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The effect of atomic oxygen (AO) on the surface oxidation of several typical Cu-based bulk metallic glasses (BMGs) was studied 
in the present work. The AO source using in this study is generated by discharge plasma type ground simulation equipment. The 
AO erosion/oxidation resistances of the amorphous alloy samples were assessed based on the analysis of mass loss, surface color 
and microstructure. It is found that these Cu-based BMGs possess good AO erosion/oxidation resistance and their resistance to 
AO erosion/oxidation strongly depends on the chemical composition. For the samples containing more Ag and/or Cu, the AO 
erosion/oxidation resistance is weaker. The present result is important for designing new metallic glasses using as space materials. 
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The presence of atomic oxygen (AO) in low Earth orbit 
(LEO, altitude from ~200 to ~700 km) is one of important 
reasons for surface degradation of the aerospace materials. 
Atomic oxygen, which possesses high chemical activity, is 
the dominant chemical constituent (80%) in the neutral at-
mosphere in LEO [1]. When the spacecraft locates in LEO 
with an orbital velocity of 7–8 km s−1, AO impacts the sur-
face of the spacecraft with a kinetic energy of ~5 eV, thus 
can react with many elements [2]. Then, it may lead to sur-
face erosion and property degradation of space materials 
which would further affect the safety/longevity of space-
crafts. Therefore, studies on the AO effects have been 
widely appreciated. Through testing platforms equipped in 
spacecrafts and all kinds of ground effect simulation testing 
devices, a large number of aerospace materials such as 
polymer [3], inorganic material coating [4,5], silver [6], 
aluminum [7], titanium [8] and carbon materials [9], etc., 
have been studied extensively. For most metal materials, 
AO will react with them to form oxidized film which can 
prevent further oxidation to erode the material. Except AO 
sensitive elements such as Os, Ag and Cu, metal materials 

usually have relatively better AO resistance than those 
polymers and carbon materials. But the films generated by 
AO can result in a change in surface roughness and thus 
leading to degradation of luminous reflectance, frictional 
wear properties and even welding performance [7]. There-
fore it is of great interest to investigate the effect of AO on 
metallic materials to better understand the oxidation mecha-
nism. So far, the field of AO erosion study is largely fo-
cused on crystalline materials. Recent decades, bulk metal-
lic glasses (BMGs), new comers of metallic materials, have 
attracted lots of attention [10–14] due to excellent mechan-
ical and functional properties [15–21], which are believed to 
be resulted by their unique structure [22,23]. Since high 
performance of BMGs make them potential candidates of 
space materials, their AO erosion resistance is of interest to 
be investigated. 

The main aim of the present work is to explore the influ-
ence of Cu or Ag contained on the AO resistance of BMG 
materials. To our knowledge, those alloys containing ele-
ments sensitive to AO, such as Ag and Cu, were worried 
about whether they are stable in LEO. In addition, as one of 
the major addition elements, Cu or Ag is often used to im-
prove the glass forming ability or mechanical properties in 
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many BMGs [24–27]. Hence, it is of great interest to know 
whether they adversely affect the AO erosion resistance. 
We choose a series of Cu-based alloys containing different 
amounts of Cu/Ag to study the oxidation of such glassy 
alloys rich in AO sensitive elements. Finally, we will pro-
vide some simple empirical rules for designing metallic 
glasses applied in LEO environment. 

1  Experimental 

Master alloy ingots with nominal compositions of Cu44.25- 
Ag14.75Zr36Ti5 [27], Cu42Zr42Ag8Al8 [26,28], Cu45Zr48Al7 

[29], and Zr41Ti14Cu12.5Ni10Be22.5 (Vit1) [30], were prepared 
by arc melting the mixtures of raw elements with purity 
better than 99.4% in a Ti-gettered Ar2 atmosphere. Plates 
with 2 mm in thickness, 12 mm in width and 60 mm in 
length were prepared from the ingots by copper mold suc-
tion casting method. Thin crosscut pieces of samples were 
cut down in the middle of the plates and then examined by 
X-ray diffraction (XRD) using CuKα radiation. Square plate 
samples with size of 2 mm × 5 mm × 5 mm and 2 mm × 10 
mm × 10 mm cut from the as-cast plates, were grinded and 
polished using fine sandpapers. 

The polished samples were tested using the ground-based 
AO effect simulation facility at Beijing University of Aero-
nautics and Astronautics (BUAA). By the method of fila-
ment discharge plasma, this ground-based AO effect simu-
lation facility can generate a larger amount of AO flux than 
that in LEO. Therefore, the progress of the experiment can 
be accelerated so as to shorten experimental period to just a 
few days. The configuration and characteristics of the facil-
ity were detailed in reference [31]. In this case, a Kapton 
material, which is a commonly used polymer with a con-
stant AO erosion rate of 3.0×10−24 cm3/atom, is chosen as 
the standard material to estimate the AO flux. In order to 
avoid forming the autoxidation passive film on the test 
samples in air and mislead the analysis of test results, all the 
samples have been carefully grinded with fine sandpaper 
prior to AO exposure. The experimental materials used in 
this work with the compositions of C22H10N2O5 (Kapton), 
Cu44.25Ag14.75Zr36Ti5, Cu42Zr42Ag8Al8, Cu45Zr48Al7, and 
Zr41Ti14Cu12.5Ni10Be22.5 as mentioned above, are named A0, 
A1, A2, A3 and A4, respectively. 

The mass of the samples was measured with a DT-100 

balance (Beijing Optical Instrument Factory, China), with a 
sensitivity of 0.00005 g. The surface morphology was in-
spected by a scanning electron microscope (SEM) with a 
field emission gun (LEO 1530).  

2  Results 

2.1  Changes in the colors of exposure surfaces 

The color change of the exposed surface is the most intui-
tive evidence to determine whether a sample is sensitive to 
AO environment. Figure 1 shows the color changes on the 
surfaces of the pre/post exposure samples. Not surprise, the 
exposure surface colors of those samples with Cu-rich and 
Ag-rich have changed from a general metallic gray to a 
more darken color after AO exposure (Figure 1). In the 
three Cu-Zr-Al alloys with almost the same amount of Cu 
but different amounts of Ag, a clear trend can be noticed 
that the more Ag contained, the darken color presented after 
AO exposure. While, color changes of A4 samples were not 
that clear (Figure 1(d)). 

2.2  Mass loss  

Table 1 lists the mass losses of the samples exposed in AO 
for 40 h together with the color changes. Sample A0, which 
is the reference material Kapton, has an obvious mass loss 
of 65.78%, indicating that the experiment complied with the 
requirements of the AO test. Since the sensitivity of the  
 
 

 

Figure 1  (Color online) The digit images of the pre/post exposure sam-
ples for comparing their colors changes on the surfaces. (a) A1; (b) A2; (c) 
A3; (d) A4.  

Table 1  The summarized results of the experiment including color change, microstructure change and mass loss with Cu and Ag contained 

Sample Composition (in at.) 
Cu 

(at %) 
Ag  

(at %) 
Change  
in color 

Change  
in microstructure 

Mass (g) Mass loss 
(%) Pre-exposure Post-exposure 

A0 C22H10N2O5(Kapton) – – obvious obvious 0.00564 0.00193 65.78 

A1 Cu44.25Ag14.75Zr36Ti5 44 15 obvious obvious 0.43460 0.43455 0.01 

A2 Cu42Zr42Ag8Al8 42 8 none slight 0.49565 0.49560 0.01 

A3 Cu45Zr48Al7 45 0 slight slight 0.51585 0.51585 0 

A4 Zr41Ti14Cu12.5Ni10Be22.5 (Vit1) 13 0 none none 1.05880 1.05880 0 
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balance is 0.00005 g, the values obtained in this case are of 
an instrumental error of ±0.00005 g. In other words, it is 
then somewhat negligible with the mass value smaller than 
0.0001 g. Although the surface color changes reveal the 
effectiveness of the role of atomic oxygen, all the test BMG 
samples have no obvious mass loss more than 0.01% as 
listed in Table 1, indicating that glass alloy possesses very 
good property in AO erosion/oxidation resistance. 

2.3  Surface microstructure morphology 

Figure 2 shows some typical surface microstructure mor-
phology images of the samples. For sample A1, an obvious 
change between the pre-exposure and post-exposure surface 
can be found. It has been transformed from a smooth sur-
face morphology except some scratches (Figure 2(a)) to a 
quite rough surface morphology with obvious AO erosion 
features (Figure 2(b)). On the exposed surface of A1, not 
only oxidation product but also some voids and cracks can 
be clearly observed in a relative low magnification which is 
a clear evidence that the interaction of AO with the sample. 
For sample A2, it is found that the oxidation product parti-
cles with a smaller size of ~50 nm, uniformly distributed on 
the surface (Figure 2(c)). While for sample A3, the mor-
phology is similar with A2, except particle size which rang-
es from ~30 to ~200 nm (Figure 2(d)). However, for A4 
(Figure 3(e), (f)), no changes could be observed before and 
after AO exposure, except scratches on the surface, sug-
gesting a good AO erosion/oxidation resistance. 

   
 

 

Figure 2  Typical morphologies of the pre/post exposure surface in AO 
for 40 h. (a) A representative morphology of the pre-exposure sample A1; 
(b) A1 for post-exposure; (c) A2 for post-exposure; (d) A3 for post-expo- 
sure; (e) A4 for pre-exposure; (f) A4 for post-exposure. 

3  Discussions 

Based on the results reported above, Cu and Ag are key 
constitute elements that control the AO erosion resistance of 
the BMGs. Table 1 also summarizes a qualitative analysis 
results showing that the AO erosion resistance of the tested 
BMG samples depended on the Cu and/or Ag contains. 
Taking samples A1–A3 into account, with clearly increas-
ing Ag in content, the effect of Ag on AO erosion in 
Cu-based BMGs can be measured. Comparing sample A2 
with A3, a similar change can be found that they had similar 
changes in surface color and microstructure. The result 
demonstrates that samples A2 and A3 have similar oxida-
tion behavior in AO environmental which suggested the Ag 
containing in sample A2 has no obvious effect on the AO 
erosion resistance. But when Ag content reaches 15% (sam-
ple A1), the AO oxidation is quite different. For example, 
the color has been transformed into a pale yellow and its 
microstructure has become more complex which composed 
of particles, clusters, voids and cracks, etc. It is suggested 
that in Cu-based metallic glasses the surface oxidation de-
pends on the Ag content. But if it is below 8%, Ag may not 
significantly affect the AO erosion resistance. From samples 
A1–A4 of Zr-Cu alloy system with a significant Cu compo-
sition variation compare to other elements, the role of Cu 
can be roughly estimated. When the Cu content is below 
~13% (such as sample A4), no change in exposed surface 
color or microstructure has been noticed. The result sug-
gests that sample A4 possesses a better ability in anti-  
erosion/oxidation of AO.  

It is known that, in many BMGs, Cu or Ag is often added 
in the alloys for improving the GFA or turning the mechan-
ical properties. If the BMGs were designed to use in AO 
environment, it is then necessary to avoid adding such ele-
ments, or at least, to control the amount of them in the total 
composition. Interestingly in this case, it seems that adding 
these two elements with some specific amounts do not 
change the oxidation behavior of these alloys in AO. But 
the concentration of Ag and Cu must be limited to certain 
amount which needs lots of experiments to explore. Our 
work have provided some simple clues that, if Ag is added 
no more than about 8% or Cu is no more than about 13%, 
the AO effect on the BMGs is acceptable. Of course, a more 
detailed study is needed to be carried out in the future to 
confirm the maximum amount of Cu or Ag to be added 
without obvious change of their AO resistance. 

4  Conclusion 

In the present work, a group of Cu-based BMGs were ex-
posed in the AO environment simulated on the ground. It 
was found that these Cu-based BMGs possess good property 
of anti-erosion/oxidation of AO, despite that in the three 
Cu-based BMGs a clear oxidation trace could be identified, 
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which was confirmed to be strongly related to the chemical 
composition of the BMGs. The oxidation of BMGs in AO is 
obvious when the Cu component excess than about 40% 
and Ag excess than 15% in atomic percent. While Cu con-
tent is lower than about 13% the oxidation can be negligible. 
The study of the AO effect on different MGs provides a 
clue to select and design new metallic glasses especially for 
using as space materials. The present result is also of sig-
nificance for extending the application of this new class of 
materials in the aerospace field. 
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