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An entanglement measure, multiple entropy measures (MEMS) was proposed recently by using the geometric mean of partial en-
tropies over all possible i-body combinations of the quantum system. In this work, we study the average subsystem von Neumann
entropies of the linear cluster state and investigated the quantum entanglement of linear cluster states in terms of MEMS. Explicit
results with specific particle numbers are calculated, and some analytical results are given for systems with arbitrary particle numbers.
Compared with other example quantum states such as the GHZ states and W states, the linear cluster states are “more entangled” in
terms of MEMS, namely their averaged entropies are larger than the GHZ states and W states.
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Entanglement [1, 2] is one of the most salient properties of
quantum systems. Quantum entanglement led to the experi-
mental verification for Bell inequality which confirmed quan-
tum mechanics [3]. In recent years, quantum entanglement
has been one of the key driving forces that advanced the ex-
plosive development of quantum information and quantum
computation [4–12]. Entanglement has developed from a
philosophical concept into a frontier research paradigm, and
much more attention has been paid to the quantification of
entanglement. Two measures of entanglement, formation and
distillation [15, 16] , were proposed by Bennett et al. Partial
von Neumann entropy [15,16], relative entropy [17,18], con-
currence [19–23] and other contributions [24–48] were also
studied and recognized as “good” entanglement measures.

In studying quantum entanglement, the density matrices
are often used. It should be mentioned that density matrix
can represent different physical quantities. In the case of
proper mixture, the density matrix represents the averaged
“state” of an ensemble of “molecules”, while the improper
mixture describes the averaged “state” of a subsystem in a
coupled quantum system. Though the mathematical expres-
sions are the same, their physical properties are quite differ-
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ent [49,50]. In studying quantum entanglement, we are actu-
ally using the improper mixture meaning of the density ma-
trix. The reduced density matrix is obtained by tracing out
other degrees of freedom of a composite quantum system.
Based on separating the correlations encoded by a density
matrix into a common set of marginals, Partovi [37] proposed
a measurement in which N!/2 quantities are used to quantify
an N-qubit system. In the case of N � 3, a “good” measure-
ment [38] can be constructed from the arithmetic average en-
tropy of single reduced density matrices. Realizing the lack
of one-qubit reduction, Higuchi et al. [51,52] proposed using
the arithmetic mean of two-particle entropies as a measure of
entanglement, and reported on a four-qubit entangled state:

|M4〉 =
√

1
6

[|0011〉 + |1100〉) + ω(|1010〉 + |0101〉
+ ω2(|1001〉 + |0110〉)], ω = e2iπ/3, (1)

which is more entangled than the four-qubit GHZ state.

More recently, Liu et al. [53] proposed multiple averaged
entropy measures based on a vector with m = [N/2] compo-
nents: [S 1, S 2, · · · , S m], where the S i is the geometric mean
of i-body partial entropy of the system
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S n =

⎡⎢⎢⎢⎢⎢⎢⎣
N∏

i1i2···in
, Ei1,i2,··· ,in

⎤⎥⎥⎥⎥⎥⎥⎦
1

Cn
N

. (2)

Ei1,i2,··· ,in is the i-body von Neumann entropy for the
{i1, i2, · · · , in} particles

Ei1i2···in = −Tr[(ρΨ)i1···in log2(ρΨ)i1···in ], (3)

where ρi1,i2,··· ,in is the reduced density matrix with the average
of other N − n particles and Cn

N is the combination number

Cn
N =

N!
(N − n)!n!

. (4)

The physical picture for S i can be understood in the fol-
lowing way. First, when i equals 1, it reflects the entangle-
ment feature in terms of single particles. Later on, when
i � 2, S i describes the entanglement of the i-body system
as a whole with other N − n particles. The upper bound
for Ei1,i2,··· ,in is n, so if an N-particle state maximizes all
the Ei1,i2,··· ,in , n = 1, 2, · · · , [N/2], it makes S n equals to n
and presents a maximally entangled state. For N = 2, 3,
[N/2] = 1, the quantum states that satisfy S 1 = 1 are maxi-
mum entangled states. For N = 4, Higuchi and Sudbery [51]
proved that the ideal entangled state which maximizes all the
Ei1,i2 does not exist. It should be noted that the MEMS con-
stitutes only part of the entanglement measure. To describe
quantum entanglement fully, more quantities are required in
addition to the N/2 MEMS quantities. While the GHZ states
have smaller MEMS than the cluster state, they are bigger in
other entanglement measures. For instance, GHZ states have
the maximal violation of Bell inequality. This is the reason
why a cluster state cannot be reduced to a GHZ state by lo-
cal operation and classical communication. This is still an
interesting and important issue being studied.

Liu et al. [53] studied the W state

|WN〉 =
√

1
N
{|0 · · ·01〉 + · · · + |10 · · ·0〉} , (5)

and the analytic MEMS were obtained as

S i =

[
−N − i

N
log2

N − i
N
− i

N
log2

i
N

]
. (6)

Obviously, all the S i are less than 1. Hence, the W state is
generally less entangled than the GHZ state in terms of mul-
tiple entropy measures (MEMS). The MEMS for the GHZ-
states were also obtained and all the GHZ-states S i are equal
to 1. Liu et al. [56] used MEMS and studied the entangle-
ment properties of nine families four-qubit pure states which
are classified by SLOCC [47].

In this work, we study the entangled properties of linear
cluster state which was proposed by Briegel and Raussendorf
for the purpose of persistent entanglement and used to con-
struct a one-way quantum computer [54, 55].

The N-qubit linear cluster state [54] is defined as

|CN〉 = 1
2N/2

⊗
(
|0〉aσa+1

z + |1〉a
)
. (7)

It holds a high persistency of entanglement which means that
∼ N/2 qubits have to be measured to eliminate the entangle-
ment. Through the Schmidt decomposition, the state can be
transformed into another clear form

|CN〉 =
∑

i1,··· ,iN

αi1 ,··· ,iN |i1〉 · · · |in〉, (8)

where ik is 0 or 1, k = 1, · · · ,N. However, the expansion co-
efficients are not obvious. From the original definition of the
linear cluster state, we can find that the expansion contains 2N

items. Under local unitary operation or basis transformation,
some items cancel each other. After some tedious calcula-
tion, the simplified expressions for |C8〉, |C9〉, · · · , |C14〉 are
obtained. The simplest expression of |CN〉 holds 2[N/2] items.

First, we study the S 3 and S 4 of |C8〉, whose simplest form
is

|C8〉 = |00101010〉+ |00100111〉+ |00010001〉
+ |00011100〉+ |11001001〉+ |11000100〉
+ |11110010〉+ |11111111〉 − |00101001〉
− |00100100〉 − |00010010〉 − |00011111〉
− |11001010〉 − |11000111〉 − |11110001〉
− |11111100〉. (9)

There are C3
8 = 56 combinations of the reduced positions for

S 3. We traced all the possible conditions and listed the results
in Table 1. It can be found that the entropies are all integers
with separate values of 1, 2, and 3. The result of 3 occurs 38
times, 2 occurs 16 times, and 1 occurs only 2 times. S 3 for
the eight-qubit linear cluster state is

56√
216338 � 2.67, which

is slightly less than 3.
Now it is interesting to check the S 4 of |C8〉. After some

numerical cyclic reductions, we found that the results of von
Neumann entropy are also the same integers as S 3. There are
four separate values, 1, 2, 3, and 4. The result of 4 occurs 16
times, 3 occurs 36 times, 2 occurs 16 times, and 1 occurs 2
times. The occurrences of 1 and 2 are the same as S 3. The

S 4 for |C8〉 is
70√

216336416 = 2
log2(216336416)

70 � 2.94.
Next, we give the results of S 3 and S 4 for the nine-qubit

linear cluster state

|C9〉 = |001010101〉 − |001010010〉 − |001001001〉
+ |001001110〉 − |000100101〉+ |000100010〉
− |111111001〉+ |111111110〉+ |000111001〉
− |000111110〉 − |110010101〉+ |110010010〉
+ |110001001〉 − |110001110〉+ |111100101〉
− |111100010〉. (10)

The simplest expression of |C9〉 keeps 2[9/2] direct product
items, which verifies the formula 2[N/2] given obove. We list
all the resources of S 3 for |C9〉 in Table 2. In the case of S 4,
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Table 1 Combinations and entropies of |C8〉 for S 3. The numbers under
the column “reduction” are those qubits that are being traced. The numbers
in the column under “remain” are those qubits that are left over after trac-
ing over the “reduction” qubits. The number under column “entropy” is the
entropy of the reduced density matrix of the “remain” subsystem

Reduction Remain Entropy Reduction Remain Entropy

1 2 3 4 5 6 7 8 1 1 2 3 4 6 5 7 8 2
1 2 3 4 7 5 6 8 2 1 2 3 4 8 5 6 7 2
1 2 3 5 8 4 6 7 3 1 2 3 5 6 4 7 8 2
1 2 3 5 7 4 6 8 3 1 2 3 7 8 4 5 6 2
1 2 3 6 8 4 5 7 3 1 2 3 6 7 4 5 8 3
1 2 4 6 7 3 5 8 3 1 2 4 5 7 3 6 8 3
1 2 4 7 8 3 5 6 3 1 2 4 6 8 3 5 7 3
1 2 4 5 6 3 7 8 2 1 2 4 5 8 3 6 7 3
1 2 5 7 8 3 4 6 3 1 2 6 7 8 3 4 5 2
1 2 5 6 7 3 4 8 3 1 2 5 6 8 3 4 7 3
1 3 5 6 8 2 4 7 3 1 3 4 5 8 2 6 7 3
1 3 5 7 8 2 4 6 3 1 3 6 7 8 2 4 5 3
1 3 4 6 8 2 5 7 3 1 3 4 7 8 2 5 6 3
1 3 4 5 7 2 6 8 3 1 3 5 6 7 2 4 8 3
1 3 4 5 6 2 7 8 2 1 3 4 6 7 2 5 8 3
1 4 6 7 8 2 3 5 3 1 4 5 7 8 2 3 6 3
1 5 6 7 8 2 3 4 2 1 4 5 6 8 2 3 7 3
1 4 5 6 7 2 3 8 3 2 4 5 6 7 1 3 8 3
2 3 4 6 7 1 5 8 3 2 4 6 7 8 1 3 5 3
2 4 5 7 8 1 3 6 3 2 3 4 5 7 1 6 8 3
2 3 4 7 8 1 5 6 3 2 3 6 7 8 1 4 5 3
2 5 6 7 8 1 3 4 2 2 3 5 6 7 1 4 8 3
2 3 5 7 8 1 4 6 3 2 3 4 5 8 1 6 7 3
2 3 4 6 8 1 5 7 3 2 4 5 6 8 1 3 7 3
2 3 4 5 6 1 7 8 2 2 3 5 6 8 1 4 7 3
3 5 6 7 8 1 2 4 2 3 4 5 7 8 1 2 6 2
3 4 6 7 8 1 2 5 2 4 5 6 7 8 1 2 3 1
3 4 5 6 7 1 2 8 2 3 4 5 6 8 1 2 7 2

we just give the total number of each classification for the
sake of space.

Using mathematical induction from the complex results
obtained for the specific qubit numbers, we found that three
types of subsystem von Neumann entropies are the same as
in |C8〉. The number of E = 3 is 63, E = 2 is 19, and E = 1 is

just 2. The S 3 for |C9〉 is
84√

219363 = 2
log2(219363)

84 � 2.74. In the
case of S 4, the number of E = 4 is 48, E = 3 is 57, E = 2 is

19 and E = 1 is 2. S 4 for |C9〉 is
126√

216336416 = 2
log2(219357448)

126 �
3.16.

We studied the S 3 and S 4 for N from 8 to 14, and arranged
the results in Tables 3 and 4, respectively. From the classifi-
cation, we got the rules of S 3 and S 4, which are listed in eqs.
(11) and (12), respectively. The number of E = 1 is always 2.
By means of curve fitting, the numbers of E = 2 and E = 3
were found to increase linearly and quadratically.

The construction of S 3 component of MEMS for a N-qubit
cluster state, ⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Times Entropy

2 E = 1,

3N − 8 E = 2,

C3
N − 3N + 6 E = 3.

(11)

Table 2 Combinations and entropies of |C9〉 for S 3

Reduction Remain Entropy Reduction Remain Entropy

1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 7 6 8 9 2
1 2 3 4 5 8 6 7 9 2 1 2 3 4 5 9 6 7 8 2
1 2 3 4 6 9 5 7 8 3 1 2 3 4 6 7 5 8 9 2
1 2 3 4 6 8 5 7 9 3 1 2 3 4 8 9 5 6 7 2
1 2 3 4 7 9 5 6 8 3 1 2 3 4 7 8 5 6 9 3
1 2 3 5 7 8 4 6 9 3 1 2 3 5 6 8 4 7 9 3
1 2 3 5 8 9 4 6 7 3 1 2 3 5 7 9 4 6 8 3
1 2 3 5 6 7 4 8 9 2 1 2 3 5 6 9 4 7 8 3
1 2 3 6 8 9 4 5 7 3 1 2 3 7 8 9 4 5 6 2
1 2 3 6 7 8 4 5 9 3 1 2 3 6 7 9 4 5 8 3
1 2 4 6 7 9 3 5 8 3 1 2 4 5 6 9 3 7 8 3
1 2 4 6 8 9 3 5 7 3 1 2 4 7 8 9 3 5 6 3
1 2 4 5 7 9 3 6 8 3 1 2 4 5 8 9 3 6 7 3
1 2 4 5 6 8 3 7 9 3 1 2 4 6 7 8 3 5 9 3
1 2 4 5 6 7 3 8 9 2 1 2 4 5 7 8 3 6 9 3
1 2 5 7 8 9 3 4 6 3 1 2 5 6 8 9 3 4 7 3
1 2 6 7 8 9 3 4 5 2 1 2 5 6 7 9 3 4 8 3
1 2 5 6 7 8 3 4 9 3 1 3 5 6 7 8 2 4 9 3
1 3 4 5 7 8 2 6 9 3 1 3 5 7 8 9 2 4 6 3
1 3 5 6 8 9 2 4 7 3 1 3 4 5 6 8 2 7 9 3
1 3 4 5 8 9 2 6 7 3 1 3 4 7 8 9 2 5 6 3
1 3 6 7 8 9 2 4 5 3 1 3 4 6 7 8 2 5 9 3
1 3 4 6 8 9 2 5 7 3 1 3 4 5 6 9 2 7 8 3
1 3 4 5 7 9 2 6 8 3 1 3 5 6 7 9 2 4 8 3
1 3 4 5 6 7 2 8 9 2 1 3 4 6 7 9 2 5 8 3
1 4 6 7 8 9 2 3 5 3 1 4 5 6 8 9 2 3 7 3
1 4 5 7 8 9 2 3 6 3 1 5 6 7 8 9 2 3 4 2
1 4 5 6 7 8 2 3 9 3 1 4 5 6 7 9 2 3 8 3
2 4 5 6 7 9 1 3 8 3 2 3 4 6 7 9 1 5 8 3
2 4 6 7 8 9 1 3 5 3 2 4 5 6 8 9 1 3 7 3
2 3 4 5 6 9 1 7 8 3 2 3 4 6 8 9 1 5 7 3
2 3 4 7 8 9 1 5 6 3 2 4 5 7 8 9 1 3 6 3
2 3 4 5 7 9 1 6 8 3 2 3 4 5 8 9 1 6 7 3
2 3 5 6 8 9 1 4 7 3 2 3 6 7 8 9 1 4 5 3
2 5 6 7 8 9 1 3 4 2 2 3 5 6 7 9 1 4 8 3
2 3 5 7 8 9 1 4 6 3 2 3 4 5 7 8 1 6 9 3
2 3 4 5 6 8 1 7 9 3 2 3 4 6 7 8 1 5 9 3
2 4 5 6 7 8 1 3 9 3 2 3 4 5 6 7 1 8 9 2
2 3 5 6 7 8 1 4 9 3 3 5 6 7 8 9 1 2 4 2
3 4 5 7 8 9 1 2 6 2 3 4 5 6 8 9 1 2 7 2
3 4 6 7 8 9 1 2 5 2 4 5 6 7 8 9 1 2 3 1
3 4 5 6 7 9 1 2 8 2 3 4 5 6 7 8 1 2 9 2

Table 3 Results of the three-body von Neumann entropy

N 8 9 10 11 12 13 14

E = 1 2 2 2 2 2 2 2
E = 2 16 19 22 25 28 31 34
E = 3 38 63 96 138 190 253 328

Table 4 Results of the four-body von Neumann entropy

N 8 9 10 11 12 13 14

E = 1 2 2 2 2 2 2 2
E = 2 16 19 22 25 28 31 34
E = 3 36 57 82 111 144 181 222
E = 4 16 48 104 192 321 501 743
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The construction of S 4 component of MEMS for a N-qubit
cluster state, ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Times Entropy

2 E = 1,

3N − 8 E = 2,

2N2 − 13N + 12 E = 3,

C4
N − 2N2 + 10N − 6 E = 4.

(12)

By the definition of MEMS, we obtain the analytic results of
S 3 and S 4 for a cluster state with N qubits,

S 3 =
[
23N−83C3

N−3N+8
] 1

C3
N , (13)

S 4 =
[
23N−832N2−13N+124C4

N−2N2+10N−6
] 1

C4
N . (14)

We plot the S 3 and S 4 versus N in Figures 1 and 2, respec-
tively. The curves show that as N increases, S 3 and S 4 tend
toward the upper bound.

In summary, we used the MEMS entanglement measures
to study the linear cluster state with focus on three-body and
four-body average von Neumann entropies. All the data were
obtained by numerical calculation for N up to 14. The re-
sults show that the linear cluster state is more entangled than
the GHZ state and the W state in terms of the MEMS quan-
tities. For large N value, the S 3 and S 4 are close to 3 and 4,
which are the upper bounds of the three- and four-body von
Neumann entropy, respectively. Analytic results of S 3 and S 4
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Figure 1 (Color online) S 3 versus N for the linear cluster state.
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Figure 2 (Color online) S 4 versus N for the linear cluster state.

for arbitrary N qubit linear cluster states are obtained, and ex-
plicit expressions for them are given. These results are help-
ful for understanding the entanglement nature of the linear
cluster states.

We thank Prof. S. M. Fei for his helpful discussion. This work was supported

by the National Natural Science Foundation of China (10874 098,11175094)

and the National Basic Research Program of China (2009CB929402,

2011CB9216002).

1 Schoedinger E. Naturwissenschaften, 1935, 23: 807–849

2 Einstein A, Podolsky B, Rosen N. Phys Rev, 1935, 47: 777–780

3 Peres A. Phys Rev A, 1996, 54: 2685–2689
4 Nielsen M A, Chuang I L. Quantum Computation and Quantum Infor-

mation. Cambridge: Cambridge University Press, 2000

5 Wang Y Z, Hou J C, Guo Y. Chin Sci Bull, 2012, 57: 1643–1647

6 Qian Y, Zhang Y Q, Xu J B. Chin Sci Bull, 2012, 57: 1637–1642
7 Salemian S, Mohammadnejad S. Chin Sci Bull, 2011, 56: 618–625

8 Li M, Fei S M, Li-Jost X Q. Chin Sci Bull, 2011, 56: 945–954

9 Ding S C, Jin Z. Chin Sci Bull, 2007, 52: 2161–2166

10 Ren X Z, Cong H L, Wang X W, et al. Sci China Phys Mech Astron,
2011, 54: 1625–1630

11 Li X K, Li J L, Liu B, et al. Sci China Phys Mech Astron, 2011, 54:
1471–1475

12 Chen C Y, Sun Q. Sci China Phys Mech Astron, 2011, 54: 930–935
13 Plenio M B, Virmani S. Quant Inf Comp, 2007, 7: 1–51

14 Horodecki R, Horodecki P, Horodecki M, et al. Rev Mod Phys, 2009,
81: 865–942

15 Bennett C H, Bernstein H J, Popescu S, et al. Phys Rev A, 1996, 53:
2046–2052

16 Bennett C H, DiVincenzo D P, Smolin J A, et al. Phys Rev A, 1996, 54:
3824–3851

17 Vedral V, Plenio M B, Rippin M R, et al. Phys Rev Lett, 1997, 78:
2275–2279

18 Vedral V, Plenio M B. Phys Rev A, 1998, 57: 1619–1633

19 Wootters W K. Phys Rev Lett, 1998, 80: 2245–2248
20 Uhlmann A. Phys Rev A, 2000, 62: 032307

21 Audenaert K, Verstraete F, De Moor B. Phys Rev A, 2001, 64: 052304

22 Fei S M, Jost J, Li-Jost X Q, et al. Phys Lett A, 2002, 310: 333–338

23 Fei S M, Li-Jost X Q. Rep Math Phys, 2004, 53: 195–210
24 Thapliyal A. Phys Rev A, 1999, 59: 3336–3342

25 Coffman V, Kundu J, Wootters W K. Phys Rev A, 2000, 61: 052306

26 Horodecki M, Horodecki M P, Horodecki R. Phys Rev Lett, 2000, 84:
2014–2017

27 Bennett C H, Popescu S, Rohrlich D, et al. Phys Rev A, 2000, 63:
012307

28 Acı́n A, Andrianov A, Costa L, et al. Phys Rev Lett, 2000, 85: 1560–
1563

29 Dür W, Vidal G, Cirac J I. Phys Rev A, 2000, 62: 062314

30 Wu S J, Zhang Y D. Phys Rev A, 2000, 63: 012308

31 Li Y S, Zeng B, Liu X S, et al. Phys Rev A, 2001, 64: 054302

32 Schliemann J, Cirac J I, Kus M, et al. Phys Rev A, 2001, 64: 022303
33 Paskauskas R, You L. Phys Rev A, 2001, 64: 042310

34 Sudbery A. J Phys A, 2001, 34: 643–652

35 Rajagopal A K, Rendell R W. Phys Rev A, 2002, 65: 032328

36 Rajagopal A K, Rendell R W. Phys Rev A, 2002, 66: 022104
37 Partovi M H. Phys Rev Lett, 2004, 92: 077904

38 Pan F, Liu D, Lu G, et al. Int J Theor Phys, 2004, 43: 1241–1247

39 Pan F, Liu D, Lu G Y, et al. Phys Lett A, 2005, 336: 384–389



52 Cao Y, et al. Chin Sci Bull January (2013) Vol. 58 No. 1

40 Cao W C, Liu D, Pan F, et al. Sci China Ser G: Phys Mech Astron,
2006, 49: 606–615

41 Yu S X, Pan J W, Chen Z B, et al. Phys Rev Lett, 2003, 91: 217903

42 Zhou D L, Zeng B, Xu Z, et al. Phys Rev A, 2006, 74: 052110

43 Chen Z Q. Phys Rev Lett, 2004, 93: 110403

44 Chen J L, Wu C F, Kwek L C, et al. Phys Rev Lett, 2004, 93: 140407
45 Cai J M, Zhou Z W, Zhou X X, et al. Phys Rev A, 2006, 74: 042338

46 Facchi P, Florio G, Pascazio S. Phys Rev A, 2006, 74: 042331

47 Verstraete F, Dehaene J, De Moor B, et al. Phys Rev A, 2002, 65:
052112

48 Osterloh O, Siewert J. Phys Rev A, 2005, 72: 012337

49 d’Espagnat B. Veiled Reality: An Analysis of Present-day Quantum
Mechanical Concepts. Reading, Massachuetts: Addison-Wesley, 1995

50 Long G L, Zhou Y F, Jin J Q, et al. Found Phys, 2006, 36: 1217–1243

51 Higuchi A, Sudbery A. Phys Lett A, 2000, 273: 213–217

52 Brierley S, Higuchi A. J Phys A: Math Theor, 2007, 40: 8455–8465
53 Liu D, Zhao X, Long G L. Commun Theor Phys, 2010, 54: 825–828

54 Briegel H J, Raussendorf R. Phys Rev Lett, 2001, 86: 910–913

55 Raussendorf R, Briegel H J. Phys Rev Lett, 2001, 86: 5188–5191

56 Liu D, Zhao X, Long G L. Commun Theor Phys, 2008, 49: 329–332

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction
in any medium, provided the original author(s) and source are credited.


