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Parameter optimization of a hydrological model is an indispensable process within model development and application. The lack 
of knowledge regarding the efficient optimization of model parameters often results in a bottle-neck within the modeling process, 
resulting in the effective calibration and validation of distributed hydrological models being more difficult to achieve. The classi-
cal approaches to global parameter optimization are usually characterized by being time consuming, and having a high computa-
tion cost. For this reason, an integrated approach coupling a meta-modeling approach with the SCE-UA method was proposed, 
and applied within this study to optimize hydrological model parameter estimation. Meta-modeling was used to determine the 
optimization range for all parameters, following which the SCE-UA method was applied to achieve global parameter optimization. 
The multivariate regression adaptive splines method was used to construct the response surface as a surrogate model to a complex 
hydrological model. In this study, the daily distributed time-variant gain model (DTVGM) applied to the Huaihe River Basin, 
China, was chosen as a case study. The integrated objective function based on the water balance coefficient and the Nash-Sutcliffe 
coefficient was used to evaluate the model performance. The case study shows that the integrated method can efficiently complete 
the multi-parameter optimization process, and also demonstrates that the method is a powerful tool for efficient parameter opti-
mization. 
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Hydrological models are the principal tools used to investi-
gate hydrological processes within watersheds [1]. Distrib-
uted hydrological models have become increasingly popular 
for hydrology research and water resources management. 
Usually, these hydrological models are conceptual models 
that simplify and interpret actual hydrological processes 
using a mathematical formula and physical equations. The 
reliability of model predictions depends on how rigorously 
the model structure is defined and how rigorously the model 
is parameterized [2]. However, the accurate estimation of 

model parameters is difficult due to the large uncertainties 
involved, as parameters usually cannot be directly measured 
in the field, or their exact values are not known [3,4]. 
Therefore, parameter calibration and optimization becomes 
necessary to improve model performance within most mod-
el applications [5]. During the model calibration and opti-
mization process, selected parameters are allowed to vary 
within predefined bounds until an optimization objective is 
met. There is also the problem of equifinality. Models that 
use a large number of parameters can have multiple combi-
nations of parameter values that give suitable predictions of 
observed data. However, when a large number of parame-
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ters exist within a model, the calibration process can be-
come complex, time-consuming and is characterized by 
high computation cost. In addition, high nonlinearity and 
multimodality of models due to a large number of parame-
ters used, results in some optimization issues which require 
complex solutions [6]. In many instances, complex optimi-
zation problems include noise and/or discontinuities within 
the set of Pareto solution data, making traditional determin-
istic methods inefficient for finding global solutions. Global 
optimization methods based on meta-heuristics are robust 
alternatives for solving complex optimization problems [6]. 
Over the last several decades, there has been an increasing 
interest in meta-heuristics as well as improvements in its 
application to optimization problems. For example the Shuf-
fled Complex Evolution method at the University of Arizo-
na (SCE-UA) [7], simulated annealing [8], tabu search [9], 
genetic algorithms [10], differential evolution [11], particle 
swarm optimization [12], ant colony optimization [13] and 
scatter search [14].  

However, the application of system analytical techniques 
for computationally demanding models, such as optimiza-
tion, sensitivity analysis, and statistical inference, may be 
hampered by the high computational cost associated with 
multiple evaluations of a model [15]. The computational 
cost for optimization is enormous, and this poses a major 
problem to hydrologists, even with the great improvements 
in computational algorithms and computing hardware. For 
this reason, an efficient and effective optimization method 
should be developed to reduce the computation demand or 
cost. There are two strategies for dealing with this problem, 
namely, improving the efficiency of the model evaluation 
(e.g. simplifying the model if possible), and improving the 
efficiency of the computationally demanding techniques 
[15]. The computationally demanding model can be re-
placed by an efficient emulator of the model, i.e. the me-
ta-modeling approach can be used to evaluate and optimize 
complex model parameters [15–20]. There exist a variety of 
meta-modeling techniques [19], including polynomial re-
gression, Kriging modeling, multivariate adaptive regres-
sion splines (MARS), radial-basis functions (RBF), mul-
ti-layer perception networks (MLP), and support vector 
machines (SVM). Usually, the meta-models are a statistical 
approximation of deterministic models [21]. They can in 
principle be applied to dynamic models as well. However, 
they have two significant deficiencies [15], namely the lack 
of a priori cognition of the model structure, and numerical 
difficulties resulting from a large number of closely spaced 
input points within the dynamic models with a mul-
ti-dimensional temporal scale, especially with regard to hy-
drological models.  

Given that a complex hydrological model is computa-
tionally intensive and that the meta-modeling approach may 
amplify the uncertainties or errors, the integrated method, 
coupling a meta-modeling approach with a classical opti-
mization method was employed for parameter optimization, 

to meet the desired objective in this study. In this study, 
sensitivity and uncertainty analysis identified important or 
sensitive parameters as well as non-sensitive or unimportant 
parameters. Important parameters were optimized and un-
important parameters were fixed within the optimization 
process. The response surface method was used to estimate 
the value of parameters, following which the ranges of pa-
rameters were adjusted to obtain relatively reliable ranges 
and bounds. Finally, the SCE-UA method was used in the 
optimization process based on the adjusted parameter ranges. 

1  Methodology 

1.1  SCE-UA method 

The SCE-UA method is a global searching algorithm pro-
posed by Duan et al. [7,22] and it has been used in many 
hydrological models. The SCE-UA method combines the 
direction-searching of deterministic, non-numerical meth-
ods and the robustness of stochastic, non-numerical meth-
ods. It adopts competition evolution theory, concepts of 
controlled random search, the complex shuffling method, 
and downhill simplex procedures to obtain a global optimal 
estimation [7]. To make the implementation more conven-
ient, Duan suggested some default values for the parameters 
of the SCE-UA method [7,22]. 

1.2  Statistical emulator approach 

The statistical emulator approach, which has been widely 
used within uncertainty analysis and parameter optimization, 
is a collection of statistical and mathematical techniques 
useful for developing, improving, and optimizing processes. 
The response surface method (RSM) is a common statistical 
emulator method, and was introduced by Box and Wilson in 
1951 [23], which explored the statistical relationships be-
tween several explanatory variables and one or more response 
variables. The main idea of RSM is to use a sequence of 
design experiments to obtain an optimal response. In this 
study, the PSUADE (Problem Solving environment for Un-
certainty Analysis and Design Exploration) developed by 
Lawrence Livermore National Laboratory was used to con-
struct the response surface between the model parameters 
and objective functions using the MARS method. The 
MARS is a non-parametric regression technique introduced 
by Friedman in 1991 [24], and can be regarded as an exten-
sion of linear models that automatically simulate non-linear 
relationships and interactions. Compared with the neural 
network and Gaussian process, the MARS technique has 
been particularly popular because it does not assume or im-
pose any particular type or class of relationship (e.g. linear 
or logistic) between the predictor variables and the depend-
ent variable of interest. Instead, it allows the regression 
function to be driven directly by the data [25]. It is also 
more flexible than the linear regression models, and easier 



 Song X M, et al.   Chin Sci Bull   September (2012) Vol.57 No.26 3399 

to understand and interpret. More information about this 
technique and how to use it is included in the work of 
Friedman [24]. 

1.3  Integration of the RSM and the SCE-UA method 

An integration method based on the RSM and SCE-UA 
method (RSM-SCE-UA) is proposed to estimate and opti-
mize the parameters of hydrological models based on the 
PSUADE platform developed by the Lawrence Livermore 
National Laboratory. In this study, the RSM was used to 
calibrate the hydrological model and the SCE-UA method 
was applied to optimize the parameters. The implementation 
of the integration method involves the following steps as 
shown in Figure 1: (1) Determine what output is optimized, 
what input parameters should be adjusted, and what the 
ranges of the input parameters should be; (2) Choose an 
appropriate design of experiments for generating the pa-
rameter samples based on the PSUADE platform; (3) Run 
the DTVGM model to obtain the response objective func-
tions for the samples; (4) Choose an approximation emula-
tor to generate the RSM; (5) Examine the RSM to ensure 
that a global optimization value (minimum or maximum)  

 

Figure 1  Flowchart showing the sequences within the RSM-SCE-UA 
method. 

lies on the response surface, and redefine the optimization 
ranges of parameters; (6) Run the SCE-UA method to opti-
mize the parameters around the minimum or maximum on 
the response surface. 

2  Study area and hydrological model 

The Huaihe River (112°–121°E, 31°–36°N) is one of the 
seven longest rivers in China. It is located between the 
Yangtze River and the Yellow River. The river basin covers 
an area of 270000 km2 and is inhabited by ~150 million 
people. The Huaihe River Basin has a fairly complicated 
water system, with a large number of tributaries, inter-pro-     
vincial rivers, and artificial rivers used for water control. 
The Huaihe River Basin is divided into two major systems, 
i.e. the Huaihe River System and the Yi-Shu-Si River Sys-
tem. The average annual rainfall for the basin is about 900 
mm, of which 70%–80% occurs as summer rainfall. The 
Huaihe River has an average annual flow of 853 m3 s1, 
with maximum flood discharge >11000 m3 s1 and nearly 
zero during the dry season. In this study, six years of data 
from 2003–2008, including the daily precipitation, evapora-
tion, and discharge from the weather stations and hydrolog-
ical stations was used to construct the DTVGM model for 
application to the Huaihe River basin, and to calibrate and 
optimize the model parameters. The description and theory 
of the DTVGM model are available in [26,27]. We selected 
the important or sensitive parameters based on the sensitiv-
ity analysis results to reduce the computation runs. The 
ranges of parameters are shown in the Table 1. 

Regarding calibration and optimization, the performance 
of models can be evaluated in terms of the statistical meas-
ure of goodness-of-fit. In this paper, two objective functions 
(water balance coefficient WB and Nash-Sutcliffe efficiency 
coefficient NS) were selected as evaluation criterion to form 
an integrated objective function [28], as shown in eq. (1): 

 OBF 1 (1 ) 1w WB w NS     , (1) 
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Table 1  Parameters of the DTVGM model and their ranges 

Parameter Description Ranges 

g1 
Time-variant gain factor, related to surface run-
off generation 

[0.01,1.0] 

g2 
Time-variant gain factor, related to soil moisture 
content 

[0.01,5.0] 

Kr Storage-outflow coefficient related to interflow 
runoff generation 

[0.01,1.0] 

Kaw Coefficient for actual evapotranspiration [0.01,1.0] 

Wmi Minimum soil moisture storage [0.01, 0.40] 

WM Upper layer saturated soil moisture storage [0.40,1.0] 
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where w is the weight of water balance (the default value is 
0.5 [28]), Qs and Qo are the simulated value and observed 
value for the runoff, respectively, and Q  is the mean value 

for corresponding runoff. Eq. (1) shows that the OBF can 
not only achieve a good agreement between the simulated 
and observed runoff volume, but also obtain a good simula-
tion for hydrological processes. 

3  Results and discussion 

Experimental design and sampling design are crucial steps 
within the construction of a response surface model when 
we use the RSM. In this study, a space-filling design meth-
od (LP- method, also known as quasi-random sequence) 
[29] was used to generate the response surface. We used the 
PSUADE platform to generate the 4000 runs of parameters 
(2000 samples were used to construct the response surface, 
and the other 2000 samples were used to validate the model), 
and applied the DTVGM model to the Huaihe River Basin. 
The two objective functions WB and NS were calculated 
using the simulated discharge and observed discharge ac-
cording to eqs. (2) and (3), following which the OBF was 
calculated using eq. (1). Subsequently, the response surface 
model using the MARS approximate function was con-
structed to emulate the daily DTVGM model applied to the 
Huaihe River Basin using the first 2000 samples and corre-
sponding OBF values. In this study, the two parameters g2 
and WM were selected to generate the response surface 
model as shown in Figure 2. Figure 2(a) depicts the three- 
dimensional response surface from the output OBF and the 
input parameter g2 and WM, while Figure 2(b) depicts the 
corresponding contour relationship. Figure 2 demonstrates 
that the ranges are limited to a relatively narrow interval 
when the OBF reaches the optimization value (i.e. the 

minimum value), and also demonstrates that the RSM can 
narrow the parameter ranges for the next optimization. In 
addition, the response surface model should be validated 
and verified before its application. The k-fold cross-validation 
and retest method provided by PSUADE was used in this 
study. Within the k-fold cross-validation, the original sam-
ple was randomly partitioned into k subsamples (k=500). Of 
the k subsamples, a single subsample was retained to be 
used as the validation data for testing the model, and the 
remaining k-1 subsamples were used as training data. The 
cross-validation process was then repeated k times. The 
statistical histogram of interpolation errors is shown in Fig-
ure 3(a). The scatter plot for simulation values from the 
response surface and calculated OBF values from the 
DTVGM model using the other 2000 samples is shown in 
Figure 3(b). It is evident that the relative error of less than 
20% occurred for more than 90% of all samples, and the 
correlation coefficient was 0.96 between the simulation 
values from response surface and the output from DTVGM. 
The results demonstrate that the response surface model is 
acceptable and reasonable as a surrogate. The six parame-
ters of the DTVGM model were optimized by searching the 
optimization values around the response surface. The min-
imum OBF was 0.073, and corresponding WB and NS were 
1.002 and 0.856, respectively. The values of the six param-
eters were 0.387, 0.624, 0.039, 0.414, 0.092 and 0.460. The 
optimized parameters were applied within the DTVGM 
model using the data from 1991–2000, and the results 
showed that the RSM performed very well, and that it had a 
good accuracy, as shown in the Table 2. Therefore, the 
minimum data point on the calculated response surface was 
selected as the starting point for the next optimization. The 
parameter ranges were set as ±20% of the starting point 
values, and its maximum or minimum value was located 
within the original parameter ranges.  

According to the work of Duan et al. [7], we can set the 
default values for the parameters within SCE-UA algorithm, 
i.e. m=2n+1, q=n+1, =1, and =2n+1, where n is the  

 

Figure 2  Response surface models (a) three-dimensional plot and (b) the corresponding contour plot. 
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Figure 3  Results of the model validation and test (a) the statistical histogram of interpolation errors and (b) the scatter plot.  

Table 2  Optimization results for the daily DTVGM model applied to the Huaihe River Basin 

Method g1 g2 Kr Kaw Wmi WM 
2003–2008  1991–2000 

OBF WB NS  OBF WB NS 

RSM 0.387 0.624 0.039 0.414 0.092 0.460 0.073 1.002 0.856  0.207 1.157 0.743 

RSM-SCE-UA 0.405 0.502 0.031 0.406 0.106 0.547 0.062 0.999 0.877  0.125 1.009 0.759 

 

number of parameters for optimization, m is the number of 
points within each complex, q is the number of points with-
in each sub-complex,  is the number of consecutive off-
spring generated by each sub-complex, and  is the number 
of evolution steps taken by each complex. Hence, the only 
variable to be specified is the number of complexes p. A 
large complex is necessary for highly nonlinear problems. 
Therefore, in this study, the following parameters were 
kept constant: n=6, p=5, m=13, q=7, =1,  =13. Two 
stopping criteria were used for the termination of the 
iterative process. The calibration process is terminated if 
one or more of the following criteria are satisfied: (1) the  
search stops when the algorithm cannot appreciably im-

prove 0.01% of the output of the objective function over 
five iterations because of a very flat region of the re-
sponse surface being reached; and (2) the search is ter-
minated if the maximum number of iterations (10000) is 
exceeded. 

In this study, the data from 2003–2008 was used to cali-
brate the model and to optimize parameters, while the data 
from 1991–2000 was used to validate the parameters. The 
optimization results are shown in the Table 2. Within the 
calibration, the OBF was 0.062, WB was 0.999 and NS was 
0.877. Within the validation process, the OBF was 0.125, 
WB was 1.009 and NS was 0.759. Figures 4 and 5 show the 
fitting of the simulated and observed discharge for the cali-    

 
Figure 4  Comparison of the rainfall-runoff hydrograph for the optimization results achieved between 2003–2008. 
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Figure 5  Comparison of the rainfall-runoff hydrograph for optimization results achieved between 1991 and 2000.

bration and validation processes. It is clear that the modeled 
discharge fits well with the observed discharge within the 
two study periods in the Huaihe River Basin. Table 2, Fig-
ures 4 and 5, demonstrate that the SCE-UA method (or 
RSM-SCE-UA) is capable of finding the global optimum 
parameter set for the DTVGM model. In addition, compared 
with the SCE-UA method, the RSM-SCE-UA method is an 
efficient global optimization method because it reduces 
computation costs and narrows the parameter ranges based 
on the statistical emulator approach. For a single SCE-UA 
method, the invalid parameter ranges may lead the search to 
be trapped in local optimums or cause the computation time 
to be much longer.  

4  Conclusions 

Parameter optimization is a necessary process within the 
application of distributed hydrological models. However, 
many automatic algorithms exhibit some disadvantages, 
such as being time-consuming, having an enormous com-
putation cost, and being relatively difficult to implement in 
practice. In this study, the integrated method (RSM-SCE- 
UA) based on the statistical emulator approach and the 
SCE-UA method, is proposed for use within a hydrological 
model. Applying the DTVGM model on the Huaihe River 
Basin as a case study, the results show that the RSM-SCE- 
UA method can achieve efficient parameter optimization. 
The parameter optimization ranges can be determined rap-
idly by the RSM. In addition, the RSM method can output a 
narrow range if the method’s effect on the output response 
is relatively large, or else it has a wide range. It is demon-

strated that the narrowing range is crucial for determining 
the parameter ranges efficiently within the optimization 
processes. On the basis of the results of the response surface, 
the SCE-UA method is capable of finding a global optimum 
value for the DTVGM model without high computation 
costs. The integrated RSM-SCE-UA method would be ca-
pable of handling multi-parameter optimization for a com-
plex distributed hydrological model with high parameter 
dimensionality. 
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