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Arsenic (As) is a metalloid toxic to organisms including humans. Arsenic in rice represents a significant exposure pathway for the 
general population, particularly for those subsisting on rice. Arsenic transformation, namely reduction, oxidation and methylation, 
in soil-rice systems has fundamental impacts on its mobility and toxicity. In addition to soil chemical properties (pH, Eh, metallic 
oxides, organic matter), microorganisms play critical roles in As transformation and mobility in paddy soil, such as through ArsM 
(As(III) S-adenosylmethyltransferase) and interactions with iron oxides or organic matters. Arsenic species in paddy soil directly 
influence As speciation in rice grain because the methylated As species in rice are mainly derived from microbial methylation in 
paddy soil. This paper aims to provide an overview on the status of the knowledge and gaps on the chemical aspects of As transfor-
mation in soil-rice system in conjunction with microbial ecology and functional genes. In addition, potential pathways (manipulation 
of microorganisms in paddy soil and genetic engineering) to decrease total As and/or inorganic As in rice grain are proposed. 
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Inorganic arsenic is classified as a well-known non-thresh- 
old carcinogen [1]. The toxicity of arsenic (As) to humans 
has been well documented and reviewed [2,3]. Numerous 
studies have reported that the increase in soil As concentra-
tion can cause an enhancement of As accumulation in rice 
grain and in turn threaten human health through food chain 
[4–8]. Rice consumption contributes a large proportion of 
inorganic As via dietary intake for those who rely on rice as 
the staple food [9–11]. The consumption of rice can con-
tribute up to 60% of inorganic As ingestion through diet in 
China [11]. In addition, many people in the United States 
are also exposed to potentially harmful levels of As through 
rice consumption [12].  

The mobility and toxicity of As in soil environment de-
pend largely on its chemical species. In addition to abiotic 
factors (pH, Eh of soils, adsorption of metallic oxides and 
organic matter (OM), etc.), it has been suggested that micro-
organisms play a major role in modulating As speciation (re-
duction, oxidation and methylation) and its mobility [13,14]. 

The rates and directions of As biotransformation in soil-plant 
systems largely depend on the microbial communities, both 
functional diversity and the expression of functional genes 
under various environmental conditions. By using molecular 
tools, it is now possible to unravel the microbial processes in 
the soil that governs the fate and toxicity of As. 

Understanding the speciation and bioavailability of As in 
contaminated soils affected by microorganisms is also nec-
essary for reducing total As and/or inorganic As in rice 
grains. Herein, we review the microbial effects on the fate 
of As in paddy soil-rice systems in conjunction with soil 
chemical properties, discuss further research needs and 
propose some potential mitigation strategies of As accumu-
lation in rice grains through manipulating microbial activi-
ties and/or communities. 

1  Arsenic species in paddy soil 

Arsenic exists primarily as inorganic arsenate (As(V)) and 
arsenite (As(III)) in paddy soil [15]. Organic As such as 
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monomethylarsonic acid (MMA), dimethylarsinic acid 
(DMA) and trimethylarsine (TMA) which may have been 
derived from microbial and algal biomethylation could also 
be present in paddy soils as a minor component [14,16].  

The behavior and fate of As in soil environment depend 
largely on its speciation, different As species vary greatly in 
their toxicity to organisms. Inorganic As species As(V) and 
As(III) are generally considered to be more toxic than or-
ganic species for many organisms [4]. Arsenite is more mo-
bile and toxic than As(V) [17] because it is neutral under 
normal environmental conditions and therefore poor ad-
sorption on soil particles [18]. Trimethylarsine (TMA) is 
volatilizable and thought to be nontoxic [19,20].  

2  Abiotic factors influencing the speciation and 
mobility of arsenic  

The proportion of As(III) and As(V) in soils depends mostly 
on soil chemical conditions including the redox potential 
(Eh) and pH. Arsenic, with As(V) being the stable form in 
well-aerated soils shows a low solubility [21], because 
As(V) is strongly adsorbed on most mineral constituents 
such as iron or aluminum (hydr)oxides and aluminosilicates 
[22] (Figure 1). Under reducing conditions (paddy soil), 
oxygen is depleted since oxygen diffusion in water is four 
orders of magnitude lower than those in air [23–25]. Arse-
nate is reduced to As(III) readily, becoming the dominant 
form [26–28], and As becomes more mobile in soil solution 
due to the increased concentration of As(III). Ferric 

(hydr)oxide undergoes reductive dissolution under anaero-
bic conditions, this process also causes As release from soils 
or iron oxide minerals [29,30]. Redox reactions in soils are 
mainly controlled by microbial activities [31]. Microbial 
reduction processes in the soil is accompanied by changes 
in the pH: A pH increase in acid soils due to consumption of 
protons and a pH decrease in alkaline soils due to increasing 
pressure of CO2 (PCO2) can be observed after flooding [32]. 
Yu and Patrick [33] suggested that redox changes from 59 
to 177 mV are accompanied by pH changes of 1 unit de-
pending on soil properties. In addition, a rise in soil pH gen-
erally causes a release of anions such as As(V) from their 
adsorption sites. As pH increases, the number of positively 
charged sites on minerals decreases, which lowers the sorp-
tion capacity of negatively charged oxy-anions of As [34,35].  

The mobility of As in soils depends largely on the reten-
tion and release along the surfaces of iron, manganese, and 
aluminum oxides or hydroxides [22,36,37]. Iron oxide is 
believed to be the dominant factor controlling the bioavail-
ability and mobility of As in the soil [38]. In paddy soil un-
der flooding conditions, ferric iron is reduced to ferrous iron, 
and As sequestrated on iron oxide is then released to soil 
pore water [29,30]. This is in fact one of the key reasons 
why rice often contains much higher As than upland crops 
[7]. In addition, re-crystallization of ferrous iron to more 
stable phases could trap As again [39,40] (Figure 1). 

Organic matter (OM) additions can mobilize As in soils. 
The release of As was observed in soils after the application 
of organic matter [41,42]. Many functional groups such as 
COOH, phenol, catechol and OH on OM surface result in a  

 

 

Figure 1  Arsenic mobilization and transformation drove by microorganisms in flooded paddy soil. Arrows with solid and broken lines indicate dominant 
and minor processes, respectively. 
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strong affinity of OM with metal oxides, thus OM can 
compete with As for adsorption sites of metal oxides [43]. It 
was reported that dissolved organic carbon (DOC) played a 
dominant role in As solid-solution phase partitioning in 
paddy soil [44].  

Phosphorus (P) and silicon (Si) can also influence the 
mobility of As in soils and the uptake by rice. It has been 
reviewed that the presence of phosphate adversely affects 
As(V) immobilization in soils [26]. Phosphate is an analog 
to As(V) and is the major species of P present in soils [45]. 
Phosphorus applications caused a desorption of As retained 
in soil particles [46,47]. In addition to P, Si competes with 
As(III) for binding sites on iron oxide surfaces in soils to 
influence As solubility in pore water [48,49]. Furthermore, 
because As(III) is taken up by rice roots mainly through the 
Si uptake pathway, the increase in Si concentration in soil 
solution can significantly reduce As accumulation in rice 
straw, husk and grain and even decrease the percentage of 
inorganic As in rice grain [50,51]. The fact that the domi-
nant species taken up by rice roots in paddy soils is As(III) 
leads to a considerable effect of silicon in soil solution on 
As uptake.  

3  Arsenic speciation and mobility modulated 
by microorganisms in paddy soil 

3.1  Arsenic speciation modulated by micro-organisms 

The transformations of As species in soils including oxida-
tion, reduction, methylation and volatilization, are com-
monly driven by microorganisms [52–54], and these trans-
formations were summarized in Figure 1. Most living or-
ganisms have developed As resistance mechanisms or even 
make use of As for their ordinary physiology although As is 
very toxic [55]. Microbial oxidation of As(III) is believed to 
be a detoxification mechanism of microorganisms because 
As(V) is less toxic than As(III) [55,57]. On the other hand, 
As(III) can also be as an electron donor in the process of 
bacterial metabolism. Similar to As(III) oxidation, As(V) 
reduction includes two pathways. One is the dissimilatory 
reduction where As(V) is the terminal acceptor of electrons 
in bacterial anaerobic respiration. The other is the detoxifi-
cation mechanism of microorganisms including As(V) re-
duction and As(III) efflux out from cells [55]. A recent re-
port suggested that the constant and high (more than 80%) 
As(III) proportion of total As in solution phase of paddy soil 
was attributed to microbial activity [30]. 

In addition to oxidation and reduction, methylated As can 
be formed by various aerobic and anaerobic microorgan-
isms [56]. Arsenic methylation occurring in the soil greatly 
affects the toxicity and fate of As in paddy soils (Figure 1). 
Widespread ArsM homologues in prokaryotic and eukary-
otic microorganisms can catalyze this process, and many 
methylated intermediates and trimethylarsine as the end are 
produced in this process [53,57–59]. It has been reported 

that bacteria, anaerobic archaea and halophiles in soils or 
sludges can methylate As [60–63]. Arsenic biomethylation 
has been observed in numerous cyanobacteria and algae as 
well [14,57]. Furthermore, methylcobalamin-dependent non- 
enzymatic methylation of As has been reported for numer-
ous anaerobic prokaryotes [64]. In particular, autotrophic 
sulfate-reducing bacteria as well as methanoarchaea, which 
are abundant in paddy fields [65,66], were suggested to be 
responsible for this process [63]. Methylated species of 
As(III) and volatile arsenicals were detected when the cya-
nobacteria were treated with As(III) or As(V) [57]. Micro-
organisms play a crucial role in the biogeochemical cycle of 
As especially for cyanobacteria which are ubiquitous in 
aquatic environments, including paddy soil, wetland and 
ocean [67]. Tetrahymena pyriformis, a protozoan living in 
fresh water, and possibly in paddy soils as well, could also 
methylate and even volatilize As [58,68]. All these organ-
isms are ubiquitous in the freshwater systems like paddy 
soil. Arsenic methylation is proposed to play an important 
role in As cycling among terrestrial, aquatic and atmos-
pheric environments [69,70]. 

3.2  Interactions of microorganisms with organic matters 

The application of OM (as exogenous nutrition) stimulates 
the growth of various indigenous microorganisms, including 
As methylaters which facilitate As methylation and volati-
lization from soil, and the “volatilization ability” varied 
between the types of organic matters [13,20]. As mentioned 
above, the addition of organic matters will enhance the mo-
bilization of As thus increasing its bioavailability for meth-
ylaters, and favoring methylation processes. In addition, 
OM amendment changes the physicochemical properties 
(such as pH, Eh) of paddy soils, which can also affect com-
munities and activities of microorganisms, further influence 
As methylation and subsequent volatilization [13]. It was 
reported that pH changes can influence the microbial process 
to affect As methylation or volatilization: a decrease in soil 
pH enhanced microbial-mediated As volatilization [71]. On 
the other hand, dissolved organic matter (DOM) also works 
as a labile substrate for iron reducing bacteria and as an elec-
tron shuttle to enhance microbial iron reduction resulting in 
the release of As adsorbed on iron oxides [72,73]. 

3.3  Interactions of microorganisms with iron oxides  

(1) In bulk soil.  Microbial activities and diversities play 
critical roles in As mobilization through influencing iron 
oxidation and reduction [29] (Figure 1). Paddy soils have a 
unique characteristic of periodical alternations between an-
oxic and oxic conditions, providing ferric iron-reducing 
bacteria with abundant electron acceptors and decomposi-
tion of organic matter for growth [74]. So it can be assumed 
that dissimilatory iron-reducing bacteria are abundant in 
paddy soils. Dissimilatory iron-reducing consortia in As- 
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contaminated paddy soils are phylogenetically diverse [75]. 
Decreasing activities or abundance of iron-reducing bacteria 
may cause less ferrous iron and more ferric oxides existing 
in soils and thus immobilization of As. 

In addition, nitrate-dependent ferrous iron oxidizing mi-
croorganisms which can oxidize ferrous iron under flooding 
conditions were also found in paddy soils [76]. Nitrate-  
dependent ferrous oxidation may lead to more As co-pre- 
cipitation with, or adsorption to ferric minerals in the soil to 
reduce As bioavailability and thus uptake by rice plants [77] 
(Figure 1). This is an essential pathway to manipulate As in 
soil-rice systems through regulating anaerobic iron oxidiz-
ing bacteria. However, it is still at the beginning in capital-
izing this option, as little is known about the microbial 
community responsible for iron oxidation and also its diver-
sity and population dynamics in relation to environmental 
conditions.  

(2) In rhizosphere soil.  Different from the bulk soil, 
wetland plant such as rice release oxygen and oxidants from 
the root into the rhizosphere, ferrous iron is then oxidized to 
ferric iron and deposits on root surface forming iron plaque 
[78]. Iron plaque is an important biogeochemical compo-
nent in soil-rice systems affecting the uptake of As by rice 
plant [79,80] (Figure 1). Because it has a high capacity to 
sequestrate As due to high specific surface area of iron 
(oxyhydr)oxides and co-precipitation of As with ferric iron 
[81]. Synchrotron-based analysis of root iron plaque re-
vealed that As in iron plaque was sequestered mainly with 
amorphous and crystalline iron (oxyhydr)oxides, and that 
As(V) was the predominant species [81]. The amount of 
iron plaque is significantly affected by the aerenchyma tis-
sue and radial oxygen loss (ROL) by root [82]. It was indi-
cated that iron plaque increased and As concentration in rice 
grains decreased significantly with increasing ROL [82,83]. 
Developed aerenchyma tissue in root could significantly 
restrain As in root and then reduce As accumulation in rice 
shoot [83]. It has also been shown that iron plaque on rice 
root has higher affinity to As(V) than to As(III), and iron 
plaque may even enhance As(III) uptake by rice [84,79]. 
Overall, iron plaque may act as a ‘buffer’ for As(V) in the 
rhizosphere.  

Arsenate has much higher affinity for iron oxide as 
compared to As(III), therefore As(V) is much less mobile 
than As(III) in the soil, implying that the oxidation of As(III) 
is likely to reduce As uptake by rice [79,81]. As mentioned 
above, dominant As on iron plaque is As(V), indicating the 
occurrence of As(III) oxidation in the rhizosphere, but the 
microbial-mediated As(III) oxidation in soil is largely un-
known. Bacterial As(III) oxidase genes are phylogenetically 
diverse and ecologically widespread [85]. Microbial oxida-
tion of As(III) to As(V) occur under both aerobic and an-
aerobic soil conditions, which significantly enhance the 
immobilization of As in the soils, due to the fact that As(V) 
can more easily co-precipitate with ferric iron or be ad-
sorbed by ferrihydrite [86]. In the rhizosphere soil, it re-

mains unclear whether the activity of As(III) oxidizing bac-
teria (expression of aroA-like gene [85]) is elevated by the 
root exudates or the oxygen released from the rice roots to 
result in more As(V) binding on iron minerals in soil and 
iron plaque on rice roots, thus to reduce the bioavailability 
of As to rice roots. 

Moreover, abundant iron reducing bacteria also exist in 
rice rhizosphere, these reducing bacteria improved the re-
duction rates of ferric iron in the rhizosphere [87], and then 
accelerate the release of As retained in iron plaque to soil 
solution. Ferric reducing bacteria account for about 12% of 
total bacteria cells in the rhizosphere comparing with only 
<1% in the bulk soil [88].  

Ferric iron reduction is a widespread trait of members of 
the archaea as well [89–91]. Slobodkin et al. [89] isolated 
thermophilic anaerobic archaea from petroleum reservoirs, 
which was capable of dissimilatory ferric iron reduction. 
Hori et al. [92] demonstrated the involvement of archaea in 
ferric iron reduction in rice paddy soil by 13C-acetate prob-
ing. Abundance of archaea with ferric iron reduction was 
low and ferric iron reduction by archaea would not be an 
important process.  

Arbuscular mycorrhizal fungi (AMF) can form symbiosis 
with rice roots [93], and can enhance As tolerance and de-
crease the ratio of grain/straw As concentration of rice 
plants [94]. Mycorrhizal inoculation could reduce the up-
take of As(V), As(III) and MMA by rice plants. It was like-
ly that mycorrhizal roots released some signaling molecules 
to down-regulate the expression of Si transporter Lsi1 (Os-
NIP2;1 aquaporin) or combine with Lsi1 as a substrate [95], 
but requires further investigations. 

Oxidizing/reducing bacteria in rice rhizosphere and their 
interactions with iron plaque corporately influence As spe-
ciation and mobility and thus rice uptake. Symbiotic AMF 
also affects As uptake by rice. Manipulation of related mi-
crobial communities or activities is an optional pathway 
which influences As mobility in rice rhizosphere. 

4  Dissolution of iron plaque and arsenic release 

Once rice is harvested, rice root may be subjected to anaer-
obic decomposition, and As sequestrated by iron plaque 
maybe released and become As hot spot for the subsequent 
crops (rice or other crop plants). In addition, root turnover 
during the entire growth period of rice plant can be fast, and 
dead root can also be hot spot of As release. It is therefore 
very important for the dissolution of iron plaque to the re-
lease of As from iron plaque into soils. The dynamics of As 
mobilization after rice harvest has been evaluated recently 
by microcosm experiments and the results suggested that As 
sequestrated in the iron plaque can be quickly released into 
soil solution as a result of iron reductive dissolution under 
flooded conditions [96]. Iron plaque dissolution is the main 
cause of As release and bacterial activity play crucial roles 
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in this process [29]. The quick and prominent increase in As 
concentration in soil solution after rice harvest may season-
ally affect surface and groundwater systems, which will 
raise environmental risks, and thus warrant further investi-
gation. 

5  Benefits of microbial arsenic methylation and 
volatilization 

It is clear now that methylated As species in rice plant 
(mostly in the grain) is originated from soil, where micro-
organisms are responsible for the production of methylated 
species [97,98]. DMA levels detected in the solution 
amended by MMA or As(III) with the growth of rice seed-
lings decreased dramatically after the addition of antibacte-
rial agent chloramphenicol [97]. No methylated As could be 
detected in plants (rice, tomato and red clover) cultured in a 
sterile hydroponic solution fed with inorganic As [98]. Thus, 
higher plants appears to lack the capacity of methylating 
As(III). However, methylated As can be taken up by rice 
roots and has a high translocation efficiency to grains at-
tributed to its poor -SH (sulfhydryl) coordination [99]. The 
translocation efficiency of DMA to the rice grain is over an 
order of magnitude greater than inorganic species in As-fed 
excised panicles. It is because that DMA is more mobile 
than As(III) in both the phloem and the xylem [100]. Or-
ganic As (DMA and MMA) was mainly distributed in re-
productive tissues rather than vegetative tissues. Much 
higher translocation efficiency of DMA in rice plant was 
also found than that of inorganic As. There are different 
pathways on the unloading of inorganic As and DMA in 
rice grain [101]. Inorganic As species are primarily (90%) 
translocated via the phloem, whereas DMA is translocated 
via both phloem (55%) and xylem (45%). Leaf-fed As(III) 
was not translocated to the filling rice grain but sequestered 
into leaf cell vacuoles compared with the readily mobility of 
DMA and MMA [102]. 

The increase in As methylation and volatilization directly 
enhance the proportion of methyl As in soils or reduce total 
As amount of the soil respectively. The enhancement of 
methylated As percentage in paddy soils could subsequently 
increase the methyl As proportion in rice grain to minish the 
food toxicity to rice consumers. Thus, it is of practical sig-
nificance to promote As methylation and/or volatilization 
through manipulating the activity of methylaters. 

6  The manipulation of arsenic methylation and 
volatilization 

It has been suggested that As biovolatilization from paddy 
soils contributes 0.9% to 2.6% of global As emissions. 
About 419–1252 t/year As are emitted into the atmosphere 
from paddy soils, which are 15- to 45-times higher than 

from sea spray (26.5 t/year), 3- to 10-times higher than from 
forest fires (125 t/year), even up to 240 mg ha−1 year−1 
arsines were released from paddy soils with only 11.3 
mg/kg As [20,103,104]. 

Because OM addition can significantly increase As 
methylation and volatilization from the paddy soil through 
changing abundances or activities of the bacteria capable of 
oxidization, reduction, and methylation of As [13]. It is a 
potential way that increasing organic As (decreasing inor-
ganic As) in rice grain through increasing methylated As or 
As volatilization in paddy soil. The organic matter from 
various sources exhibited large difference in inducing As 
volatilization and the mechanisms require further investiga-
tion. 

Although higher plant is believed to be unable to methyl-
ate As by itself and no gene encoding ArsM has as yet been 
identified in the genome of any higher plants, genes capable 
of As methylation widely exist in many microorganisms 
[14]. Recently, Meng et al. [105] expressed an arsM gene 
from the soil bacterium Rhodopseudomonas palustris in 
Japonica rice and then monomethylarsenate (MAs(V)) and 
dimethylarsenate (DMAs(V)) were detected successfully in 
the roots and shoots of the transgenic rice, and the trans-
genic rice could give off 10-fold greater volatile arsenicals 
than the wild type. It will be possible for engineering plants 
genetically to volatilize As or transform more inorganic As 
to less toxic methyl As in rice grain.  

Genetic engineering is a potential strategy for both phy-
toremediation (phytovolatilization) and reduction of As in 
rice grain. To maximize As volatilization or As removal 
from soil or minimize As accumulation in rice grain, more 
genes involved in As metabolism (reduction, methylation, 
efflux, etc.) need to be further identified and manipulated. 
Zhu and Rosen [106] have proposed substantial pathways 
for genetic engineering that can be manipulated for phy-
toremediation.  

7  Perspectives and conclusions 

It is now clear that As transformation is largely driven by 
microorganisms in soils in addition to chemical properties 
of the soil, the rate and direction of As transformation de-
pend on the abundance and structures of microbial commu-
nities and the expression of functional genes (responsible 
for reduction or oxidation of arsenic, iron and nitrogen, and 
also arsenic methylation). Despite the recent advances, it is 
still early to link the microbial community to actual bioge-
ochemical processes in soil-rice systems, and further infor-
mation on novel functional genes, and their expression pat-
tern is needed before we can build up predictive models to 
forecast the fate and health risks of As in this system. In this 
regard, functional metagenomics tools will play a role.  

Although higher plants can reduce As(V) to As(III), as 
far as we know they cannot methylate As(III), therefore 
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microorganisms in paddy soil, particularly in the rhizo-
sphere, play a critical role in As transformation. Some func-
tional genes can be used to characterize the relationship 
between environmental conditions, microbial community 
and As fate. Soil amendments with organic matters can 
modulate As transformation, which is mediated by soil mi-
croorganisms. The functional genes related to As methyla-
tion could also be expressed in higher plants (such as rice) 
and volatilize As through plants. Genetic engineering may 
offer the possibility of reducing the accumulation of As in 
rice grain. Nonetheless, our knowledge on the related func-
tional genes is very limited, and requires further studies, 
particularly using functional metagenomics tools.  
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