea-
son for the reduced MHC variation in these populations 
because compared with balancing selection, which usually 
has a great influence on MHC genes, genetic drift becomes 
relatively stronger in small, isolated populations, leading to 
reduced variation at the MHC loci [56]. Beyond genetic 
drift, a foundation event may have also contributed to the 
low genetic diversity present in the SNJ population. Among 
the three populations, the SG population is predicted to be 
the ancestral population, with the SNJ population arising 
from the QL population [57]. Microsatellites (unpublished 
data) and mitochondrial data [57] suggested little gene flow 
between SNJ and the other two populations. This may indi-
cate that the genetic variation in the SNJ population was 
reduced compared with the other populations either at its 
foundation or soon after [52]. 

3.2  Balancing selection and recombination 

MHC genes have been recognized of important role in evo-
lutionary genetics because they are believed to be a good 
example of the effects of balancing selection [19,58]. Evi-
dence of balancing selection acting on DRB genes was re-
vealed in this study. First, three regions which encompass-
ing putative ABS sites with a significantly positive (P<0.05) 
D value were identified in Tajima’s D test across the exon 2 
sequences (Figure 4), suggesting balancing selection exists 
on these regions [16,59]. Additionally, the sharing of MHC 
alleles among populations also indicates that MHC alleles 
may have been conserved by selection [54]. Second, ran-
dom sites model analysis in PAML showed the existence of 
base selection in the maximum likelihood method. Analysis 
suggested that the models including selection (M2a, M3 and 
M8) matched DRB alleles better than those without selec-
tion (Tables 4 and 5). Under the M2a and M8 models, some 
DRB sites were exposed to significant selection. Further 
evidence for balancing selection was provided by trans- 
species evolution of the DRB alleles. TSP is the occurrence 
of alleles that are more similar in related species than alleles 
within each species, except cases in which the sameness 
happened by convergent evolution [60], and is commonly 
observed in MHC genes. Under balancing selection, TSP is 
generated by the passage of alleles from ancestral to de-
scendant species. Under selection, some MHC alleles or  
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Figure 3  Network of DRB alleles using Neighbor-Net method in SplitsTree. 

 
Figure 4  Sliding window calculation of Tajima’s D for exon 2 of DRB 
(window size 6 bp, step 2 bp). The threshold for P < 0.05 is shown by the 
dotted line. 

allelic lineages are found in other species, which indicates 
they existed prior to speciation and were inherited from 
ancestral species [60]. For example, two DRB exon two 
sequences are shared by cynomolgus (crab-eating) ma-
caques (M. fascicularis) and rhesus macaques (M. mulatta) 
[61]. Mass of sharing of both MHC alleles and allele line-
ages was also perceived among 28 species of cetacean [62].  

While balancing selection maintains high MHC genetic 
variation, recombination is an important mechanism for 
generating MHC polymorphism [63]. In human MHC, re-
combination is thought to have played a major role in gen-

eration of novel alleles at various human leucocyte antigen 
(HLA) loci [64]. In our study, a high recombination rate 
was found ( ρ = 16) in DRB and the recombination event 
was further confirmed by GARD test. In the LDhat software, 
the likelihood model excludes the effects of selection, in-
creasing the likelihood that balancing selection influenced 
the estimated result. However, a previous study simulated a 
model of symmetric balancing selection with recombination, 
indicating that LDhat works well even when a great deal of 
recombination and mutation expected to accumulate among 
sequences maintained by balancing selection [38]. 

3.3  Conclusions 

Control region DNA and microsatellites are believed to be 
neutral or nearly neutral genes and are representatives of 
mitochondrial DNA and nuclear DNA respectively; while 
DRB genes are a good example of adaptive related genes 
and the polymorphism are mainly maintained by balancing 
selection [22,23]. Despite the differences among these 
genes, the same genetic variation pattern was found in the 
populations of golden snub-nosed monkey with the lowest 
polymorphism in SNJ population. The results revealed that 
the long isolated status of the small populations making 
genetic drift may play a greater role in different kinds of 
genes regardless of different evolutionary mechanisms. This  
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Table 4  Results of maximum-likelihood models for exon 2 of the DRB gene 

Model code P Log-likelihood Parameter estimates Positively selected sites 

M0 (one ratio) 1 −2429.84 ω = 0.748 None 

M1a (nearly neutral) 1 −2455.86 p0 = 0.916 (p1 = 0.084) Not allowed 

M2a (positive selection) 3 −2404.20 p0 = 0.858, p1 = 0.120 (p2 = 0.022) ω2 = 4.904 1R,3L,12E,14F,16S,33Y,35Y,40Y,41V,50F,59P 

60V,63N,64F,70F,73Q,74R,77Q,81Y,89V 

M3 (discrete) 4 −2391.34 p0 = 0.930, p1 = 0.069 (p2= 0.001) ω1 = 3.150, ω2 = 28.757 Not allowed 

M7 (beta) 2 −2456.47 p = 0.010, q = 0.066 Not allowed 

M8 (beta and omega) 4 −2404.41 p0 = 0.975 (p1 = 0.024) 

p = 0.011, q = 0.072, 

ω = 4.673 

1R,3L,12E,14F,16S,29Y,31Q,33Y,35Y,40Y,41V, 

50F,59P,60V,63N, 64F,67Q, 70F, 73Q,74R, 

77Q, 80N, 81Y,87G, 89V 

a) P is the number of parameters in the ω distribution, ω is the selection parameter and pn is the proportion of sites falling into the ωn site class. For 
models M7 and M8, p and q are the shape parameters of the β function. Positively selected sites were identified in models M2a and M8 by the Bayes empir-
ical Bayes procedure [45]. Sites inferred under selection at the 99% level are listed in bold, and those inferred at the 95% level are shown in italics. 

 
 
Table 5  Summary of test statistics for the likelihood-ratio test of codon 
evolution at DRB exon 2 

Models compared df Test statistic Significance (P) 

M2a vs. M1a  2 103.32 <0.001 

M3 vs. M0  4 77 <0.001 

M8 vs. M7  2 104.12 <0.001 

 
research may contribute to making effective management 
decisions. Though the population size of golden snub-nosed 
is largest among the snub-nosed monkeys [65], as a flagship 
endangered species, it is also important to keep genetic 
health other than population increase [66]. 
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