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Motoneuron is the control unit of skeletal muscles, and the dynamic frequency-regulating feedback from the afferent nerve of 
receptors like muscle spindles forms the physical basis of its closed-loop regulation. Focused on the synapses of muscle spindle 
afferents, this paper established a dynamical system-Markov model starting from presynaptic stimulations to postsynaptic re-
sponses, and further verified the model via comparisons between theoretical results and relevant experimental data. With the pur-
pose of describing the active features of dendritic membrane, we employed the methods of dynamical systems rather than the 
traditional passive cable theory, and identified the physical meaning of parameters involved. For the dynamic behavior of 
postsynaptic currents, we adopted simplified Markov models so that the analytical solutions for the open dynamics of postsynaptic 
receptors can be obtained. The model in this paper is capable of simulating the actual non-uniformity of channel density, and is 
suitable for complex finite element analysis of neurons; thus it facilitates the exploration of the frequency-regulating feedback and 
control mechanisms of motoneurons. 
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The operation of skeletal muscle is a typically bioelectro-
chemical closed-loop control process, which is regulated by 
the action potential (AP) fired by motoneurons. The con-
traction length/speed and tension of the muscle are fed back 
by the afferent nerves of muscle spindles and tendon organs 
within it, and these signals are simultaneously transmitted to 
the central nervous system (CNS) and the motoneuron itself 
[1–3]. As an important receptor, the muscle spindle is 
equivalent to the displacement/speed transducer of skeletal 
muscle, as the real-time firing rate of its afferent nerves (I a 
afferents) varies with the length and contraction speed of 
the muscle. We have proposed the bioelectrochemical fre-
quency-regulating control mechanism for skeletal muscle 
based on the characteristics of the APs on muscle fibers [4], 
i.e. the working process of muscle is regulated by the fre-
quency of AP in real time. The afferent signals influence the 
firing behavior of motoneurons, and thus the feedback of a 

muscle spindle to the motoneuron forms a local closed loop, 
which is pivotal to the stability of muscle operation. The 
researches on the working mechanism of skeletal muscle 
have lasted for many decades, while the regulation and con-
trol mechanisms of muscle are seldom touched; therefore 
our understanding of the control principium is far from sat-
isfactory. On the other hand, in order to explore the closed- 
loop control properties, the key point is to take extensive 
researches on the feedback effects of the afferents, and this 
involves the synaptic transmission between I a afferents and 
motoneurons. 

Motoneurons are myelinated neurons with their dendrites 
and somas located in the spinal cord [5]. The signals of 
muscle spindles are excitatory afferents, whose terminals 
extend into the spinal cord and are connected with the den-
dritic shafts or spines of motoneurons, and the dendritic tree 
of one motoneuron can receive thousands of inputs [6]. The 
investigations on excitatory synapses show that a single 
input can depolarize the postsynaptic membrane by 0.2–0.4 
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mV [7]. Synaptic signals regulate the firing behavior of the 
axon of a motoneuron via a mechanism called synaptic in-
tegration, and the control information is contained in the 
frequency of AP [4], while because of the “all or none” 
feature of AP, the quantity regulated by the afferents via 
synaptic interactions should also be the firing rate of the 
postsynaptic neuron. Despite of the extensive experimental 
observations on the process of synaptic integration [8], rel-
evant researches are still at the qualitative stage, and the 
cybernetic model based on frequency information has not 
been extracted and proposed. Moreover, the frequency-  
regulating feedback mechanism of the afferents is closely 
related to the postsynaptic responses, and the researches on 
excitatory/inhibitory synapses have been massively carried 
out [9–11]. Dendrites used to be regarded as purely passive, 
i.e. postsynaptic currents can only diffuse passively within 
them. Based on such assumptions, Rall et al. [12] proposed 
the passive cable theory of membrane, and Hines et al. [13] 
further developed the NEURON code aimed at calculating 
the membrane potential responses of the whole neuron. 
However, recent studies have proved that dendrite structures 
possess active features, and voltage-sensitive ion channels 
exist on the dendritic tree [14]. Particularly, the dendritic 
Ca2+ currents of motoneurons play a key role in their synap-
tic integration [15]. The passive cable model can hardly 
simulate the active properties of dendrites, not to say inves-
tigating the influence of the non-uniform distribution of 
channel density on signal processing. For the fact that many 
difficulties remain in the measurements of the electri-
cal/chemical responses in a single segment of dendrites, 
theoretical analyses are indispensable for the exploration of 
the interactions of dendritic information [16], while efficient 
models being able to easily simulate the active responses of 
dendrites have not been proposed till today. In effect, the 
essence of the propagation of membrane potential is the 
diffusion of cytoplasmic ion; thereby finite element method 
(FEM) is favorable for the analysis of the non-uniformity of 
the membrane. Finite element analysis has already been 
applied in the research of AP propagation on cardiac muscle 
[17], while for synaptic integration, the main trouble is the 
high calculation cost of the cable model during the imple-
mentation of finite element analysis. It is noteworthy that 
the dimensionless dynamical system model reflecting the 
changing characteristics of membrane potential has been 
proposed [18], and such models can spontaneously simulate 
the active features of membrane. Besides, based on the 
chemical kinetics of ion channels, Destexhe et al. [19,20] 
proposed that postsynaptic responses can be expressed by 
Markov models. These two models are able to reduce the 
calculation cost to a large extent; consequently, by means of 
combining existent research results, this paper aims at es-
tablishing a highly efficient computational model that can 
be used to describe the active postsynaptic responses of I a 
afferents, and laying a foundation for the further research of 
synaptic integration and the frequency-regulating feedback 

mechanism of motoneurons. 

1  The synapse of I a afferent nerve 

The synapse of I a afferent nerve belongs to chemical type, 
whose structure is shown in Figure 1. After APs fired by the 
afferent nerve arrive at presynaptic membrane, the volt-
age-sensitive Ca2+ channels on which will open when sens-
ing the rise of membrane potential, and presynaptic Ca2+ 
concentration ([Ca2+]) will increase. The vesicles containing 
neurotransmitter reside at the presynaptic active zone, and 
when Ca2+ binds with relevant protein complexes (x), their 
activated state (x*) will be formed. These proteins further 
combine with the vesicles, causing them to exocytose, and 
neurotransmitter can be released [21]. For the synapses of 
Ⅰa afferents, the main type of neurotransmitter is glutamate 
[7], and postsynaptic membrane is densely occupied by ion-
otropic receptors and metabotropic receptors (also called 
second-messenger type receptors) that can receive gluta-
mate transmitter. Ionotropic receptor directly opens the ion 
channel coupled to it after binding with transmitter, and let 
Na+, K+ and Ca2+ pass through the membrane, thus it domi-
nates the rapid transmission of synaptic signal. Metabo-
tropic receptor mainly contributes to the slow and long term 
regulation of postsynaptic responses, while for the feedback 
activities of motoneurons during normal operation of mus-
cle, the instantaneous dynamic response is more significant, 
so this paper only deals with ionotropic receptors. On the 
other hand, ionotropic receptors can be classified into two 
categories according to the types of transmitter that they 
receive [7]: one category is called N-methyl-D-aspartate 
(NMDA) receptor, i.e. this kind of receptors bind with 
NMDA-type transmitter to open, and the other class is 
non-NMDA receptor. These two types of receptors coexist 
in the synapses of motoneurons; therefore the excitatory 
postsynaptic current during rapid signaling is the superposi-
tion of their respective currents. It should be noted that the 
exocytosis of vesicles requires the increase of presynaptic  
 
 

 

Figure 1  The structure of chemical synapses. 
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[Ca2+], which is caused by presynaptic depolarization. We 
see that for chemical synapses, there always exists a cycle 
in which presynaptic potential induces postsynaptic current, 
which is transferred into presynaptic potential again, and 
thus, it is necessary to build a dynamic model for membrane 
potential first. 

2  The dynamical system model for membrane 
potential 

Since the generation mechanism of AP was discovered, 
several kinds of mathematical models describing the dy-
namical features of membrane potential have been proposed. 
The earliest systematic and quantitative researches on AP 
were conducted by Hodgkin and Huxley [22], who con-
cluded the coupling relationships among membrane poten-
tial, channel conductance and time based on the chemical 
characteristics of ion channels, and the resultant model was 
named as the H-H model. This model succeeded in the dy-
namic description of membrane potential, however, the H-H 
model includes 4 state variables, and the computation in-
volves 4 coupled differential equations. The passive cable 
model is similar to the H-H model for that it belongs to 
electrical models as well. Although the variables in the ca-
ble model is fewer, solving temporal and spatial coupled 
parabolic partial differential equations is needed [12]; as a 
result, electrical models are not suitable for the calculation 
of complex activities of neurons. As previously mentioned, 
in order to elaborately analyze the mechanisms of synaptic 
integration, a model aimed at complicated finite element 
computation should be proposed. FitzHugh [18] proposed a 
dynamical system model (the FitzHugh-Nagumo model) 
composed of two differential equations, which can both 
represent the main time-domain features of AP and consid-
erably reduce the complexity of computation. Besides, 
Hindmarsh and Rose [23] corrected the defect that the 
FitzHugh-Nagumo model is not capable of reasonably re-
flecting the relation between AP frequency and control cur-
rent (f-I relation). Another advantage of dynamical system 
models is that computation can be carried out dimension-
lessly, degrading the requirements on temporal and spatial 
iteration steps. This paper adopts the structure of the Hind-
marsh-Rose model to implement the real-time calculation of 
membrane potential, and the model can be described by two 
coupled differential equations: 

 
[ ( ) ],

[ ( ) exp( ) ],

x a f x y z

y b f x q rx s y

   
    




 (1) 

where f(x) = cx3 + dx2 + ex + h. The membrane potential is 
denoted by x, and y represents the natural current across the 
membrane, z can be regarded as the stimulation current (in-
jection current), while other parameters are all constant. If 
setting the two equalities in eq. (1) to zero, the fixed point 

of the system corresponding to the resting state of mem-
brane can be obtained. Although the calculation of eq. (1) 
can be dimensionless, and the fixed point can be freely 
chosen from the perspective of mathematics, here we let y 
and z be zero and x be negative when the system is at equi-
librium (with no stimulation current and net membrane cur-
rent, resting potential negative), so that the system is con-
sistent with the actual physiological features of membrane. 
Thus, at equilibrium, the system can be written as 
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where xep is the x-coordinate of the fixed point, so we have 
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In order to assure the resting potential being negative, 
there must be s < q. The parameters of the two equalities in 
eq. (2) can be decided independently, and finally we chose 
the dimensionless resting potential as about 110, i.e. the 
fixed point is (110, 0), and the parameters of the system in 
this case are listed in Table 1. If we iterate the system with 
the 4th order Runge-Kutta method, the phase portrait of the 
system (z=10) can be drawn as shown in Figure 2(a), in 
which the dashed lines characterize the x- and y-nullclines. 
The state of the system will go through a periodic orbit 
when it deviates from the fixed point, and this corresponds 
to the reciprocating change of the membrane potential when 
AP train occurs (Figure 2(b)). Furthermore, it can be noted 
from eq. (1) that the parameters a and b determine the 
changing rates of x and y, respectively. Due to the rapid 
change of x and the slower change of y, the system is very 
sensitive to b. We see from the second equality of eq. (1) 
that the parameter b actually decides the changing rate of 
membrane currents, and thereby b can be considered as 
corresponding to the densities of Na/K/Ca channels on the 
membrane, i.e. under the same injection current, the firing 
rate of AP should be positively correlated to the value of b. 
Figure 3(a) shows the frequencies of AP when b is 30, 60 
and 90, respectively, with the same injection current (z=10). 
It must be noted that if b is simply fixed, we are actually 
adjusting the densities of all the types of channels simulta-
neously, while during the practical application of the model, 
sometimes only one of these densities need to be changed.  

Table 1  Parameters in the dynamical system model of the membrane 

Parameter Value Parameter Value 

a  4×103 h 14.297 

b 30 q 1.464×103  

c 1.7×104 r 1×101 

d   2×102 s 2.4×102 

e   1×102   
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Figure 2  (a) The phase portrait of the dynamical system; (b) the 
time-domain feature of variable x. 

For a certain membrane domain, the number of K+ channels 
relative to that of Na+/Ca+ channels determines the amplitude, 
duration and frequency of AP [24], therefore the parameter 
characterizing the density of K+ channels needs to be sepa-
rated. As for the total membrane current, Na+ channels and 
Ca+ channels mainly contribute to the rising phase of the cur-
rent, while its falling phase attributes to the effect of K+ 
channels [22], so when 0y  , ( ) exp( ) .f x q rx s y     

We see that the value of y is under its nullcline when the 
current is increasing. The value of b in this case corresponds 
to the densities of Na+/Ca+ channels, and we denote it as b1. 
When 0y  , ( ) exp( ) .f x q rx s y     

This implies when the current is decreasing, y is above its 
own nullcline, and now b corresponds to the density of K+ 
channels, which is denoted by b2. Hence, the non-uniform 
distribution of channel densities can be simulated via ad-
justing the values of b1 and b2 in different domains of the 
membrane. Furthermore, if defining λ = b1/ b2, the density 
ratio of Na/K channels is represented by λ. We take b1 = 30 
and z = 12, and then Figure 3(b) shows the comparisons of 
the time-domain properties of a single AP and the frequen-
cies of AP trains when λ = 1 and λ = 30, respectively. It can 
be checked that with the increase of λ, the amplitude, dura-
tion, as well as the frequency of AP will all grow in re-
sponse, and this feature coincides with the electrophysio-
logical principles of membrane. 

 

Figure 3  (a) The effect of b on the frequency of AP; (b) the effect of λ on 
the features of AP. 

Identifying the physical meaning of b is significant to the 
research on the frequency-regulating feedback mechanism 
of neurons, for the reason that the channel densities at dif-
ferent locations of a neuron may differ a lot, forming the 
unique function of information modulation [24]. In the rest 
part of this paper, if not particularly specified, the parameter 
b corresponds to the situation where λ = 1. One extra thing 
that is worth noting is that the dynamical system model 
represented by eq. (1) characterizes the response of a closed 
membrane domain to the injection current, while for an 
open domain, the diffusion effect of the charges inside the 
membrane should be considered. 

On the other hand, according to Figure 2(b), when AP is 
induced, the peak value of x is about 18, corresponding to 
the real spike of AP (40 mV), while at equilibrium the value 
of x (110) corresponds to the resting potential (65 
mV),and therefore the transformation between the dimen-
sionless voltage Vdim and the real voltage VmV in the unit of 
mV can be obtained as 

 dim mV ,k V V     (4) 

where the ratio constant k = 0.82, and ∆ = 25.24. In the 
same way, if we match the dimensionless time with physical 
time, the model can be applied to the firing behavior analy-
sis of neurons in different frequency domains. 

3  The kinetic model for postsynaptic receptors 

As shown in Figure 1, the open of the ionotropic receptors 
on the postsynaptic membrane requires their binding with 
corresponding transmitter, and the receptors will experience 
the states of close and/or desensitization. The transition 
rates between these states may depend on the surrounding 
transmitter concentration. Markov models can be used to 
describe chemical kinetic systems whose transition rates do 
not vary with time, and relevant studies [25] have shown 
that, Markov models can provide reasonable descriptions 
for ligand-gated ion channels like postsynaptic receptors. 
Besides, the open fraction of the receptors is directly related 
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to the transmitter concentration in the synaptic gap, while 
the release quantity of transmitter is determined by presyn-
aptic [Ca2+], so if we build the model according to the 
physiological open process of the receptors, the relations 
between presynaptic [Ca2+] and ion currents, the dynamic 
recycling process of Ca2+ by ionic pumps, the activation 
process of Ca2+ binding protein complex, as well as the re-
leasing and recycling kinetics of transmitter [20] should all 
be taken into account. In this way too many state variables 
and differential equations are involved; thus, it is very dif-
ficult to get a kinetic model of receptors for complex com-
putation and whole cell simulation from the perspective of 
detailed physiology. There has been detailed modeling for 
postsynaptic responses via Markov models with 6 state var-
iables to describe the open fraction of receptors [26]; how-
ever, Destexhe et al. [20] found that a 3-state Markov model 
is enough to grasp the main features of the open kinetics via 
comparisons between computational results and experi-
mental data, and the dependence of transition rates on 
transmitter concentrations can be simplified into a piece-
wise pulse function. Therefore this paper describes the open 
kinetics of receptors with 3-state models. 

3.1  Non-NMDA receptors 

The 3-state Markov model for non-NMDA receptors is 
shown in Figure 4, where C, O and D characterize the states 
of close, open and desensitization respectively, and the 
transition rates are denoted by ri (i = 1, 2, 3, 5), in which r1 
is the function of transmitter concentration [T]. We assume 
that [T] is a pulse function with the pulse width of 1 ms. 
When an AP train occurs at the presynaptic membrane, if 
the membrane potential exceeds 0 mV at the rising phase of 
AP, [T] = 1 mM, and it returns to zero after 1 ms [20]. Thus 
r1 is a piecewise function with each segment constant, and 
the advantage is that the analytical solutions of the time- 
varying open fraction of receptors can be obtained. 

The presynaptic AP train can be generated by the dy-
namical system model illustrated in eq. (1). Let the dimen-
sionless time 0.004 correspond to 1 ms, then we can cali-
brate that the dimensionless injection current needed for 
producing an AP train of 20 Hz is z = 12, and the real stim-
ulus is about 0.1 nA according to experimental data [26]. So 
the relation between the dimensionless time tdim and the 
physical time treal in the unit of s is  

 t dim real ,k t t    (5) 

where kt = 0.25. The relation between the dimensionless  

 

 

Figure 4  The Markov model for non-NMDA receptors. 

current Idim and the real current Ireal in the unit of nA can be 
listed as 

 I dim real ,k I I   (6) 

where kI = 8.33×103. When [T] = 1 mM, the solution of the 
Markov model in Figure 4 can be written as 
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where O denotes the open fraction, and D is the desensitiza-
tion fraction. The time when [T] changes is denoted by t0, 
and the parameters involved are as follows: 
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where O0 and D0 are the initial values of the open fraction 
and desensitization fraction, and we have α = r1r2r3, β = 
r1, γ = r3, and δ = r5. When [T] = 0, the solution is  
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By adjusting the transition rates between states in the 
model, it can be applied to the descriptions of the open ki-
netics of different non-NMDA receptors. 

3.2  NMDA receptors 

The activation properties of NMDA receptors are distinct 
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from that of non-NMDA ones, because their open and de-
sensitization rates are both slower. The corresponding 
Markov model is shown in Figure 5, from which we see that 
for NMDA receptors, the open state can only turn into the 
closed state instead of the desensitization state, which, on 
the contrary, can be transferred into both the open and 
closed states. The transition rates are still ri (i = 2, 4, 5, 6), 
in which r6 depends on [T], which is the same pulse func-
tion defined above. When [T] = 1 mM, the form of the solu-
tion of the Markov model in Figure 5 is the same as that 
presented in eq. (7), except that O∞ and D∞	become 
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where α = r2, β = r4, γ = r6, and δ = r4r5r6. When [T] 
= 0, the solution becomes 
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4  The model for postsynaptic responses 

The open kinetics of non-NMDA and NMDA receptors 
directly influence the postsynaptic responses, i.e. the excit-
atory postsynaptic current (EPSC) and the excitatory 
postsynaptic potential (EPSP). For the postsynaptic neuron, 
EPSC is equivalent to the injection current z in eq. (1), and 
EPSP corresponds to x. With a certain total conductance of 
postsynaptic receptors, the instantaneous value of EPSC is 
decided by the present EPSP based on the Ohm’s law. 
However, according to eq. (1), EPSP is also dynamically 
influenced by EPSC, so these two quantities need to be iter-
ated in a coupled way during computation. On the other 
hand, based on the superposition principle of currents, 
EPSC is composed of the currents of non-NMDA and 
NMDA receptors, and remarkable differences exist in their 
magnitudes and modulation factors. 

 

Figure 5  The Markov model of NMDA receptors. 

4.1  EPSC 

(i) The current of non-NMDA receptors.  At physiological 
conditions, the behavior of non-NMDA receptors can only 
be modulated by transmitter concentration; thereby the 
EPSC can be calculated as 

 n n n rev( ),I g O E E     (10) 

where In is the non-NMDA current, and ng  is the 

maximum conductance of receptors. From the physiological 
data [7], the single channel conductance of non-NMDA 
receptors is far less than 20 pS, while the maximum 
postsynaptic conductance is about ng = 0.4 nS. The open 

fraction is represented by On, E is the postsynaptic potential, 
and the reversal potential (equilibrium potential) is denoted 
by Erev. For glutamate ionotropic receptors, Erev = 0. 

Non-NMDA current is dominant in EPSC [27], especial-
ly at the initial increasing stage of the current. However, 
non-NMDA receptors desensitize rapidly, and thus their 
currents decay very fast under the repetitive stimulations of 
the AP train. In order to match the non-NMDA current gen-
erated by the model with experimental results, the transition 
rates of the model shown in Figure 4 are chosen as listed in 
Table 2. Assume that the frequency of the presynaptic AP 
train is 20 Hz, then its waveform can be calculated with eq. 
(1) (Figure 6(a)), and the pulse train of [T] generated by the 
model is shown in Figure 6(b). The response of non-NMDA 
current can be further obtained with eqs. (7) and (8) (Figure 
6(c), thin solid line). Note that the excitatory current (in-
ward current) is defined negative. Figure 6(c) shows that the 
amplitudes of the current as well as the open fraction are 
higher under the stimulations of the first 2–3 pulses, while 
they decay rapidly and approach the steady state. This result 
is consistent with the relevant voltage-clamp experiments 
on postsynaptic membrane [20]. 

(ii) The current of NMDA receptors.  The modulation 
process of NMDA receptors is much more complicated than 
that of non-NMDA receptors, for that their open process is 
affected by 3 factors: the transmitter concentration, 
postsynaptic potential and extracellular [Mg2+]. When the 
membrane is at the vicinity of the resting potential, the  

Table 2  The transition rates in the Markov models of non-NMDA and NMDA receptors 

Receptor type r1 (s
1 mM1) r2 (s

1) r3 (s
1) r4 (s

1) r5 (s
1) r6 (s

1 mM1) 

Non-NMDA 1000 10 50 – 2 – 

NMDA – 6.9 – 160 4.7 190 
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pores of the ion channels of NMDA receptors are occupied 
by Mg2+ [7]; consequently, even if the receptors are bound 
with neurotransmitter, the channels remain closed. These 
channels can be opened only if the depolarization of the 
postsynaptic membrane occurs, and Mg2+ leaves the pores 
under the effect of electromotive force across the membrane. 
Thus, when calculating NMDA current, a function related to 
membrane potential and extracellular [Mg2+] needs to be 
introduced [28]: 

 
o

1
,

1 ([Mg] / 3.57)exp( 0.062 )
G

E


 
 (11) 

where [Mg]o denotes the extracellular [Mg2+], which can be 
regarded as constant at physiological state: [Mg]o = 1 mM. 
E is the membrane potential in mV, so the NMDA current 
IN can be written as 

 N N N rev( ),I g G O E E      (12) 

where the meaning of E stays the same, and the reversal 
potential Erev = 0. The maximum conductance of NMDA 
receptors is denoted by Ng , and the single channel con-

ductance is about 50 pS [7]. Compared with non-NMDA 
receptors, the conductivity of NMDA receptors is larger, 
because they allow Ca2+ to pass besides Na+ and K+. How-
ever, experiments show that the contribution of NMDA 
current to EPSC is very small [27], and it only takes effect 
during the late components of EPSC for rapid signaling. 
Therefore, the number of NMDA receptors on the postsyn-
aptic membrane is much smaller than that of non-NMDA 
ones. If setting their density ratio per unit area to be 1:100, 
we have Ng = 0.5 nS. In the CNS, the main function of 

NMDA receptors is to generate long-term potentiation (LTP) 
effect [29], while for Ⅰa afferents of muscle spindles, our 
purpose is to investigate the fast dynamic responses, i.e. the 
LTP effect will not be considered in this paper. 

 

 

 

Figure 6  (a) Presynaptic AP train; (b) transmitter concentration [T]; (c) 
the summed EPSC, NMDA and non-NMDA currents. 

The transition rates involved in the model of NMDA re-
ceptors are also listed in Table 2. The presynaptic stimulus 
is the same as previously described, and the NMDA current 
can be computed with eqs. (7) and (9), as shown in Figure 
6(c) (dashed line). The total EPSC is formed by the summa-
tion of the non-NMDA and NMDA currents (Figure 6(c), 
bold solid line), from which we see that EPSC faithfully 
reserves the frequency information of presynaptic AP. If 
comparing the total current with the NMDA current, it is 
easy to find that at the rising stage of the current, NMDA 
current imposes little effect, while at the falling phase, it 
contributes to the tail current of EPSC. Moreover, after re-
petitive stimulations, NMDA current gradually becomes 
remarkable and stable, consistent with experimental phe-
nomena [27]. 

4.2  EPSP 

EPSP refers to the depolarization responses of dendrites or 
the soma under the effect of EPSC. As mentioned above, 
due to the active properties of dendrites, EPSP can differ a 
lot from that in passive conditions where EPSP rapidly at-
tenuate with the increasing distance from the synapse, while 
for active dendrites, the amplitude of EPSP can keep con-
stant or even be amplified [14] during its propagation. The 
dynamical system model can conveniently simulate the ac-
tive features of the membrane, so if we take EPSC as the 
injection current z, the model represented by eq. (1) can still 
be applied to the calculation of EPSP. For the fact that a 
single excitatory synapse can only depolarize the postsyn-
aptic membrane by less than 1 mV, and compared with the 
axon, the Na/K channel densities of the postsynaptic mem-
brane are 40 folds lower [24], as a result, the parameter b 
needs to be re-adjusted so as to reflect the actual physiolog-
ical characteristics of the membrane, and we take b = 30/40 
= 0.75. On the other hand, Figure 6(c) shows that after 
repetitive stimulations by the presynaptic AP train, EPSC 
becomes stable, and this is equivalent to a constant average 
injection current Ii. As discussed previously, eq. (1) 
represents the response of a closed membrane domain to the 
injection current; therefore at the steady state, the variation 
of the charge inside postsynaptic membrane can be denoted 
as 

 i 0 ,Q I t Q     (13) 

where Q0 is the initial charge. The instantaneous membrane 
potential is proportional to the difference of the positive 
charge densities across the membrane [4], so the mean 
postsynaptic potential U  can be expressed as 

 c 0 c i 0( / ) ( / ) ,U k Q V k V I t C     (14) 

where kc is a constant ratio, V is the effective volume of the 
closed membrane domain, and the extracellular charge 
density is denoted by ρ0, which can be assumed constant. C0  
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is also a constant, and C0 = (kc/V) Q0  kcρ0. Eq. (14) shows 
that when EPSC reaches the steady state, EPSP will linearly 
grow with time due to charge accumulation. However, un-
der actual physiological conditions, the charge injected into 
the postsynaptic membrane will diffuse to farther regions, 
and when the steady state is achieved, there should be no 
net current in the finite volume of postsynaptic region, i.e. 
the equilibrium between the injected current and diffusing 
current is reached. Thus, when computing EPSP, the steady 
state mean current Ii needs to be removed so as to match 
with the real situation. The variation of EPSP can be ob-
tained by substituting the resultant EPSC into eq. (1), as 
shown in Figure 7. Figure 7(a) and (b) separately show the 
comparisons between the computed EPSP and experimental 
results [30] under the presynaptic stimulus of 5 Hz and 40 
Hz. It should be noted that the experimental EPSP in Figure 
7 was measured at the soma, and the amplitude attained 
several milli-volts, which implied that EPSP was amplified 
during its propagation from dendrites to the soma [31]. In 
order to better verify the model, we magnify the theoretical 
EPSP by the same extent, and it is clear that the dynamic 
features presented by the simulation results are consistent 
with that of actual cases. Furthermore, experimental re-
searches have revealed that the decay rate of EPSP under 
high-frequency stimulus is larger than that stimulated by 
lower frequency [30], and by comparing the results of 5 Hz 
and 40 Hz, we see that our model faithfully represented 
such dynamical features as well. 

On the other hand, relevant researches show that the 
steady state amplitudes of EPSP (like the last two EPSP 

spikes in Figure 7(a)) depend on the frequency of presynap-
tic stimulus, i.e. the higher the frequency, the lower the 
steady state amplitude, which decays exponentially as the 
general trend, and this effect is called the redistribution of 
synaptic efficacy [30]. For the model in this paper, if we 
investigate the EPSP under different stimulus frequencies 
and denote the steady state EPSP as EPSPst, the relation 
between the frequency f and the EPSPst can be obtained as 
shown in Figure 8(a), in which the data can indeed be ex-
pressed by an exponential function, and the trend is the 
same as that of experimental results. Thus the effectiveness 
of the model has been further verified, and the fit function 
for the curve in Figure 8(a) is  

 st 1 2 3EPSP exp( ) ,c c f c    (15) 

where c1 = 3.376, c2 = 0.152, c3 = 64.36. Figure 8(b) 
shows the variation trend of EPSPst with λ when b1 and b2 
are respectively fixed at 0.75, under the presynaptic stimu-
lus of 20 Hz. We see that EPSPst almost does not vary with 
λ when b1 is fixed, while when b2 is fixed, EPSPst approxi-
mately grows linearly with the increasing λ. As previously 
discussed, for the reason that b1 mainly characterizes the 
density of Na+ channel, and b2 represents the density of K+ 
channel, therefore under the stimulation of constant fre-
quency, the amplitude of EPSPst is dominated by the value 
of b1, while b2 is mainly responsible for the kinetics of the 
decreasing phase of EPSP. In other words, different chang-
ing modes of λ will lead to distinct influences on EPSPst, 
and this is consistent with the principles of depolarization 
response of the membrane.  

 
 

 

Figure 7  The comparisons between theoretical and experimental EPSP. (a) 5 Hz; (b) 40 Hz. 
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Figure 8  (a) The relation between EPSPst and f; (b) the relation between 
EPSPst and λ when b1 and b2 are fixed respectively. 

5  Discussion 

By introducing the dynamical system modeling method for 
membrane potential and the Markov model for ionotropic 
receptors, this paper established a highly efficient computa-
tional model for the active postsynaptic responses (EPSC, 
EPSP) of I a afferents of muscle spindles with the combina-
tion of the advantages of these two methods. The correct-
ness and effectiveness of the model has been validated via 
comparisons with relevant experimental data. Different 
from the traditional passive cable theory, this model does 
not simply treat the membrane as a coupled structure of 
capacitors and resistors; instead, based on the intrinsic 
properties of the dynamical system, the model calculates the 
dynamic responses of the potential of a membrane region 
under the effect of the stimulating current. Particularly, we 
identified the physical meaning of relevant parameters (b, λ), 
making it possible to independently adjust the physiological 
characteristics (the densities of Na/K/Ca channels) of a cer-
tain membrane domain with these parameters, which enable 
the model to simulate the active electrophysiological fea-
tures of non-uniform membrane. Although this paper only 
involved the simulation of the potential in a closed region, 

actually if we express the injection current (z) as a diffusion 
item, the spread of the current and the interactions of the 
potential among different membrane domains can be com-
puted. Thereby, the modeling method we proposed can be 
easily applied in the finite element analysis of motoneurons, 
and the disadvantage of the electrical model which cannot 
reflect the detailed features of the membrane can be over-
come. For postsynaptic responses, we employed the simpli-
fied Markov model, which covered the main features of 
EPSC, and at the same time avoided introducing too many 
differential equations and state variables, so that the com-
putation cost can be greatly saved. When calculating EPSP, 
we combined the Markov model with the dynamical system 
model to make the model capable of simulating the active 
propagation property of the postsynaptic membrane. Thus, 
from the generation of presynaptic AP train to the response 
of EPSP, we need only to solve twice the first order system 
of differential equations (eq. (1)), and EPSC can be ob-
tained directly from the analytical expressions (eqs. (7)–(9)). 
The model can be applied to the real-time computation of 
synaptic responses, i.e. we can get the postsynaptic response 
under the presynaptic stimulus of dynamically varying fre-
quency. Moreover, despite that the calculations in this paper 
are transferred into dimensional form so as to compare with 
the experimental data, the final purpose is to extract essen-
tial mathematical rules of synaptic integration and infor-
mation processing during actual complicated computations; 
therefore the model can be completely dimensionless so that 
the calculation efficiency and the simulation scale can be 
further enhanced. 

The purpose of this paper is to lay a foundation for the 
theoretical research of the frequency-regulating feedback 
and control mechanism of motoneurons, for that the first 
link of the feedback process is the synaptic inputs of the 
afferents on motoneurons. The establishment of the model 
for the postsynaptic responses will facilitate the analysis of 
synaptic integration [32]. As mentioned above, a motoneu-
ron receives the inputs from the muscle spindle and tendon 
organ, while the model here only deals with the excitatory 
input (positive feedback) of the I a afferent of muscle spin-
dle. The tendon organ corresponds to the I b afferent, which 
produces inhibitory input (negative feedback). Consequent-
ly, in the future studies, in order to investigate the overall 
dynamic regulation principles of the firing rate of motoneu-
rons and muscle contraction by the stimulus frequency 
[33–35], the model for the responses of inhibitory synapses 
needs to be constructed, and the finite element analysis 
against the whole-cell response should be implemented. 
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