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Damage and failure of quasi-brittle materials are caused by the evolution and coalescence of micro-cracks. To solve the problem 
of elliptical micro-crack growth at the elastic deformation stage, a method of complex potential functions is proposed and the 
effect of the initial orientation on micro-crack growth and deflection is discussed. The critical stress condition for the initial dam-
age is derived according to the criterion of micro-crack growth. Based on energy conservation during wing-crack propagation, a 
damage constitutive model is developed with the strain criterion created in the condition of micro-crack coalescence. The 
stress-strain curves of quasi-brittle materials in uniaxial compression obtained based on this model are examined with the experi-
mental results.  
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The elastic modulus of a material gradually decreases with 
increase in the number and size of micro-cracks in it during 
its evolution. When the number and size of micro-cracks 
reach a certain stage, the interactions among the cracks be-
come very important. For example, the coalescence between 
cracks is a strong or nonlinear interaction occurring in the 
material during its fracture and failure. To obtain the 
strength limit under which the material fails, the nonlinear 
condition of coalescence between the micro-cracks must be 
studied. 

Many experimental studies have shown that micro-crack 
damage was the significant features of the fracture of brittle 
materials [1,2]. Currently, a lot of researches focus on the 
growth and interaction of micro-cracks. Krajcinovic, 
Sumarac and Fanella [3–6], Ju and Lee [7–9] developed 
their micromechanical damage models for brittle materials 
subjected to simple axisymmetric loading by introducing 
the mechanism of micro-crack propagation. When subjected 
to tensile loading, the micro-cracks whose normal vectors 
approach to the stress direction of the maximum principle 

will propagate first. As a rule, the fracture surface is per-
pendicular to the maximum tensile stress direction. Howev-
er, the evolution of micro-cracks in compression becomes 
more complicated. Horii and Nemat-Nasser [10,11] carried 
out the experimental and theatrical researches, and found 
that micro-cracks develop in different ways, such as be-
coming closed, frictional sliding, intergranular propagating 
and kink propagating. Feng et al. [12,13] studied the dam-
age evolution of materials by the method of the domain of 
micro-crack growth (DMG). Kachanov [14–16], Chud-
novsky [17,18], and Gong et al. [19,20] proposed two 
methods, shielding and increasing the stress intensity factor, 
and used them to deal with the interaction between micro- 
cracks. 

Calculating the propagation of micro-cracks depends on 
their structural characteristics, and the changes in which 
during elastic deformation cause their propagation to be 
affected during nonlinear deformation. Therefore, the evo-
lution of micro-cracks during elastic deformation should be 
taken into consideration before their propagation and coa-
lescence. The coalescence is the direct cause of the materi-
al’s fracture. The critical propagation length of micro-cracks 
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in many damage models [21–23] is taken as a control pa-
rameter of fracture criterion and its value calculated by the 
condition of coalescence is of physical significance. 

In order to facilitate mathematic treatment, the elliptical 
micro-cracks in a quasi-brittle material are considered ellip-
tical in this work. The evolution under planar principal 
stress is solved using a complex potential function. The 
critical stress of wing crack initiation is calculated by the 
micro-crack propagation criteria. Then, the constitutive re-
lation during micro-crack propagation is developed based 
on the energy conservation principle. With the condition of 
micro-crack coalescence, the micro-crack propagation 
length is derived and used to calculate the fracture strain of 
material. 

1  Growth of elliptical micro-crack  

Figure 1 shows the schematic of the stress state of a repre-
sentative unit containing an elliptical micro-crack. The rep-
resentative unit is subjected to a far-field loading 

1 2x x y ye e e e       . The length of the elliptical micro- 

crack is 2a0 in its long axis and 2b0 in its short axis, where 

0 0b a  and 0 1  . Its orientation is at an angle of β 

with the direction of loading 1 .  

To study the growth of the elliptical micro-crack in the 
continuum medium subjected to tensile stress, for simplicity, 
the local coordinate system is converted into the elliptic 
coordinate system with the following relations: 
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Figure 1  Schematic of the size and orientation of an elliptical micro- 
crack. 

The boundary value of elliptical micro-crack subject to 
plan stress in an elastic continuum is solved by the method 
of complex potential function. The stress and displacement 
fields satisfying eq. (2) are the solutions: 
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where  z  and  z  are complex functions. 
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Let 0  , and the displacement at the tip of the long 

axis of the elliptical micro-crack is obtained:  
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π
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i   , and the displacement at the tip of the 

short axis of the elliptical micro-crack is described by 
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After the elastic deformation, the lengths of the long and 
short half shafts of the elliptical micro-crack, respectively, 
become 
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And the deflection angle of the elliptical micro-crack is ex-
pressed by the deflection angle α of the long axis: 
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Take an example of uniaxial loading, where 2 0  . 

According to eqs. (4)–(10), the relative growth rates of the 
long half shaft, short half shaft, and the deflection angle of 
the elliptical micro-crack can be obtained, respectively, as 
shown in Figures 2 and 3. 

From Figure 2 it is clear that (i) under uniaxial tensile 
stress, the growth rate of the short half shaft is larger than 
that of the long half shaft, which reveals that the ellipticity 
of the micro-crack changes after elastic deformation; (ii) the 

growth rate of the long half shaft,   0

0

a a
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a


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es with the initiate angel  increasing, when  is equal to,  
 
 

 

Figure 2  Relation of growth rate of elliptical micro-crack to initial ori-
entation. 

 

Figrue 3  Relation of deflection angle of elliptical micro-crack to initial 
orientation. 

further bigger than /2, the growth rate of the long half shaft 
gets minimum and negative; (iii) the growth rate of the short 

half shaft,   0

0

b b
R b

b


 , varies parabolically with , it 

reaches its maximum at =/4, and when the ellipticity 
reaches maximum, so does it, too. 

Furthermore, a small deflection occurs after the elastic 
deformation of the elliptical micro-crack. As seen in Figure 
3, at =/4, the deflection angle reaches the maximum, 
0.144°, so small that it can be negligible. 

2  Propagation of wing crack  

2.1  Critical stress of wing crack propagation  

Micro-crack propagation is the comprehensive result. It is 
affected by the external loading, the size of micro-crack, 
and the shape of micro-crack. When the stress intensity 
factor at its tip satisfies the crack propagation criterion, a 
wing crack grows from the tip in a certain direction, which 
will result in the nonlinear deformation of a quasi-brittle 
material. 

The criterion of micro-crack propagation is written by 
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The critical stress of micro-crack propagation under dif-
ferent kinds of loadings can be calculated by eqs. (11)–(13). 
In the case of uniaxial loading, that is, 2 0  , eq. (11) be-
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comes 
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where a is a function of σ1. The critical stress of elliptical 
micro-crack propagation can be obtained by solving eq. (14) 
through σ=σcr. 

Figure 4(a) shows the variation of the critical stress ver-
sus the initial orientation β of the elliptical micro-crack. 
From the figure it is obvious that (i) the critical stress tends 
to infinity when β=0, meaning the micro-crack whose ori-
entation parallels the loading direction will not propagate; 
(ii) the critical stress decreases with β increasing and tends 
to the stable value, 0.27 GPa, in the range π 4 π 2  , 

which indicates that micro-crack propagation occurs mostly 
in the range π 4 π 2  . Figure 4(b) shows the varia-

tion of the critical stress versus the initial size of the ellipti-
cal micro-crack. From the figure it is clear that the larger the 
initial size of the micro-crack is, the smaller the critical 
stress of wing crack propagation, meaning material will go 
into the damage stage under smaller loadings. 
 

 

Figure 4  Relations of critical stress to initial orientation (a) and initial 
size (b). 

2.2  Direction of wing crack propagation  

In the fracture analysis of rocks and other brittle materials, 
the criterion of maximum circumferential stress is often 
used to determine the wing crack propagation direction. It 
states that a wing crack initiates and grows at the micro- 
crack tip in the direction of the maximum circumferential 
stress when the circumferential stress reaches a critical val-
ue. The circumferential stress at the tip of the elliptical mi-
cro-cracks in the  direction is 
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where KI is termed as the stress intensity factor in the direc-
tions  , and  
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The direction of the maximum circumferential stress 
should satisfy the following equations: 
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Then, the equation with respect to the initial angle of wing 
crack propagation, 0, is obtained as  

  I 0 0sin 3cos 1 0,K K     (18) 

2.3  Effective compliance tensor of damaged material 

In the elastic deformation stage, micro-cracks only deform 
the surrounding material in which they exist, but do not 
induce its damage. However, when wing cracks initiate at 
the tips of elliptical micro-cracks, the material instantane-
ously goes into the damage stage. 

Assume that the elliptical micro-cracks are ideally uni-
form distributed in the material, that is, each micro-crack 
has the same shape, size, and spacing. By the sparse distri-
bution method, the components of the effective compliance 
tensor are calculated as follows: 
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where 2πaf n a , and an  is the number of micro-cracks 

per unit area. 

2.4  Nonlinear constitutive model 

Figure 5 shows that wing crack propagation will cause the 
damaged material to be damaged further. According to the 
energy balance principle, the work, W, done by the loading 
when the wing crack length reaches l is equal to the elastic 
strain energy, that is 

 e=2 .W U   (20) 

The elastic strain energy released in the process of wing 
crack propagating can be obtained by integrating the energy 
releasing rate, G(l), within the wing crack length, l, as  
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where KI and KII are called the stress intensity factors driv-
ing the wing crack to grow to the length of l, respectively. 
They are given by [21] 
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Figure 5  Schematic diagram of wing crack growth. 

where 
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For plane stress,    0 0 03 1v v    . The crack length 

l* has been introduced, so let l=0, and the stress intensity 
factors are accurately calculated by eqs. (23) and (24), 
l*=0.27a.  

By substituting eqs. (22)–(26) into eq. (21), the elastic 
strain energy can be obtained:   
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Thus, the total work done by the loadings, 1 and 2, is 
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where 1 and 2 are the small increments of 1 and 2 
acting upon each propagating wing crack in the directions, 
ox' and ox', respectively. 

The linear relation between the strains, 1 and 2, act-
ed on the effective medium and the applied stress is 
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where ijS  is the element of the compliance tensor applied 

upon single micro-crack. Eq. (28) can be rewritten as 
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correspondent coefficients of quadratic terms as follows: 
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Let the number density of micro-cracks be an , then the 

nonlinear strain caused by all the micro-cracks propagation 

is 1

2
an




 
  

, and whole strain is given by 
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        

       
 (31) 

The nonlinear stress-strain relation during the process of 
micro-crack propagation is 

    1 1111 11 1 1122 12 2 ,a aS n S S n S        (32) 

    2 1122 12 1 2222 22 2 .a aS n S S n S       (33) 

3  Coalescence of micro-cracks 

The growth of micro-cracks and propagation of wing cracks 
lead to nonlinear decrease in the effective elastic modulus. 
However, the coalescence among adjacent micro-cracks 
during crack propagation, accounts for the failure of the 
material. There are two modes of interconnection among 
micro-cracks, the connection between two wing cracks and 
the connection between wing crack and initial crack, as 
shown in Figure 6. With the same micro-crack spacing, the 
connection between two wing cracks is the case where the 
connection occurs as the crack propagates the shortest 
length, which occurs, of course, in a lower strength of mate-
rial. 

Figure 7 schematically shows that only those adjacent 
wing cracks with the same propagating direction can be 
connected together. The coalescence of two wing cracks 
needs to satisfy eq. (34). If the spacing between the two 
cracks in one direction is known, the other spacing between 
them in another direction can be obtained by  

    1 2ctan sin cos .w w a a        (34) 

When wing cracks coalescence occurs in some rock or 
quasi-brittle material subject to strain , their propagation 
length is 

 
 

22 2 sin
.

sin

w a
l


 





 (35) 

Thus, the relation between the propagation length l and 
strain i  can be written as 

  cr 1,2 ,i i
cm

l
i

v
       (36) 

 

Figure 6  (a) Coalescence between two wing cracks; (b) coalescence 
between wing crack and initial crack. 

 

Figure 7  Coalescence between two micro-cracks with the same direction. 

where cr
i is the critical strain of wing crack propagation,   

is the average strain rate, and cmv  is the average rate of 

propagation. According to Ravichandran et al. [21], cmv  is 

generally taken as  –0.3 0.5cm Rv C , where CR is Ray-

leigh wave speed. 
By substituting eq. (36) into eqs. (32) and (33), the fail-

ure stress fr
i  can be obtained when the coalescence oc-

curs. 
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4  Results and discussion 

Several researchers [24–27] did a series of experimental 
researches on the crack initiation, propagation and coales-
cence in rock materials under uniaxial and biaxial compres-
sions, which are very helpful for us to investigate the 
crack-induced fracture mechanism of brittle materials. They 
found that open cracks are very similar to closed cracks in 
crack initiation, coalescence pattern and fracture process. 
Their results confirmed the physical significance of the mi-
cro-crack evolution and coalescence model presented in this 
paper. Open elliptical micro-cracks are also studied in this 
paper. The crack’s shape (its ellipticity and size) is related 
to the material parameters and applied loadings; in other 
words, open or closed elliptical micro-cracks in the material 
under compression depend on the material’s parameters and 
the loadings to which it subjects. No matter whether the 
micro-cracks become closed or not, at the tips of the mi-
cro-cracks wing cracks would initiate and result in fracture 
of the material through their coalescence. 

The model of crack coalescence is directly related to the 
distribution of the cracks’ geometric locations. Figure 8 
shows the schematic diagram of three pre-existing cracks in 
Park and Bobet’s experiments. The three cracks parallel one 
another. Different patterns of coalescence can be obtained 
by changing the spacing between the bottom right crack and 
the above two. 

Figures 9 and 10 respectively show two modes of coa-
lescence corresponding to two different distributions of 
pre-existing flaws or cracks. The length of pre-existing 
flaws is 2a. The initial orientation angle is /4. In Mode I, 
the spacing between two cracks in the vertical direction is 

2 2a , and the spacing in the horizontal direction is 2a . 

In Mode II, both the spacings are 2a . Through calcula-
tion it is known that these two modes are two special cases 
of the coalescence model of this paper. The initial orienta-
tion angle is π 4  . The propagation direction of the 

wing crack is finally parallel to that of applied stress, that is, 
π 2   . By substituting π 2    into eq. (34), 

the crack distribution condition for coalescence of wing 

cracks can be obtained: 1 2 2w a , w2 could be arbitrary  

 

 

Figure 8  Geometric location of cracks in the specimen [25]. 

 

Figure 9  Wing crack coalescence II  1 22 2, 2w a w a  [25]. 

 

Figure 10  Wing crack coalescence II  1 2 2 2w w a  [25]. 

value, and the wing crack propagation length depends on 
the value of w2. Therefore, the micro-cracks coalescence 
model is consistent with the experimental results obtained 
by Park and Bobet. 

Wong and Chau [28] did their researches on the coales-
cence pattern of two cracks and the strength of material un-
der uniaxial compression. In their experiments, they 
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changed the relative position of two cracks and the surface 
friction coefficient to observe different patterns of coales-
cence. As a result, the patterns of crack coalescence could 
be classed into three modes of coalescence: (a) shear mode 
(coalescence between two shear cracks), (b) wing crack 
mode (coalescence between two wing cracks), and (c) 
mixed mode (mixed coalescence ), as shown in Figure 11. 

The wing crack mode in Figure 11(b) is in agreement 
with the coalescence model of this paper. The previous 
studies done by Park, Bobet, and Wong and Chau only 
qualitatively described the coalescence pattern with their 
experimental results, but did not give any quantitative rela-
tion between deformation and stress caused by crack coa-
lescence. The topic on the quantitative relation between 
micro-crack evolution and its mechanical response will be 
discussed in the future study. 

Theoretical results of the nonlinear constitutive model 
developed based on micro-crack evolution and coalescence 
are discussed in the following. The material parameters 
used in this calculation are taken from experimental results 
of Wong and Chau, as shown in Table 1. 

The pre-existing cracks in actual materials are similar to 
closed cracks, meaning that their ellipticities are very small. 
In this paper, assume that the initial state of the material is 
undamaged and uniform, and in our calculation, let the el-
lipticity and the number density of cracks be ρ=0.01 and 
na=1×103, respectively. In addition, for the stress in the case 
of uniaxial compression ( 2 0  ), let 1  . Using eqs. 

(32) and (33), the nonlinear stress-strain relations in the 
micro-cracks propagation can be obtained: 

  1 1111 11 ,aS n S    (37) 

  2 1122 12 .aS n S     (38) 

 

 

Figure 11  Three modes of crack coalescence. (a) Shear mode; (b) wing 
crack mode; (c) mixed mode. 

Table 1  Mechanical parameters of material 

E0 (MPa) 0v  KIC  MPa m  2a0 (mm) 2w1(mm) β 

330 0.19 0.0443 12 22 /4 

In wing crack propagation, the effective elastic modulus 
of material is 

 eff
1111 11

1
.

a

E
S n S




  (39) 

As shown in Figure 12, the effective elastic modulus of 
the material decreases with the wing crack propagation 
length increasing, though the length is very limited due to 
the rapidity of wing crack propagation and coalescence. 
Therefore, the decreasing in the elastic modulus is not ob-
vious during the damage stage. The decreasing in the elastic 
modulus due to damage presents only a tiny nonlinearity in 
stress-strain relation. Curve (a) of Figure 13 [29] shows the 
actual stress-strain relation of sandstone and Curve (b) 
shows the stress-strain curve of uniaxial compressive mod-
eling material used in Wong and Chau’s experiments. Be-
cause the pre-existing crack is much larger than inner mi-
cro-cracks, initial mechanical properties of the material 
have been structurally deteriorated. Thus, the stress-strain 
curve of modeling material during elastic deformation stage 
is not linear. Curve (c) shows the computational result with 
the material constants of modeling material. In curve (c),  

 

 

Figure 12  Effective modulus vs. length of wing crack.  

 

Figure 13  Stress-strain relation under uniaxial compression. 
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point A is the critical point, where the material starts to en-
ter the damage stage. Because the decreasing of effective 
elastic modulus is very small in the damage accumulating 
procession, the stress-strain curve in the damage stage is 
almost linear. Point B is corresponding to the critical point 
of micro-crack coalescence. Although the material still has 
a larger elastic modulus during the damage process, a large 
number of micro-cracks coalescence makes the material 
fracture in a very short time. At this time the stress value 
describes the fracture strength of the material. 

5  Conclusions 

Park, Bobet, as well as Wong and Chau did similar experi-
mental researches on the crack coalescence pattern and got 
basically the same law of crack coalescence, which is help-
ful for studying physical processes of micro-crack evolution 
and coalescence in some quasi-brittle materials. However, 
their experiments do not include the micro-crack growth 
law in the elastic deformation stage. This paper attempts to 
theoretically study the mechanical responses to the mi-
cro-crack growth, evolution, and coalescence in the materi-
als. The constitutive model corresponding to the micro- 
structure evolution is developed. The conclusions are as 
follows: 

(1) Both the orientation angle and ellipticity of micro- 
cracks have effects on the crack growth, wing crack propa-
gation, and coalescence, which eventually lead to formation 
of an anisotropic effective compliance tensor in the dam-
aged material. 

(2) The micro-crack coalescence is a highly nonlinear 
phenomenon which has the complicate relations to orienta-
tions, sizes, and relative positions of micro-cracks. 

(3) Based on micro-crack growth, evolution, and coales-
cence, a constitutive model is developed and a related ex-
pression of failure strain is determined. The stress-strain 
relation during crack propagation stage reveals that the ef-
fective elastic modulus of damaged material decreases with 
increasing the wing crack propagation length. 

This work was supported by the National Natural Science Foundation of 
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