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The relationship between entransy dissipation and the irreversibility of some thermodynamic processes, such as heat transfer, 
work-heat conversion, free expansion, isothermal diffusion etc., are analyzed in this paper. The results show that there is entropy 
generation but no entransy dissipation in irreversible work-heat conversion, free expansion and isothermal diffusion. Therefore, 
entransy dissipation cannot be used to describe the irreversibility of these processes. Both entropy generation and entransy dissi-
pation exist in heat transfer process, which indicates that the entransy dissipation can be used to describe the irreversibility of heat 
transfer processes. Furthermore, the irreversibility of endoreversible cycles is analyzed. As all the irreversibility in endoreversible 
cycles is attributed to heat transfer between the heat sources and the working medium, entransy dissipation can be used to describe 
the irreversibility of this kind of cycles. To verify this conclusion, numerical examples of the endoreversible Carnot cycle are 
discussed. 
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Irreversibility is one of the common features of thermody-
namic processes in nature. For instance, mechanical work 
can be totally transformed into heat by means of rubbing in 
heat-work conversion process, but heat cannot be totally 
turned into mechanical work. In diffusion processes, two 
kinds of fluid in a mixture cannot separate from each other 
spontaneously. In heat transfer processes, heat can only be 
transferred from a high temperature object to a low temper-
ature one but cannot be transferred from a low temperature 
object to a high temperature one spontaneously. The equiv-
alence of the irreversibility of these thermodynamic pro-
cesses is proved strictly [1,2]. For these thermodynamic 
processes, the irreversibility can be described by entropy 
generation [1,3,4]. Researches show that entropy generation 
is always accompanied by irreversible thermodynamic pro-
cesses, and larger entropy generation means more irreversi-
bility of the thermodynamic process. 

In the history of science, some principles have had more 
than one expression. In thermodynamics, for instance, the 
Clausius expression and the Kelvin expression both de-
scribe the second law of thermodynamics even though the 
expressions are different. In quantum mechanics, the Schrö-
dinger equation and the matrix mechanics reveal the quan-
tum world in different ways [5]. In recent years, researches 
show that the irreversibility in heat transfer processes can be 
described by entransy dissipation besides entropy genera-
tion [6–9]. Entransy was proposed by Guo et al. [6] to de-
scribe the potential energy of heat transfer by comparing 
electricity and heat transfer. If a body has an internal energy 
U and a temperature T, its entransy is defined as [6] 

 
1

.
2

G UT  (1) 

Guo et al. [6] and Han et al. [7] analyzed the thermal equi-
librium process of two bodies with different initial temper-
ature in an isolated system. Their results show that entransy 



4092 Wang W H, et al.   Chin Sci Bull   November (2012) Vol.57 No.31 

decreases after thermal equilibrium, indicating that there is 
entransy dissipation in thermal equilibrium process. Cheng 
et al. [8] derived the relationship between entransy and mi-
crostate number, and analyzed the microstate number of 
thermal equilibrium process. The results show that the mi-
crostate number increases and the entransy decreases in 
thermal equilibrium process. Furthermore, Cheng et al. [9] 
analyzed the entransy change when a small amount of heat 
is exchanged in an isolated system based on the second law 
of thermodynamics, and proved that the entransy dissipation 
always exists in heat transfer processes. Therefore, entransy 
dissipation can describe the irreversibility of heat transfer 
processes. 

The principle of extremum entransy dissipation and the 
principle of minimum thermal resistance are developed 
based on the concept of entransy dissipation [6,10,11]. 
These principles have been applied to the optimizations of 
heat conduction [6,10–14], heat convection [6,15], thermal 
radiation [16,17], heat exchangers [18–23] and heat ex-
changer networks [24]. 

At present, the concept of entransy dissipation is mainly 
applied to the analyses of heat transfer irreversibility and 
the optimization of heat transfer processes. In addition, 
Chen et al. [25] found that the principle of extremum en-
transy dissipation is not suitable for optimizing the design 
of heat exchangers when heat is transferred for doing work. 
Taking the Carnot cycle as an example, Xu et al. [26,27] 
analyzed the entransy and entransy dissipation with 
heat-work conversion process from the second law of ther-
modynamics. Chen et al. [28] proposed the extended con-
cept of entransy, mass entransy, and developed the extre-
mum mass entransy dissipation principle, which is fit for the 
optimization of mass transfer process. Based on the concept 
of mass entransy, Xia et al. [29] discussed the optimization 
of constant-temperature mass transfer process. Cheng et al. 
[30,31] furthermore extended the concept of entransy, and 
defined some kinds of potential energies as potential en-
transy. The principles of potential entransy are obtained in 
generalized flow. However, it is still necessary to discuss 
whether entransy dissipation can describe the irreversibility 
of thermodynamic processes such as work-heat conversion 
and diffusion, etc. This paper will discuss and clarify the 
relationship between entransy dissipation and some irre-
versible processes. 

1  Irreversibility analysis of heat transfer, work- 
heat conversion, free expansion and isothermal 
diffusion processes 

From the viewpoint of thermodynamics, heat transfer, work- 
heat conversion, free expansion of ideal gas and isothermal 
diffusion processes are all irreversible. The entropy genera-
tion and the entransy dissipation of these typical irreversible 
processes are analyzed and discussed, and the relationship 

between entransy dissipation and the irreversibility of ther-
modynamic processes is obtained. 

1.1  Heat transfer process 

Let us analyze a heat transfer process in an isolated system 
without output work interaction. As shown in Figure 1, the 
isolated system is composed of two parts whose volumes 
are invariant. Their initial temperatures are T1 and T2 re-
spectively. There is a plate with ideal heat insulation be-
tween the two parts. We assume that there is no energy 
transfer between the parts before the plate is taken away. At 
the instant when the plate is removed, heat transfer starts 
between the parts. A small amount of heat Q is transferred 
from part 1 to part 2 in a certain period of time. 

In order to examine the irreversibility of heat transfer 
processes, the entropy and entransy before and after Q is 
transferred are analyzed and discussed for three cases: the 
heat capacities of the two parts are finite, the heat capacity 
of one part is infinite while that of the other one is finite, 
and the heat capacities of the two parts are both infinite. For 
the three cases, entropy generation unavoidably accompa-
nies heat transfer processes according to non-equilibrium 
thermodynamics [32], which indicates that these physical 
processes are irreversible. 

For the case that both the heat capacities of the two parts 
are finite, we assume the heat capacity and the mass of part 
1 are c1 and m1 respectively, and those of part 2 are c2 and 
m2 respectively. Cheng et al. [9] calculated the entransy 
change of the system after Q is exchanged: 

  2 1

1
2

2
G Q Q T T        , (2) 

where 1 1 2 21 1c m c m   . They proved that for sponta-

neous heat transfer process [9] 

 0G  . (3) 

It can be found that the entransy decreases during heat 
transfer process. For the case in which the heat capacities of 
both subsystems are finite, there is entransy dissipation be-
sides entropy generation in the irreversible heat transfer 
processes. 

For the second case, assume that the heat capacity of one 
part is infinite whose temperature remains constant during 
heat transfer process. The heat capacity and mass of part 1  

 

Figure 1  Heat transfer process in an isolated system. 
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are c1 and m1 respectively, and the heat capacity of part 2 is 
infinite. The temperature of part 1 after Q is transferred is 

    1 1 1 1 1 1T c m T Q c m    . (4) 

The entransy of part 1 before and after heat transfer are 

 2
1 1 1 1

1

2
G c m T , (5) 

   22
1 1 1 1 1 1 1 1 1

1 1

2 2
G c m T c m T Q c m        . (6) 

The entransy change of part 1 is 

 
2

1 1 1 1
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1

2

Q
G G G T Q

c m

      . (7) 

As the temperature of part 2 remains constant during the 
heat transfer process, entransy change is  

 2 2G T Q   . (8) 

Therefore, the entransy change of the whole system is 
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According to the second law of thermodynamics, if Q> 
0, we have 

 1 2T T , 1 2T T  . (10) 

Substituting eq. (4) into eq. (10) yields 

 1 2 1 1( )T T Q c m   . (11) 

By combining eqs. (9)–(11), we could find that eq. (9) is 
negative. There must be entransy dissipation in this irre-
versible heat transfer process. We can get the same conclu-
sion if Q<0. 

For the third case, the heat capacities of the two parts are 
both infinite and their temperatures remain constant during 
the heat transfer process. The entransy change of part 2 in 
heat transfer process can be expressed by eq. (8), while the 
entransy change of part 1 is 

 1 1G T Q    . (12) 

The entransy change of the whole isolated system is 

  1 2 2 1G G G T T Q       . (13) 

If Q>0, T1 is higher than T2 according to the second law of 
thermodynamics and eq. (13) is negative, indicating that 
there must be entransy dissipation. 

The above discussions show that irreversibility of heat 
transfer processes can also be reflected by entransy dissipa-
tion besides entropy generation.  

Entransy dissipation can be derived from the energy 
equation. For a transient heat conduction process in a cer-
tain element, the governing equation is 

 v

T
c q Q

t
 

   


 , (14) 

where ρ is density, cv is heat capacity, t is the time, q is heat 

flux, and Q  is heat source. Multiplying the equation with 

T, we can get [10] 

 v ( )
T

c T q T qT QT
t

 
    


 . (15) 

According to the Fourier’s Law and the definition of en-
transy, there is 
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  (16)

 

where  is thermal conductivity. The two terms in the 
square bracket are the net entransy from the boundaries and 
heat sources, the last term (without minus sign) is the en-
transy increment. Eq. (16) indicates that the entransy in a 
differential element is not conserved. Part of the entransy 
from boundaries and heat sources is converted to the en-
transy of the differential element, and the rest is dissipated. 
Integrating eq. (16) over time and volume, and applying the 
Gauss theorem yield 

2( ) d d

( )d d d d d d 0,

t V

t A t V t V

T t V

G
qT t A QT t V t V

t

 

        

 

       

(17) 

where V is the volume of interest and A is its surface area. 
The integrated terms are of the same meaning as those of 
the differential element. Therefore, entransy dissipation 
always accompanies heat conduction processes. 

For heat convection processes, the governing equation is  

 v v

T
c c T q Q

t
  

      


u , (18) 

where u is fluid velocity vector,  is viscous dissipation. 
Similarly to heat conduction, there is 

2 2
v

1
( ) ( ) ( ) 0,

2

G
T c T qT QT T

t
   
         


u

 
 (19) 

where the first term (including minus sign) on the right hand 
side is the entransy with the fluid into the differential ele-
ment, the second term (including minus) is the entransy 
from the boundaries, the third term is the entransy flux from 
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the heat sources, the forth term is the entransy due to vis-
cous dissipation, and the last term (without minus sign) is 
entransy increment with time. Obviously, the entransy in a 
differential element is not conserved, either. Not all the en-
transy from the boundaries and heat sources is converted to 
the entransy of the differential element, and the entransy 
dissipation always exists. Integration of the equation over 
the whole district leads to the same conclusion. 

Entropy generation and entransy dissipation both exist in 
heat transfer processes and both of them can describe the 
irreversibility of the heat transfer processes.  

Futhermore, the concept of entransy dissipation was 
found to be more appropriate than the concept of entropy 
generation [10,16,20,25,33] in optimizing heat transfer pro-
cesses. For instance, Guo et al. [20] defined the concept of 
thermal resistance based on the concept of entransy dissipa-
tion. When the concept of thermal resistance is used to ana-
lyze heat exchangers, researches show that the effectiveness 
decreases monotonously with the increase in thermal re-
sistance, and there is no paradox similar to the entropy gen-
eration paradox [34]. Chen et al. [25] found that the extre-
mum of entransy dissipation rate corresponds to the optimal 
heat transfer performance of heat exchangers while the 
minimum entropy generation rate does not. 

1.2  Work-heat conversion process 

The sketch of a work-heat conversion process is shown in 
Figure 2. Assume that work W is totally converted to heat 
that is absorbed by the object whose initial temperature is T, 
and finally become its internal energy. The changes of en-
tropy and entransy are analyzed for the finite and infinite 
heat capacity cases, respectively. 

First, let us assume the heat capacity of the object to be 
finite, and the heat capacity and the mass are c and m re-
spectively. The initial temperature is T. According to the 
first law of thermodynamics, the increment of internal en-
ergy is W. Based on the relationship of internal energy and 
temperature U=cmT, the temperature becomes 

 ( + ) ( )T cmT W cm   . (20) 

 

Figure 2  Sketch of a work-heat conversion process 

The entropy change in the work-heat conversion process 
is 

 
d

ln ln
T

T

cm T T cmT W
S cm cm

T T cmT

   
    . (21) 

Eq. (21) is positive for W>0. The entropy increases in the 
work-heat conversion process and there is entropy genera-
tion. According to the definition of entransy in eq. (1), the 
entransy before and after work-heat conversion is 

 2
0

1

2
G cmT , (22) 
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2 2

W
G cmT cm T

cm

    
 

. (23) 

The entransy change after work-heat conversion is 

 
2

0 0
2

W
G G G T W

cm


       . (24) 

The entransy does not decrease but increases during the 
work-heat conversion process. Cheng et al. [35] defined the 
entransy change due to work input or output as work en-
transy flow, which is expressed as 

 W =G T W  . (25) 

The increased entransy in the work-heat conversion process 
is just due to the work entransy. 

For the infinite heat capacity case, temperature remains 
in work-heat conversion process. The entropy change after 
heat-work conversion is 

 
0

0
W Q W

S
T T

  
    . (26) 

There is entropy generation in the work-heat conversion 
process. Considering that the heat capacity is infinite, the 
entransy change is 

 0G T W    . (27) 

We can see that entransy also increases, and the incre-
ment is due to the work entransy. 

According to the above discussions, there is entropy 
generation in the work-heat conversion process, which in-
dicates that the physical process is irreversible. However, 
there is no entransy dissipation. Therefore, the concept of 
entransy dissipation cannot reflect the irreversibility of the 
work-heat conversion process.  

1.3  Free expansion process 

Figure 3 is an adiabatic free expansion process of ideal gas. 
The volume on the right side part of the plate in an adiabatic 
container is V1 and is full of ideal gas whose initial temper-
ature is T. The left side part of the plate is vacuum. The 
whole volume of the container is V2. The free expansion  
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Figure 3  Sketch of a free expansion process 

process begins once the plate is taken away. 
Entropy is a state quantity and it only depends on the 

state before and after any process. We can assume a re-
versible process to calculate the entropy change of the free 
expansion process. As the temperature remains constant 
during the process, we take it as a reversible isothermal 
process whose temperature is T, and the ideal gas expands 
to V2 from V1. Assume that the mass of ideal gas is m, the 
ideal gas equation is 

 gpV mR T , (28) 

where p is the pressure, V is the volume, m is the gas mass, 
and Rg is the gas constant that depends on the gas type in-
stead of the gas state. The internal energy remains constant 
during the isothermal process. Therefore, the entropy change 
in free expansion process is [36] 

 2
g g

1

d d
ln

VT V
S m c R mR

T V V
     
  . (29) 

As V2>V1, eq. (29) is positive, and there is entropy generation 
in the free expansion process. The process is irreversible. 

However, in terms of entransy, there is no output work 
during the expansion process because the left side of the 
plate is vacuum. According to the first law of thermody-
namics, the internal energy of the ideal gas remains constant 
because the whole system is adiabatic. As the internal en-
ergy only includes the average kinetic energy of molecules 
and the temperature is the measure of the average kinetic 
energy of molecules, the temperature of the gas after the 
expansion is the same as that before the expansion. The 
internal energy and the temperature of the ideal gas before 
and after the free expansion satisfy 

 U U  , T T  . (30) 

According to the definition of entransy in eq. (1), the en-
transy before and after the expansion satisfies 

 G G , (31) 

so there is not entransy dissipation during the adiabatic free 
expansion process of ideal gas. 

The adiabatic free expansion process of ideal gas is irre-
versible but there is no entransy dissipation, which indicates 
that entransy dissipation cannot reflect the irreversibility of 
the adiabatic free expansion process of ideal gas. 

1.4  Isothermal diffusion process 

Figure 4 is a diffusion process. Both parts of beside the 
plate are full of different gases that are not mixed with each 
other. The volumes of the two parts beside the plate are V1 
and V2 respectively. Assume that the gases in the two parts 
have the same initial temperature T, and the same initial 
pressure. The gas mass of the two parts is m1 and m2, re-
spectively. The gas constants are Rg1 and Rg2 respectively. 
When the plate is taken away, diffusion process happens 
spontaneously. 

Qin [37] pointed out that the diffusion is the superposi-
tion of two free expansion processes. The diffusion process 
shown in Figure 4 is the superposition of the two free ex-
pansion process, the one of ideal gas with mass m1 and gas 
constant Rg1 from V1 to V1+V2 and the one of ideal gas with 
mass m2 and gas constant Rg2 from V2 to V1+V2. According 
to eq. (29), the entropy change of the superposition system 
of the two free expansion processes is 

 
1 2

1 2 1 2
1 g1 2 g2

1 2

ln ln 0

S S S

V V V V
m R m R

V V

    

 
   . (32)

 

There is an entropy generation in this process, so the pro-
cess is irreversible. 

However, in terms of entransy, the entransy of the whole 
system remains constant during this free expansion as two 
gases in the adiabatic system have the same initial tempera-
tures and pressures, and the temperatures of the gases re-
main constant. There is no entransy dissipation in the diffu-
sion process in Figure 4. Therefore, the concept of entransy 
dissipation cannot reflect the irreversibility of the isother-
mal diffusion process. It is necessary to use the concept of 
mass entransy dissipation that is the extended concept of 
entransy dissipation to analyze the irreversibility of the dif-
fusion processes [28]. Chen et al. [28] showed that the mass 
entransy dissipation could measure the irreversibility of 
mass transfer process, and the relevant theory can optimize 
convective mass transfer process effectively. 

The above analyses of the thermodynamic processes 
demonstrate that there must be entropy generation in irre-
versible thermodynamic processes. However, the entransy 
dissipation does not always exist. Entropy generation can 
reflect irreversibility of all the thermodynamic processes, 
while the concept of entransy dissipation cannot. In heat  

 

Figure 4  Sketch of isothermal diffusion process. 
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transfer processes, entropy generation and entransy dissipa-
tion both exist, so entransy dissipation can describe the ir-
reversibility of heat transfer processes. 

2  Analysis of the irreversibility of endoreversible 
cycles 

The above discussions show that the concept of entransy 
dissipation can only reflect irreversibility of heat transfer 
processes. For the thermodynamic cycles including both 
work output and irreversible heat transfer process, could the 
irreversibility be described by the concept of entransy dis-
sipation? The irreversibility of a common thermodynamic 
cycle may be caused by many factors, such as the heat 
transfer between the working medium and the heat sources, 
and the friction in heat engines. According to the above 
analyses, the entransy dissipation could not reflect the irre-
versibility of the work-heat conversion process, such as 
friction. However, the irreversibility of the heat transfer 
processes in thermodynamic cycles can be reflected by en-
transy dissipation. 

Considering that time is an important parameter, An-
dresen et al. [38–40] developed the finite time thermody-
namics, in which the endoreversible cycles are widely used 
[41]. For the endoreversible cycles, the working medium 
undergoes quasi-static reversible process, and the irreversi-
bility from the heat transfer, the friction and the vortex are 
all treated as the thermal resistance loss between the work-
ing medium and the heat sources. The entransy dissipation 
and the irreversibility of the endoreversible cycles are ana-
lyzed and discussed below. 

The heat transfer law between the working medium and 
the heat sources in the endoreversible cycles satisfies [42] 

 ( )
mnQ T    , (33) 

where Q is the heat transfer rate, n and m are constant. As-
sume that the temperatures of the hot stream and the cold 
stream are TH and TL respectively. The high and the low 
temperatures of the working medium are THC and TLC. Ac-
cording to the heat transfer law, the heat transfer rates be-
tween the working medium and the heat sources are 

  H H H HC

mn nQ k T T  , (34) 

  L L LC L

mn nQ k T T  , (35) 

where kH is the heat transfer coefficient between the work-
ing medium and the hot stream, kL is that between the 
working medium and the cold stream. 

As the working medium undergoes reversible cycles, the 
entropy generation and entransy dissipation of the reversible 
cycles are both zero, and the entropy generation only exists 
in the heat transfer processes between the heat sources and 

the working medium. According to eqs. (34) and (35), the 
entropy generation rate of this endoreversible cycle is 

 g H L
HC H L LC

1 1 1 1
S Q Q

T T T T

   
      

   
 . (36) 

The second law of thermodynamics requires that TH>THC 
and TLC>TL. Hence, eq.(36) is positive. Meanwhile, the en-
transy dissipation rate of this endoreversible cycle is 

    dis H H HC L LC L+G Q T T Q T T   . (37) 

Eq.(37) is positive too according to the second law of ther-
modynamics. Both entropy generation and entransy dissipa-
tion exist at the same time in the endoreversible cycles and 
they both can describe the irreversibility of the endoreversi-
ble cycles. 

An endoreversible Carnot cycle is discussed as an exam-
ple below. The endoreversible Carnot cycle was first pro-
posed by Curzon and Ahlborn [43], in which the working 
medium undergoes the Carnot cycle. Recently, researchers 
have paid attentions to the characteristics and the optimiza-
tion of endoreversible Carnot engine which satisfies the 
generalized heat transfer law [44–46]. In the endoreversible 
cycle shown in Figure 5, the working fluid takes heat rate 
QH from the hot stream whose temperature is TH, and re-
leases heat rate QL to the cold stream whose temperature is 
TL. The output power of the cycle is W. The temperatures of 
the streams and the working medium satisfy TH>THC>TLC> 
TL. According to the first law of thermodynamics, there is 

 H LW Q Q  . (38) 

The relationship between the temperatures and the heat 
transfer rates is 

 H L

HC LC

Q Q

T T
 . (39) 

Substituting eqs. (34), (35) into eq. (39), we get the rela-
tionship between THC and TLC. TLC can be determined if THC is  

 

Figure 5  Sketch of an endoreversible Carnot cycle. 
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prescribed. Combining (34)–(39) gives the entropy genera-
tion rate and the entransy dissipation rate of the endoreversible 
cycle: 

 

 

 

g H H HC
HC H

L LC L
L LC

1 1

1 1
 ,

mn n

mn n

S k T T
T T

k T T
T T

 
   

 
 

   
 



 (40)

 

       dis H H HC H HC L LC L LC L+ .
m mn n n nG k T T T T k T T T T      

 (41) 

The heat-work conversion efficiency of this cycle is 

 
H

W

Q
  . (42) 

Assume that the temperatures of the streams TH=400 K, 
TL=300 K, the heat transfer coefficients kH=3 W Kmn, kL= 
2.5 W Kmn, the heat transfer processes satisfy the general-
ized heat transfer law in which m=1.5 and n=1.2. The varia-
tions of the efficiency, the entropy generation rate and the 
entransy dissipation rate with THC are shown in Figure 6. 
The entropy generation rate and entransy dissipation rate 
decreases and the cycle efficiency increases monotonously 
with increasing THC, leading to lower cycle irreversibility. 
The concepts of entropy generation and entransy dissipation 
are equivalent when they are used to measure the irreversi-
bility of the endoreversible cycles. 

We furthermore change the factors of m and n in the 
generalized heat transfer law. The variations of the effi-
ciency, the entropy generation rate and the entransy dissipa-
tion rate with THC are shown in Figure 7 and Figure 8 where 
the factors are m=1.5, n=0.8, and m=0.7, n=1.2 respectively. 
It is shown that the change of m, n does not affect the varia-
tion tendencies of the efficiency, the entropy generation rate 
and the entransy dissipation rate, but only their values. 
Therefore, the conclusion is appropriate for any heat transfer  

 

Figure 6  The variations of the efficiency, the entropy generation rate and 
the entransy dissipation rate with THC. 

 

Figure 7  The variations of the efficiency, the entropy generation rate and 
the entransy dissipation rate with THC with different m, n (m=1.5, n=0.8). 

 

Figure 8  The variations of the efficiency, the entropy generation rate and 
the entransy dissipation rate with THC with different m, n (m=1, n=1.2). 

conditions that both the concepts of entropy generation 
and entransy dissipation can reflect the irreversibility of 
the endoreversible cycles. 

3  Conclusion 

The irreversibility of heat transfer, work-heat conversion, 
free expansion, and isothermal diffusion processes is dis-
cussed from the viewpoints of entropy and entransy. The 
results show that entropy generation exists in all the pro-
cesses, which means these processes are irreversible. How-
ever, entransy dissipation does not exist in the work-heat 
conversion, the free expansion and the isothermal diffusion 
processes. The analyses of heat transfer, the heat transfer in 
isolated system, the heat conduction and the heat convection 
show that entransy is not conserved in heat transfer pro-
cesses and there must be entransy dissipation. The entransy 
dissipation can only describe the irreversibility of the heat 
transfer processes, other than other thermodynamic pro-
cesses. 
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Furthermore, the endoreversible cycles widely used in fi-
nite time thermodynamics are analyzed in this paper, which 
includes the heat transfer process and the work output pro-
cess. As the irreversibilities are totally attributed to the 
thermal resistance between the working medium and the 
heat sources in the endoreversible cycles, the entropy gen-
eration and the entransy dissipation both exist in this kind of 
cycles, and the entransy dissipation can describe their irre-
versibilities. The variations of the cycle efficiency, the en-
tropy generation rate, and the entransy dissipation rate with 
the top temperature of the working medium are calculated 
for an endoreversible Carnot cycle. The results show that 
the cycle efficiency increases monotonously with the de-
crease in the entropy generation rate and entransy dissipa-
tion rate. The numerical results verify that the concept of 
entransy dissipation can describe the irreversibilities of the 
endoreversible cycles.  
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