Entanglement of linear cluster states in terms of averaged entropies

CAO Ye ${ }^{1}$, LI Hui ${ }^{1}$ \& LONG GuiLu ${ }^{1,2^{*}}$
${ }^{1}$ State Key Laboratory of Low-Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing 100084, China,
${ }^{2}$ Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing 100084, China

Received August 15, 2012; accepted October 6, 2012

Abstract

An entanglement measure, multiple entropy measures (MEMS) was proposed recently by using the geometric mean of partial entropies over all possible i-body combinations of the quantum system. In this work, we study the average subsystem von Neumann entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS. Explicit results with specific particle numbers are calculated, and some analytical results are given for systems with arbitrary particle numbers. Compared with other example quantum states such as the GHZ states and W states, the linear cluster states are "more entangled" in terms of MEMS, namely their averaged entropies are larger than the GHZ states and W states.

average subsystem entropies, cluster states, multiple entropy measures, quantum entanglement

Citation: Cao Y, Li H, Long G L. Entanglement of linear cluster states in terms of averaged entropies. Chin Sci Bull, 2013, 58: 48-52, doi: 10.1007/s11434-012-5604-2

Entanglement [1,2] is one of the most salient properties of quantum systems. Quantum entanglement led to the experimental verification for Bell inequality which confirmed quantum mechanics [3]. In recent years, quantum entanglement has been one of the key driving forces that advanced the explosive development of quantum information and quantum computation [4-12]. Entanglement has developed from a philosophical concept into a frontier research paradigm, and much more attention has been paid to the quantification of entanglement. Two measures of entanglement, formation and distillation $[15,16]$, were proposed by Bennett et al. Partial von Neumann entropy [15,16], relative entropy [17,18], concurrence [19-23] and other contributions [24-48] were also studied and recognized as "good" entanglement measures.

In studying quantum entanglement, the density matrices are often used. It should be mentioned that density matrix can represent different physical quantities. In the case of proper mixture, the density matrix represents the averaged "state" of an ensemble of "molecules", while the improper mixture describes the averaged "state" of a subsystem in a coupled quantum system. Though the mathematical expressions are the same, their physical properties are quite differ-

[^0]ent $[49,50]$. In studying quantum entanglement, we are actually using the improper mixture meaning of the density matrix. The reduced density matrix is obtained by tracing out other degrees of freedom of a composite quantum system. Based on separating the correlations encoded by a density matrix into a common set of marginals, Partovi [37] proposed a measurement in which $N!/ 2$ quantities are used to quantify an N-qubit system. In the case of $N \leqslant 3$, a "good" measurement [38] can be constructed from the arithmetic average entropy of single reduced density matrices. Realizing the lack of one-qubit reduction, Higuchi et al. [51,52] proposed using the arithmetic mean of two-particle entropies as a measure of entanglement, and reported on a four-qubit entangled state:
\[

$$
\begin{align*}
\left|M_{4}\right\rangle= & \sqrt{\frac{1}{6}}[|0011\rangle+|1100\rangle)+\omega(|1010\rangle+|0101\rangle \\
& \left.+\omega^{2}(|1001\rangle+|0110\rangle)\right], \quad \omega=e^{2 i \pi / 3}, \tag{1}
\end{align*}
$$
\]

which is more entangled than the four-qubit GHZ state.
More recently, Liu et al. [53] proposed multiple averaged entropy measures based on a vector with $m=[N / 2]$ components: $\left[S_{1}, S_{2}, \cdots, S_{m}\right.$], where the S_{i} is the geometric mean of i-body partial entropy of the system

$$
\begin{equation*}
S_{n}=\left[\prod_{i_{1} i_{2}, \cdots i_{n}}^{N}, E_{i_{1}, i_{2}, \cdots, i_{n}}\right]^{\frac{1}{c_{N}^{n}}} . \tag{2}
\end{equation*}
$$

$E_{i_{1}, i_{2}, \cdots, i_{n}}$ is the i-body von Neumann entropy for the $\left\{i_{1}, i_{2}, \cdots, i_{n}\right\}$ particles

$$
\begin{equation*}
E_{i_{1} i_{2} \cdots i_{n}}=-\operatorname{Tr}\left[\left(\rho_{\Psi}\right)_{i_{1} \cdots i_{n}} \log _{2}\left(\rho_{\Psi}\right)_{i_{1} \cdots i_{n}}\right], \tag{3}
\end{equation*}
$$

where $\rho_{i_{1}, i_{2}, \cdots, i_{n}}$ is the reduced density matrix with the average of other $N-n$ particles and C_{N}^{n} is the combination number

$$
\begin{equation*}
C_{N}^{n}=\frac{N!}{(N-n)!n!} . \tag{4}
\end{equation*}
$$

The physical picture for S_{i} can be understood in the following way. First, when i equals 1 , it reflects the entanglement feature in terms of single particles. Later on, when $i \geqslant 2, S_{i}$ describes the entanglement of the i-body system as a whole with other $N-n$ particles. The upper bound for $E_{i_{1}, i_{2}, \cdots, i_{n}}$ is n, so if an N-particle state maximizes all the $E_{i_{1}, i_{2}, \cdots, i_{n}}, n=1,2, \cdots,[N / 2]$, it makes S_{n} equals to n and presents a maximally entangled state. For $N=2,3$, $[N / 2]=1$, the quantum states that satisfy $S_{1}=1$ are maximum entangled states. For $N=4$, Higuchi and Sudbery [51] proved that the ideal entangled state which maximizes all the $E_{i_{1}, i_{2}}$ does not exist. It should be noted that the MEMS constitutes only part of the entanglement measure. To describe quantum entanglement fully, more quantities are required in addition to the $N / 2$ MEMS quantities. While the GHZ states have smaller MEMS than the cluster state, they are bigger in other entanglement measures. For instance, GHZ states have the maximal violation of Bell inequality. This is the reason why a cluster state cannot be reduced to a GHZ state by local operation and classical communication. This is still an interesting and important issue being studied.

Liu et al. [53] studied the W state

$$
\begin{equation*}
\left|W_{N}\right\rangle=\sqrt{\frac{1}{N}}\{|0 \cdots 01\rangle+\cdots+|10 \cdots 0\rangle\} \tag{5}
\end{equation*}
$$

and the analytic MEMS were obtained as

$$
\begin{equation*}
S_{i}=\left[-\frac{N-i}{N} \log _{2} \frac{N-i}{N}-\frac{i}{N} \log _{2} \frac{i}{N}\right] \tag{6}
\end{equation*}
$$

Obviously, all the S_{i} are less than 1 . Hence, the W state is generally less entangled than the GHZ state in terms of multiple entropy measures (MEMS). The MEMS for the GHZstates were also obtained and all the GHZ-states S_{i} are equal to 1 . Liu et al. [56] used MEMS and studied the entanglement properties of nine families four-qubit pure states which are classified by SLOCC [47].

In this work, we study the entangled properties of linear cluster state which was proposed by Briegel and Raussendorf for the purpose of persistent entanglement and used to construct a one-way quantum computer $[54,55]$.

The N-qubit linear cluster state [54] is defined as

$$
\begin{equation*}
\left|C_{N}\right\rangle=\frac{1}{2^{N / 2}} \otimes\left(|0\rangle_{a} \sigma_{z}^{a+1}+|1\rangle_{a}\right) \tag{7}
\end{equation*}
$$

It holds a high persistency of entanglement which means that $\sim N / 2$ qubits have to be measured to eliminate the entanglement. Through the Schmidt decomposition, the state can be transformed into another clear form

$$
\begin{equation*}
\left|C_{N}\right\rangle=\sum_{i_{1}, \cdots, i_{N}} \alpha_{i_{1}, \cdots, i_{N}}\left|i_{1}\right\rangle \cdots\left|i_{n}\right\rangle \tag{8}
\end{equation*}
$$

where i_{k} is 0 or $1, k=1, \cdots, N$. However, the expansion coefficients are not obvious. From the original definition of the linear cluster state, we can find that the expansion contains 2^{N} items. Under local unitary operation or basis transformation, some items cancel each other. After some tedious calculation, the simplified expressions for $\left|C_{8}\right\rangle,\left|C_{9}\right\rangle, \cdots,\left|C_{14}\right\rangle$ are obtained. The simplest expression of $\left|C_{N}\right\rangle$ holds $2^{[N / 2]}$ items.

First, we study the S_{3} and S_{4} of $\left|C_{8}\right\rangle$, whose simplest form is

$$
\begin{align*}
\left|C_{8}\right\rangle= & |00101010\rangle+|00100111\rangle+|00010001\rangle \\
& +|00011100\rangle+|11001001\rangle+|11000100\rangle \\
& +|11110010\rangle+|11111111\rangle-|00101001\rangle \\
& -|00100100\rangle-|00010010\rangle-|00011111\rangle \\
& -|11001010\rangle-|11000111\rangle-|11110001\rangle \\
& -|11111100\rangle . \tag{9}
\end{align*}
$$

There are $C_{8}^{3}=56$ combinations of the reduced positions for S_{3}. We traced all the possible conditions and listed the results in Table 1. It can be found that the entropies are all integers with separate values of 1,2 , and 3 . The result of 3 occurs 38 times, 2 occurs 16 times, and 1 occurs only 2 times. S_{3} for the eight-qubit linear cluster state is $\sqrt[56]{2^{16} 3^{38}} \simeq 2.67$, which is slightly less than 3 .

Now it is interesting to check the S_{4} of $\left|C_{8}\right\rangle$. After some numerical cyclic reductions, we found that the results of von Neumann entropy are also the same integers as S_{3}. There are four separate values, $1,2,3$, and 4 . The result of 4 occurs 16 times, 3 occurs 36 times, 2 occurs 16 times, and 1 occurs 2 times. The occurrences of 1 and 2 are the same as S_{3}. The S_{4} for $\left|C_{8}\right\rangle$ is $\sqrt[70]{2^{16} 3^{36} 4^{16}}=2^{\frac{\log \left(2^{16} 6^{36} 4^{16}\right)}{70}} \simeq 2.94$.

Next, we give the results of S_{3} and S_{4} for the nine-qubit linear cluster state

$$
\begin{align*}
\left|C_{9}\right\rangle= & |001010101\rangle-|001010010\rangle-|001001001\rangle \\
& +|001001110\rangle-|000100101\rangle+|000100010\rangle \\
& -|111111001\rangle+|11111110\rangle+|000111001\rangle \\
& -|000111110\rangle-|110010101\rangle+|110010010\rangle \\
& +|110001001\rangle-|110001110\rangle+|111100101\rangle \\
& -|111100010\rangle . \tag{10}
\end{align*}
$$

The simplest expression of $\left|C_{9}\right\rangle$ keeps $2^{[9 / 2]}$ direct product items, which verifies the formula $2^{[N / 2]}$ given obove. We list all the resources of S_{3} for $\left|C_{9}\right\rangle$ in Table 2. In the case of S_{4},

Table 1 Combinations and entropies of $\left|C_{8}\right\rangle$ for S_{3}. The numbers under the column "reduction" are those qubits that are being traced. The numbers in the column under "remain" are those qubits that are left over after tracing over the "reduction" qubits. The number under column "entropy" is the entropy of the reduced density matrix of the "remain" subsystem

Reduction	Remain	Entropy	Reduction	Remain	Entropy
12345	678	1	12346	578	2
12347	568	2	12348	567	2
12358	467	3	12356	478	2
12357	468	3	12378	456	2
12368	457	3	12367	458	3
12467	358	3	12457	368	3
12478	356	3	12468	357	3
12456	378	2	12458	367	3
12578	346	3	12678	345	2
12567	348	3	12568	347	3
13568	247	3	13458	267	3
13578	246	3	13678	245	3
13468	257	3	13478	256	3
13457	268	3	13567	248	3
13456	278	2	13467	258	3
14678	235	3	14578	236	3
15678	234	2	14568	237	3
14567	238	3	24567	138	3
23467	158	3	24678	135	3
24578	136	3	23457	168	3
23478	156	3	23678	145	3
25678	134	2	23567	148	3
23578	146	3	23458	167	3
23468	157	3	24568	137	3
23456	178	2	23568	147	3
35678	124	2	34578	126	2
34678	125	2	45678	123	1
34567	128	2	34568	127	2

we just give the total number of each classification for the sake of space.

Using mathematical induction from the complex results obtained for the specific qubit numbers, we found that three types of subsystem von Neumann entropies are the same as in $\left|C_{8}\right\rangle$. The number of $E=3$ is $63, E=2$ is 19 , and $E=1$ is just 2. The S_{3} for $\left|C_{9}\right\rangle$ is $\sqrt[84]{2^{19} 3^{63}}=2^{\frac{\log _{2}\left(2^{19} 9^{633}\right)}{84}} \simeq 2.74$. In the case of S_{4}, the number of $E=4$ is $48, E=3$ is $57, E=2$ is 19 and $E=1$ is $2 . S_{4}$ for $\left|C_{9}\right\rangle$ is $\sqrt[126]{2^{16} 3^{36} 4^{16}}=2^{\frac{\log 2\left(2^{19} 9^{57} 4^{48}\right)}{126}} \simeq$ 3.16.

We studied the S_{3} and S_{4} for N from 8 to 14 , and arranged the results in Tables 3 and 4, respectively. From the classification, we got the rules of S_{3} and S_{4}, which are listed in eqs. (11) and (12), respectively. The number of $E=1$ is always 2 . By means of curve fitting, the numbers of $E=2$ and $E=3$ were found to increase linearly and quadratically.

The construction of S_{3} component of MEMS for a N-qubit cluster state,

$$
\left\{\begin{array}{rl}
\text { Times } & \text { Entropy } \tag{11}\\
2 & E=1, \\
3 N-8 & E=2, \\
C_{N}^{3}-3 N+6 & E=3 .
\end{array}\right.
$$

Table 2 Combinations and entropies of $\left|C_{9}\right\rangle$ for S_{3}

Reduction	Remain	Entropy	Reduction	Remain	Entropy
123456	789	1	123457	689	2
123458	679	2	123459	678	2
123469	578	3	123467	589	2
123468	579	3	123489	567	2
123479	568	3	123478	569	3
123578	469	3	123568	479	3
123589	467	3	123579	468	3
123567	489	2	123569	478	3
123689	457	3	123789	456	2
123678	459	3	123679	458	3
124679	358	3	124569	378	3
124689	357	3	124789	356	3
124579	368	3	124589	367	3
124568	379	3	124678	359	3
124567	389	2	124578	369	3
125789	346	3	125689	347	3
126789	345	2	125679	348	3
125678	349	3	135678	249	3
134578	269	3	135789	246	3
135689	247	3	134568	279	3
134589	267	3	134789	256	3
136789	245	3	134678	259	3
134689	257	3	134569	278	3
134579	268	3	135679	248	3
134567	289	2	134679	258	3
146789	235	3	145689	237	3
145789	236	3	156789	234	2
145678	239	3	145679	238	3
245679	138	3	234679	158	3
246789	135	3	245689	137	3
234569	178	3	234689	157	3
234789	156	3	245789	136	3
234579	168	3	234589	167	3
235689	147	3	236789	145	3
256789	134	2	235679	148	3
235789	146	3	234578	169	3
234568	179	3	234678	159	3
245678	139	3	234567	189	2
235678	149	3	356789	124	2
345789	126	2	345689	127	2
346789	125	2	456789	123	1
345679	128	2	345678	129	2

Table 3 Results of the three-body von Neumann entropy

N	8	9	10	11	12	13	14
$E=1$	2	2	2	2	2	2	2
$E=2$	16	19	22	25	28	31	34
$E=3$	38	63	96	138	190	253	328

Table 4 Results of the four-body von Neumann entropy

N	8	9	10	11	12	13	14
$E=1$	2	2	2	2	2	2	2
$E=2$	16	19	22	25	28	31	34
$E=3$	36	57	82	111	144	181	222
$E=4$	16	48	104	192	321	501	743

The construction of S_{4} component of MEMS for a N-qubit cluster state,

$$
\left\{\begin{array}{rl}
\text { Times } & \text { Entropy } \\
2 & E=1, \\
3 N-8 & E=2, \tag{12}\\
2 N^{2}-13 N+12 & E=3, \\
C_{N}^{4}-2 N^{2}+10 N-6 & E=4 .
\end{array}\right.
$$

By the definition of MEMS, we obtain the analytic results of S_{3} and S_{4} for a cluster state with N qubits,

$$
\begin{align*}
& S_{3}=\left[2^{3 N-8} 3^{C_{N}^{3}-3 N+8}\right]^{\frac{1}{c_{N}^{3}}}, \tag{13}\\
& S_{4}=\left[2^{3 N-8} 3^{2 N^{2}-13 N+12} 4^{C_{N}^{4}-2 N^{2}+10 N-6}\right]^{\frac{1}{C_{N}^{4}}} . \tag{14}
\end{align*}
$$

We plot the S_{3} and S_{4} versus N in Figures 1 and 2, respectively. The curves show that as N increases, S_{3} and S_{4} tend toward the upper bound.

In summary, we used the MEMS entanglement measures to study the linear cluster state with focus on three-body and four-body average von Neumann entropies. All the data were obtained by numerical calculation for N up to 14 . The results show that the linear cluster state is more entangled than the GHZ state and the W state in terms of the MEMS quantities. For large N value, the S_{3} and S_{4} are close to 3 and 4, which are the upper bounds of the three- and four-body von Neumann entropy, respectively. Analytic results of S_{3} and S_{4}

Figure 1 (Color online) S_{3} versus N for the linear cluster state.

Figure 2 (Color online) S_{4} versus N for the linear cluster state.
for arbitrary N qubit linear cluster states are obtained, and explicit expressions for them are given. These results are helpful for understanding the entanglement nature of the linear cluster states.

We thank Prof. S. M. Fei for his helpful discussion. This work was supported by the National Natural Science Foundation of China (10874 098,11175094) and the National Basic Research Program of China (2009CB929402, 2011CB9216002).

1 Schoedinger E. Naturwissenschaften, 1935, 23: 807-849
2 Einstein A, Podolsky B, Rosen N. Phys Rev, 1935, 47: 777-780
3 Peres A. Phys Rev A, 1996, 54: 2685-2689
4 Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambridge: Cambridge University Press, 2000
5 Wang Y Z, Hou J C, Guo Y. Chin Sci Bull, 2012, 57: 1643-1647
6 Qian Y, Zhang Y Q, Xu J B. Chin Sci Bull, 2012, 57: 1637-1642
7 Salemian S, Mohammadnejad S. Chin Sci Bull, 2011, 56: 618-625
8 Li M, Fei S M, Li-Jost X Q. Chin Sci Bull, 2011, 56: 945-954
9 Ding S C, Jin Z. Chin Sci Bull, 2007, 52: 2161-2166
10 Ren X Z, Cong H L, Wang X W, et al. Sci China Phys Mech Astron, 2011, 54: 1625-1630
11 Li X K, Li J L, Liu B, et al. Sci China Phys Mech Astron, 2011, 54: 1471-1475
12 Chen C Y, Sun Q. Sci China Phys Mech Astron, 2011, 54: 930-935
13 Plenio M B, Virmani S. Quant Inf Comp, 2007, 7: 1-51
14 Horodecki R, Horodecki P, Horodecki M, et al. Rev Mod Phys, 2009, 81: 865-942
15 Bennett C H, Bernstein H J, Popescu S, et al. Phys Rev A, 1996, 53: 2046-2052
16 Bennett C H, DiVincenzo D P, Smolin J A, et al. Phys Rev A, 1996, 54: 3824-3851
17 Vedral V, Plenio M B, Rippin M R, et al. Phys Rev Lett, 1997, 78: 2275-2279
Vedral V, Plenio M B. Phys Rev A, 1998, 57: 1619-1633
Wootters W K. Phys Rev Lett, 1998, 80: 2245-2248
Uhlmann A. Phys Rev A, 2000, 62: 032307
Audenaert K, Verstraete F, De Moor B. Phys Rev A, 2001, 64: 052304
Fei S M, Jost J, Li-Jost X Q, et al. Phys Lett A, 2002, 310: 333-338
Fei S M, Li-Jost X Q. Rep Math Phys, 2004, 53: 195-210
Thapliyal A. Phys Rev A, 1999, 59: 3336-3342
Coffman V, Kundu J, Wootters W K. Phys Rev A, 2000, 61: 052306
Horodecki M, Horodecki M P, Horodecki R. Phys Rev Lett, 2000, 84: 2014-2017
27 Bennett C H, Popescu S, Rohrlich D, et al. Phys Rev A, 2000, 63: 012307
Acín A, Andrianov A, Costa L, et al. Phys Rev Lett, 2000, 85: 15601563
Dür W, Vidal G, Cirac J I. Phys Rev A, 2000, 62: 062314
Wu S J, Zhang Y D. Phys Rev A, 2000, 63: 012308
Li Y S, Zeng B, Liu X S, et al. Phys Rev A, 2001, 64: 054302
Schliemann J, Cirac J I, Kus M, et al. Phys Rev A, 2001, 64: 022303
Paskauskas R, You L. Phys Rev A, 2001, 64: 042310
Sudbery A. J Phys A, 2001, 34: 643-652
Rajagopal A K, Rendell R W. Phys Rev A, 2002, 65: 032328
Rajagopal A K, Rendell R W. Phys Rev A, 2002, 66: 022104
Partovi M H. Phys Rev Lett, 2004, 92: 077904
Pan F, Liu D, Lu G, et al. Int J Theor Phys, 2004, 43: 1241-1247
Pan F, Liu D, Lu G Y, et al. Phys Lett A, 2005, 336: 384-389

40 Cao W C, Liu D, Pan F, et al. Sci China Ser G: Phys Mech Astron, 2006, 49: 606-615
41 Yu S X, Pan J W, Chen Z B, et al. Phys Rev Lett, 2003, 91: 217903
42 Zhou D L, Zeng B, Xu Z, et al. Phys Rev A, 2006, 74: 052110
43 Chen Z Q. Phys Rev Lett, 2004, 93: 110403
44 Chen J L, Wu C F, Kwek L C, et al. Phys Rev Lett, 2004, 93: 140407
45 Cai J M, Zhou Z W, Zhou X X, et al. Phys Rev A, 2006, 74: 042338
46 Facchi P, Florio G, Pascazio S. Phys Rev A, 2006, 74: 042331
47 Verstraete F, Dehaene J, De Moor B, et al. Phys Rev A, 2002, 65: 052112

48 Osterloh O, Siewert J. Phys Rev A, 2005, 72: 012337
49 d'Espagnat B. Veiled Reality: An Analysis of Present-day Quantum Mechanical Concepts. Reading, Massachuetts: Addison-Wesley, 1995
50 Long G L, Zhou Y F, Jin J Q, et al. Found Phys, 2006, 36: 1217-1243
51 Higuchi A, Sudbery A. Phys Lett A, 2000, 273: 213-217
52 Brierley S, Higuchi A. J Phys A: Math Theor, 2007, 40: 8455-8465
53 Liu D, Zhao X, Long G L. Commun Theor Phys, 2010, 54: 825-828
54 Briegel H J, Raussendorf R. Phys Rev Lett, 2001, 86: 910-913
55 Raussendorf R, Briegel H J. Phys Rev Lett, 2001, 86: 5188-5191
56 Liu D, Zhao X, Long G L. Commun Theor Phys, 2008, 49: 329-332

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

[^0]: *Corresponding author (email: gllong@mail.tsinghua.edu.cn)

