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A novel method to apply artificial neural network (ANN) for both chemical kinetics reduction and source term evaluation is in-
troduced and tested in direct numerical simulation (DNS) and large eddy simulation (LES) of reactive flows. To gather turbulence 
affected flame data for ANN training, a new computation-economical method, called 1D pseudo-velocity disturbed flame (PVDF), 
is developed and used to generate thermo-chemical states independent of the modeled flame. Then a back-propagation ANN is 
trained using scaled conjugate gradient algorithm to memorize the sample states with reduced orders. The new method is em-
ployed in DNS and LES modeling of H2/air and C3H8/air premixed flames experiencing various levels of turbulence. The test 
result shows that compared to traditional computation with full mechanism and direct integration, this method can obtain quite 
large speed-ups with adequate prediction accuracy. 
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Detailed chemical mechanism has been widely employed to 
numerically study fundamental phenomena involved in 
flame turbulence interaction, for example, vortex-induced 
quenching and re-ignition [1], soot [2] and NOx [3] for-
mation in turbulent flame and flame propagation [4]. How-
ever, huge computational burden is always a knotty event 
during such researches, which mainly stems from two re-
spects: first, large number of species mass balance equa-
tions should be temporally advanced; second, many minor 
species have much smaller time scales than others so that 
time-consuming stiff ODE solvers are normally required. 
As a result, complex calculations involved in chemical 
source evaluation are continually repeated. 

In chemical kinetics reduction field, sensitivity analysis 
[5], quasi-steady state (QSS) assumption [6] and direct rela-
tion graphics (DRG) method [7,8] are often used, while 
ANN method, a extremely new systemic technique, is sel-
dom seen in previous work. The procedure of using QSS 
assumption has been shown in Figure 1. However, QSS 

species concentrations should be first resolved which in-
cludes a large amount of algebraic iterations. Therefore, the 
net efficiency could be undermined [9], and also calculation 
may be failed if iterations do not converge. 

As for the second respect, several approaches to acceler-
ate chemical sources evaluation have already been present-
ed, such as look-up table (LUT) [10] and in situ-adaptive 
tabulation (ISAT) [11]. However, they are both based on 
tabulation technique which needs huge memory and a large 
number of check-up and interpolation operations. Artificial 
neural network (ANN) method, although it was proposed 
previously to handle above drawbacks, has got great pro-
gress through Sen and Menon’s work [12,13]. It has been 
successfully applied to account for chemical kinetics in LES 
modeling of turbulent premixed flame with speed-ups even 
more than 10. 

In this paper, we tend to extend the application of ANN 
method, using it to not only calculate chemical sources but 
also reduce the detailed mechanism. The initial idea is to 
construct the direct mapping between non-QSS species 
concentrations and their reaction rates at plenty of thermal  



 Zhou Z J, et al.   Chin Sci Bull   February (2013) Vol.58 No.4-5 487 

 

Figure 1  Procedure of using traditional reduced mechanism and 
ANN-based alternative one (DI means “direct integration”).  

states considering turbulence effect (see Figure 1). This 
ANN-based method for chemical kinetics reduction, if 
demonstrated applicably, can bypass all time-consuming 
links involved in integration of traditional mechanism and 
directly offer chemical sources for the mass balance equa-
tions of primarily concerned non-QSS species. In other 
words, it can completely solve the above-mentioned two 
problems in numerical investigations. Thus, this paper is 
organized according to the following thread: How is ANN- 
based method for chemical kinetics reduction constructed? 
What about the applicability of this method? What is the 
performance? 

1  Construction of ANN-based method for 
chemical kinetics reduction 

This ANN-based method is constructed by gathering ther-
mo-chemical sample states, precluding QSS species and 
employing ANN to memorize the low-order states. All 
sample states should be at the specific equivalence ratio Ф 
with turbulence effect. In [12], sample states were given by 
DNS of a laminar flame vortex interaction. Although tested 
performance was satisfactory, this method was very time- 
consuming. In this paper, an alternative way with largely 
reduced calculation is presented. To demonstrate the novel 
method, premixed combustions of H2/air at Ф=1.0 and 
C3H8/air at Ф=0.65 are modeled using 11-species 21-step 
[14] and 28-species 73-step [15] mechanisms, respectively. 
For comparison, no reduction was carried out on H2/air 
mechanism, while QSS assumption was imposed on 
C3H8/air combustion process. By adopting the following 
criterion [6] at laminar C3H8/air premixed flame:  
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where s  is chemical reaction rate of specie s, superscript 

P and C represent production and consumption, respectively. 
7 QSS species are identified, which are CH, CH2, C2H2, 
C2H3, C2H5, C2H6 and CH2CO. This set of QSS species are 
eliminated from the gathered sample states. Thus, after be-
ing trained, the ANN-based method is actually constructed.  

1.1  Sample data generation 

Sample data for ANN training are initially generated using 
1D pseudo-velocity disturbed flame (PVDF) method.    
The critical idea of this method is to accumulate thermo-   
chemical state by stepping following equations with original 
detailed mechanism: 
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where ρ is density, Y is the mass fraction , ut(x) is pseudo- 
velocity used to get disturbed flame data, V is diffusion ve-
locity, cv is mixture specific heat capacity at constant vol-
ume, T is temperature, P is pressure, λ is thermal conductiv-
ity of the mixture, h is standard-state enthalpy, cp is specific 
heat capacity at constant pressure, Rg is universal gas con-
stant of the mixture, Dm is mixture-averaged diffusion coef-

ficient, X is volume fraction, W and W  are molecular 
weight and mean molecular weight, respectively. Subscript 
s represent specie s. 

1D laminar premixed flame at fixed equivalence ratio 
(consistent with applied condition) was firstly set to be ini-
tial state and then above equations were advanced with 
2th-order difference scheme and 1th-order Euler march. To 
duplicate turbulence effect on flame, ut(x) is updated at time 
domain according to an isotropic, homogeneous turbulent 
kinetic energy spectrum given by [16] 
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where ke is the most energetic wavenumber in adopted en-
ergy spectrum, expressed as 
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u' is a preset fluctuation velocity controlling turbulence in-
tensity. To let flame experience different level of turbulence, 
PVDF was run at 7 different u' ranging from 0.5 m/s to u'max 
for both cases. The basic parameters which characterize the 
turbulent intensity are given in Table 1. In the following test, 
u'max is estimated to be 10 m/s for H2/air case and 5 m/s for  
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Table 1  Parameters of 1D PVDF used to generate training data 

u′ (m/s) Reu′ Range of k ke Time scale (ms) 

10 5600  0–2000 814.8  0.261 

8 4480  0–1800 728.8  0.365 

6 3360  0–1500 631.2  0.562 

4 2240  0–1200 515.3  1.032 

2 1120 0–900 364.4  2.920 

1  560 0–600 257.7  8.260 

0.5  280 0–500 182.2 23.361 

 
 
C3H8/air case. In addition, total stepping time for each run 
was set to be 5 eddy turn-over time Te. Required thermo- 
chemical states were recorded every Te/10. A hyperplane of 
PVDF results for C3H8/air case, O2 reaction rate along O2 
mass fraction (reaction progress), is shown in Figure 2. 
Turbulent effect on flame is well represented in the ob-
served fluctuations. 

1.2  ANN training 

Back-propagation (BP) network [17] was adopted to memo-
rize the collected sample states. For H2/air case, QSS hy-
potheses is not imposed, so all involved species were des-
ignated to be inputs; for C3H8/air case, because 7 QSS spe-
cies have been assumed, only remaining 20 species except 
N2 are needed as inputs and their corresponding chemical 
rate as outputs. To improve model sensitivity to temperature, 
sample states were divided into 7 equi-distance bins along 
temperature value. Further, all data were standardized to 
range (0,1) before training. Tansig function was used as 
transfer function. Considering computational efficiency [12], 
two ANNs are both equipped with two hidden layers. After 
tentative calculations, ANN of H2/air case uses 8 neurons 
for the first hidden layer and 4 for the second; ANN of 
C3H8/air cases is designed with 12 and 6 neurons accord-
ingly. Scaled conjugate gradient (SCG) algorithm first 

 

 

Figure 2  One hyperplane obtained using PVDF approach. 

proposed by Møller [18] was employed for ANN training. 
Different from other conjugate gradient algorithm, this al-
gorithm performs no line searches at each iteration. Thus, 
computation amount and the storage requirement, is largely 
reduced [19]. The training processes of 7 temperature-data 
bins for C3H8/air mixture are shown in Figure 3. To test 
ANN performance, 4000 thermo-chemical states are ran-
domly selected from obtained database. Consequently ANN 
predicted reaction rates perfectly fit the authentic ones, as 
found in Figure 4. Up to now, ANN-based methods for both 
flames are constructed and can be directly integrated into 
following simulations to test the performance. 

2  Numerical methodology for testing 

2.1  DNS of flame-vortex interaction  

Flame-vortex interaction (FVI) frequently occurs in turbu-
lent combustion, and it represents the basic mode in which 
premixed flame is affected by vortex [4]. When a vortex 
penetrates through premixed flame, its leading edge first 
compresses the encountering flame and then entrainment 

 

 

Figure 3  The training processes of all seven temperature-bins for 
C3H8/air mixture. 

 

Figure 4  Performance of trained ANN. 
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effect causes the adjacent flame being gradually stretched. 
Consequently, as for the whole flame it experiences dy-
namically changing strain rate. Whether this process can be 
accurately modeled by the present method directly indicates 
its applicability to other models and processes. Thus, our 
method is designated to be firstly tested in FVI configura-
tion by DNS. 

The fully compressible Navier-Stokes equations were 
firstly nonnormalized, then differenced in eighth-order ex-
plicit scheme and then advanced temporarily using the 
fourth-order explicit Runge-Kutta method with CFL=0.06. 
Uniform meshes were used with spacing equal to two times 
of estimated Kolmogolov scale. A modified characteristics 
non-reflecting boundary condition, which encloses trans-
verse source contribution [20], is imposed on all boundaries. 
All FVI test cases were initialized using individual laminar 
premixed flame and a pair of vortex. Laminar premixed 
flames for both H2/air and C3H8/air cases were obtained by 
solving PREMIX [14]. The initial vortex pairs were always 
located in fresh mixture side at 10lf away from the corre-
sponding flame front. For a given moment, scalar profiles 
were drawn along the trace of one vortex center.  

2.2  LES of turbulent Bunsen flame 

LES of premixed flame has been applied in laboratorial 
scale [21] and even close to industrial application [22], with 
the rapid progress of computation ability. Moreover, to sat-
isfy the requirement of modeling auto-ignition and slow- 
scale pollutants production in turbulent premixed flame, it 
has been believed that reduced mechanism with modest 
number of species will be initially used. Thus, it is neces-
sary to test the applicability and performance of the present 
method in LES frame.  

In LES, the closure of SGS stresses relies on Boussinesq 
hypothesis t/ 3 2ij kk ij ijS      , in which t  is the 

SGS turbulent viscosity, and ijS  is the rate-of-strain tensor 

for the resolved scale defined by  / /ij i j jS u x u      

 / 2ix . t  is evaluated using the Dynamic Smagorinsky- 

Lilly Model as proposed by Germano et al. [23] and Lilly 
[24], in which Smagorinsky constant is dynamically com-
puted from local resolved motion to guarantee numerical 
stability [25]. Eddy-dissipation-concept (EDC) model [26] 
was adopted to account for combustion in subgrid. Detailed 
explanation can be found in [21]. For simplicity, LES was 
implemented in 2D based on finite-volume method. Pres-
sure-velocity coupling was handled according to SIMPLE 
approach. Spatial differences are 3rd-order bounded center 
for momentum and second order upwind for others. The 
second-order accurate time derivative is 
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Integration is implicit; convergence is achieved at each 
time step in ~20 iterations. Time step 6e-6s was set with 
CFL = 0.1. For all Bunsen flame cases, velocity, tempera-
ture and species concentrations are fixed at inflow boundary, 
while pressure outlet boundary condition is imposed on all 
outflow boundaries to ensure “well-posedness” [27]. The 
components of complementary flow are consistent with 
those of the corresponding burnt gas at individual adiabatic 
flame temperature. 

3  Results and discussion 

The performance test focuses on the accuracy, speed-up and 
storage of the proposed method. Each standard solution was 
obtained using the corresponding original detailed mecha-
nisms and direct integration.  

3.1  FVI test 

Different vortex pairs were used in FVI test. H2/air FVI cases 
were run with Umax/SL equal to 26 and 39 while C3H8/air FVI 
cases were obtained at 33 and 66 Umax/SL conditions. Umax is 
the maximum velocity induced by vortex. 2D contours with 
velocity vector plots, predicted using two methods, are shown 
in Figure 5. Furthermore, instantaneous profiles of scalars 
cross the individual flame are summarized in Figure 6. 

 

 

Figure 5  2D contours with velocity vectors predicted using DI and ANN for H2/air FVI with Umax/SL = 26 (a) and C3H8/air FVI with Umax/SL = 66 (b): DI 
(left); ANN represented method (right). Colored by corresponding species mass fraction and lined by temperature value. 
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Figure 6  Instantaneous profiles of scalar variables in DNS of FVI. H2/air case: (a) Umax/SL = 26; (b) Umax/SL = 39; C3H8/air case: (c) Umax/SL =33; (d) 
Umax/SL = 66. 

H2/air FVI cases are shown in Figure 6(a) and (b) while 
C3H8/air FVI cases are in Figure 6(c) and (d). All predicted 
profiles well match with the corresponding standard ones. 
At all observed extremums, the relative errors of major spe-
cies are not larger than 23%. On average errors are below 
5% for major species and temperature. For minor species, 
such as OH, H and CH4, errors are a little larger though pro-
file agreements are still preserved. Predicted profiles of 
other involved species represent similar features even if not 
shown in figure. Comparatively scalar errors are a little 
larger in C3H8/air case than those in H2/air case due to in-
clusion of kinetics reduction process, but by referring to the 
errors resulting from traditional reduced mechanism 
[9,28–31], the error magnitude is quite acceptable. Overall, 
the ANN-based method for chemical kinetics reduction can 
well replicate the flame dynamics in FVI at the influence of 
different vortex. 

3.2  Bunsen-flame test 

The instantaneous flame structures of the tested cases are 
shown in Figure 7. The H2/air Bunsen flame uses fresh 
mixture inflow at 298 K with 1.5×105 Reynolds number. 
The size of the jet is 70 mm, with the speed of 200 m/s cen-
terflow and 1.8 m/s coflow. The inflow property of 

 

Figure 7  Instantaneous temperature fields of Bunsen-flame LES using 
ANN-based method for chemical kinetics reduction. (a) H2/air case; (b) 
C3H8/air case. 

C3H8/air flame is 6.2×104 Reynolds number at 298 K. The 
size of the jet is 32 mm, with the speed of 8 m/s centerflow 
and 0.4 m/s coflow. Both grids are Lx×Ly = 3 mm×3 mm, 
with stretch ratio of 1.05 in PML areas. As seen, along 
streamwise flame thickness is gradually increased and 
wrinkles become more obvious owing to vortex stretch ef-
fect. Comparatively C3H8/air flame is stretched to a more 
serious extent because of its much lower flame velocity. 
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Quantified accuracy evaluation is carried out by comparing 
ANN-based method predictions with the corresponding 
standard ones. Detailed comparisons of Favre-averaged 
scalar profiles have been exhibited in Figure 8. The pre-
dicted profiles are all in good agreement with standard solu-
tions. Further, the relative errors of major species and tem-
perature are around 13% and those of minor species are 
approximately 22%. Further, it is noticeable that the change 
of flame thicknesses and flame positions along streamwise 
is well resolved using the present method, especially in 
C3H8/air case. However, in some locations errors are larger 
for some minor species, such as C2H4 and O. The reason is 
probably the insensitivity of trained ANN to the used 
chemical sub-model in LES [32], which offers a good start-
ing point for further improvement. 

3.3  Speed-up and storage summary 

For each case, the speed-up is defined as the ratio of run-
ning time using full mechanism with ANN-based method in 
each CFD time step. The running time used here actually 
include both time consumed for chemical reaction and fluid 
dynamics. As listed in Table 2, speed-ups obtained in DNS 
are relatively low. However, considering DNS usually run 
for many days or even several months, the absolute time 
actually saved is considerable. In LES, 13.6 speed-up ob-
tained here is also larger than Sen and Menon’s optimal 
value 11.2 in [12]. In addition, the required storage of our

method is very negligible, and thus it is still superior to oth-
er tabulation technics. 

4  Conclusions 

The construction and application of a novel ANN-based 
method for chemical kinetics reduction is discussed in detail. 
The PVDF approach is involved to quickly generate ther-
mo-chemical states for ANN training. Pseudo-velocity, 
which can lead premixed flame to experiencing turbulence 
with various time and length scales, is introduced. The 
adaptability to different chemical kinetics, prediction accu-
racy, computational efficiency and storage of the method 
are highlighted in the performance test. H2/air and C3H8/air 
turbulent premixed flames are modeled by DNS and LES 
integrated with this ANN-based method. The result shows 
that compared with ODE solutions using original detailed 
mechanism, the present method can well predict scalar pro-
files and error magnitudes of species concentrations and 
temperature are acceptable. Moreover, due to the involved 

Table 2  Characteristic parameters of ANN-based method for both cases 

Case 
Kinetics 

size 
Table 

storage 
ANN 

storage 
Speed-up 
in DNS 

Speed-up in 
LES 

H2/air 11 species 160 Mb 175 kb 1.05 8.2 

C3H8/air 20 species 330 Mb 432 kb 1.42 13.6 

 

 

Figure 8  Favre-averaged scalar profiles at different cross-sections downstream. (a) H2/air case; (b) C3H8/air case. 
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mechanism reduction, C3H8/air case obtains a higher speed- 
up in LES than H2/air case and previous study. The required 
storages of the present method for both cases are quite neg-
ligible (below 500 kb), much smaller than LUT and ISAT 
techniques. Thus, this method is more advantageous in 
memory-limited computations. 
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