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Deep sea circulation is important for world climate and has been a substantial research area in ocean science, leading to various 
breakthroughs and discoveries. With the rapid advance in research on ocean science, these matters have received increasing atten-
tion from the oceanography community. In this article, we attempt to convey the progress made in recent years. We first provide 
an overview of existing observations, theories, and simulations of deep South China Sea circulation. Finally, we discuss remain-
ing issues. 
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The South China Sea (SCS) is the largest marginal sea of 
the northwest Pacific. Its unique environment plays a sig-
nificant role in the deep circulation, sediment transport and 
abyssal carbon cycle, making it a natural platform for mul-
tidisciplinary experiments of ocean dynamics, sediment 
dynamics and biogeochemistry. As a part of the global 
deep-sea circulation, the deep SCS circulation results from 
interaction among multi-scale dynamic processes and com-
plex topography, which in turn determine the regional sed-
iment transport and abyssal carbon cycle. The circulation is 
sustained by the deep overflow and internal tide energy flux 
of the Bashi Channel (BC). Thus, understanding the space- 
time structure and variability of the deep SCS circulation 
depends on knowledge of several key issues. These include 
mass and energy transport through the BC, constraints of 
topography on flow paths, and mechanisms of abyssal tur-
bulence. 

The BC is the only deep passage connecting the Pacific 
and SCS. The deep Pacific water passing through the BC is 
known as “the deep overflow through Luzon Strait”. This 
penetrates the SCS through the Luzon Trough (LT) and 
Manila Trench, which is called the Luzon Strait/Manila 

Trench deep circulation. The deep SCS circulation refers to 
the circulation system below about 2000 m depth in the SCS 
basin. Its exact upper boundary is defined by the minimum 
potential density of the deep Pacific water passing through 
the BC. The Luzon Strait/Manila Trench deep circulation is 
a substantial band connecting the Pacific and deep SCS cir-
culation. As such, it is important in sustaining the heat and 
mass balance of the SCS, supporting the SCS throughflow 
[1], and influencing the SCS sediment transport and carbon 
cycle [2–11]. 

The BC is also significant in energy exchange between 
the Pacific and SCS. Enormous internal tide energy (~10 
GW) is generated at the BC and is propagated into the SCS. 
This feeds the deep SCS mixing process, making it two or-
ders larger than that in the deep Pacific. Enhanced diapycnal 
mixing triggers deep vertical convection and drives the cy-
clonic circulation in the deep SCS, dominating the residence 
time of deepwater there [7]. 

The Luzon Strait/Manila Trench deep circulation and 
deep SCS circulation represent a deep circulation system 
constituted by the western boundary current in the Philip-
pine Basin. Its structure and variation are the joint effect of 
interaction among the three circulations, the constraint of 
complex topography, and regulation of enhanced mixing in 
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the deep ocean. Hence, study of this system will help ad-
dress the palaeo-oceanographical reconstruction and life 
cycle of the marginal sea, and advance research on climate 
change and the SCS deep carbon cycle. 

1  Observation of western boundary of the 
Philippine Basin 

The deep circulation in the Philippine Basin (upstream of 
the BC) and its variation and dominant mechanisms are 
important for volume transport of the deep BC and even 
deep SCS circulation. The World Ocean Circulation Ex-
periment (WOCE) has made great progress in studying 
global ocean circulation. It has strengthened our knowledge 
of this circulation, especially in the deep Pacific. The deep 
western boundary current of the southern Pacific passes 
through Kermadec Ridge and enters the central Pacific Ba-
sin through the Samoan Passage, where deep volume 
transport is 6–8 Sv [12–15]. Then, after going a little further 
north, it splits into two branches. The eastern branch has 
deeper and colder components, and the western branch has 
water from shallower levels. The eastern branch to the east 
of the Tuvalu and Gilbert Islands crosses the equator and 
goes further north, east of the Marshall Islands. Its main 
flow moves into the northwest Pacific Basin through the 
Wake Island Passage, with volume transport ~4 Sv [16]. It 
proceeds further along the Japan [17], Kuril [18] and Aleu-
tian Trenches [19], ultimately entering the northeast Pacific 
basin. It is known as the primary component of the anticy-
clonic circulation in the Pacific. The western branch pene-
trates the Melanesia Basin and goes northwest, where it 
crosses the equator and enters the eastern Mariana Basin, 
carrying 4 Sv of deep water. It splits again south of the 
Mariana Basin. One branch goes to the northwest Pacific 

Basin, and the other flows through the western Mariana 
Basin and reaches the Philippine Basin (Figure 1). 

To study the western boundary current in the Philippine 
Basin, a mooring system was deployed off the eastern coast 
of Bataan Island (Figure 2(a)) in August 2010, and was re-
covered in April 2011. It had a recording current meter 
(RCM) moored at a depth of 2950 m, about 120 m above 
the bottom. Results show that constrained by topography, 
meridional velocity prevails east of Bataan Island, with 16-d 
low-passed velocities up to 8 cm s−1 (Figure 2(b)). Seasonal 
variation is also revealed from the meridional velocity, im-
plying that the western boundary current there goes south-
ward in summer and northward in winter. Hence, deep wa-
ter entering the SCS through the BC could be anticipated to 
come from the deep western part of the Philippine Basin, 
north of the BC in summer and south in winter. This is dif-
ferent from the path conjectured from sediment transport. 
Further continuous observations of the deep current east of 
Taiwan and Bataan Island are needed, to ascertain the path 
and volume transport of deep water through the BC from 
the deep Pacific. 

 

 

Figure 1  Approximate flow paths of Lower Central Pacific Water 
(LCPW) in western Pacific. Modified from [12,20]. 

 

 

Figure 2  (a) Locations of mooring systems at BC and east of the Bataan Island (BI), as well as those of Chang et al. at Taltung Canyon (D1) and BC (D2); 
(b) result of RCM at BI (gray line indicates observed velocity and red line 16-d low-passed velocity). 
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2  Deep circulations and their volume transport 
in the BC, Luzon Strait and Manila Trench 

In the 1970s, through comparison of thermohaline charac-
teristics of the deep SCS and Philippine Basin, deep water 
in the SCS was speculated to originate from the deep 
northwest Pacific and pass through the BC [21–23]. There 
has been increased attention to the overflow of the deep BC, 
and great progress made in understanding of its structure 
and volume transport [6,8,9,24–32]. Based on the World 
Ocean Database, Qu et al. [9] showed that between the Pa-
cific and SCS there was a persistent baroclinic pressure gra-
dient below 1500 m, driving inflow through the BC. Qu et 
al. [9] estimated volume transport of the overflow at 1–2.5 
Sv. With the latest current and hydrologic observations, 
Tian et al. [6] and Yang et al. [8] quantified the structure and 
volume transport of each layer in the BC. Water-mass anal-
ysis revealed that after entering the SCS, cold and salty 
deep Pacific water generates a cyclonic deep circulation. 

Chang et al. [33] deployed two mooring systems at the 
BC and Taltung Canyon in April and July 2007, respective-
ly, and recovered them in January 2008. They examined 
water exchange in the deep Luzon Strait (Figure 2(a)), indi-
cating that the BC was the main passage for the deep Pacific 
water passing through the Luzon Strait, with volume 
transport of 1.06±0.44 Sv and intra-seasonal variation (Fig-
ure 3). 

Tian et al. have made continuous observations of the 
deep overflow through the BC (Figure 2(a)) since October 
2009, to study its structure and variation. Results at the BC 
revealed the deep Pacific water penetrated the SCS 

 

 

Figure 3  Along-channel (Va) and Volume Transport (T) of the D2 and 
D1 (modified from [33]). (a) 15-d low-passed along-channel velocity after 
counterclockwise coordinate rotation of 100° and 135° at D1 and D2, re-
spectively (D1U and D1D represent results from RCMs at depths 2714 m 
and 2960 m at D1; D2U and D2D represent results from RCMs at depths 
2262 m and 2695 m at D2); (b) corresponding along-channel volume 
transport at D2 (dot-dash line), and D1 with 10 times vertical exaggeration 
(solid line). 

through the BC with a background current up to 40 cm s−1 
and average velocity of 23.1 cm s−1 (Figure 4), much larger 
than that in the deep open ocean (~1 cm s−1). 

3  Observation system of deep SCS circulation 

Given a lack of direct observation of current, characteristics 
of the deep SCS circulation are poorly understood, except 
for some qualitative or partially quantitative conjecture. 

Based on large amounts of current, temperature, salinity, 
and dissolved oxygen (DO) profiles in the Luzon Strait, 
Zhao et al. looked into the transport of deep water through 
the Luzon Strait (Figure 5, personal communication). Their 
analysis revealed that the deep Pacific water penetrated the 
SCS through the Luzon Strait, with corresponding volume 
transport of 1.5 Sv. The BC served as the main gap for the 
penetration with volume transport of 1.2 Sv. The deep water 
flowed out of the Luzon Strait through three gaps of the 
west wall, the Heng-Chun Ridge, the middle two gaps of 
which served as the main exits for deep water. Further study 
will be done by Zhao et al. to delineate the pathway of the 
deep Pacific water through the Luzon Strait into the SCS 
and the volume transport of each sill during the penetration. 

Wang et al. [34] recently calculated the deep geostrophic 
current of the SCS based on the U.S Navy Generalized Dig-
ital Environment Model (GDEM) global climatological 
monthly mean temperature and salinity dataset (Figure 6). A 
basin-scale cyclonic circulation was evident over the deep 
SCS, consistent with the corollary of Qu et al. [9] according 
to water-mass analysis. There was also a strong and uniform 
abyssal flow southward, from the bottom to 2000 m depth, 
along 116°E. Low salinity water was discovered in the inte-
rior region west of Luzon Island, and the potential density 
distribution was similar to that of salinity. This implies that 
the cyclonic circulation in the deep SCS was controlled by 
salinity variations in the deep basin. However, topography 
played a significant role in the distribution and variation of 
salinity in the deep SCS. 

According to results of Simple Ocean Data Assimilation  

 

 

Figure 4  Background current extracted from mooring observation at the 
BC, from October 2009 to April 2011. Solid/dash line indicates along/ 
cross-channel velocity after counterclockwise coordinate rotation of 145°. 
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Figure 5  Vertically averaged velocity of deep flow below 36.83 σ2, and 
transports across channels at repeat-occupation stations. 

 

Figure 6  Vertically averaged geostrophic current (cm s−1) from 2400 m 
to the bottom. Light pink shading indicates water depths shallower than 
2400 m. Dark pink shading indicates sea mountains shallower than 3600 m. 
Red solid dots denote stations where oxygen exceeds 2.15 mL L−1 at 3000 m 
layer [34]. 

(SODA), Wang et al. [35] calculated the meridional over-
turning circulation in the SCS (Figure 7). This figure reveals 
that the deep SCS water flowed southward with decreasing 
depth and turned back north in the surface layer, during 
which an upper-layer meridional overturning is evidenced. 
These results modified the deduction based on idealized 
bottom topography, described the general transport paths of 
bottom, intermediate and upper layers, and provided an ide-
alized reference for further study on the dynamics of wind- 
driven and thermohaline circulations of the SCS. 

4  Prospects of research on the deep SCS  
circulation 

Significant progress has been achieved with research on the 
deep SCS circulation. Nevertheless, several problems have 
been exposed, especially shortcomings in abyssal observa-
tion and techniques. These call for earnest consideration and 
profound exploration to determine effective resolutions. 

4.1  Achieving synchronous observation of macroscopic 
motions and microscopic mechanisms of deep SCS  
circulation 

Large-scale oceanic motions result from interactions among 
multi-scale dynamic processes. The study of these involves 
cascade theory, the key problem of turbulence theory, and 
the parameterization method, an exigent problem in need of 
resolution within ocean modeling. Interactions between 
large-/meso-scale barotropic motions in the SCS and Luzon 
Strait topography generates meso-/small-scale internal 
waves, which suggests the transition of energy from large-/ 
meso-scale motions to meso-/small-scale motions. Nonline-
ar interactions among internal waves and interactions be-
tween internal waves and bottom topography trigger the in-
stability of interval waves, which further induces turbulence 
mixing. These processes are called direct cascades. In con-
trast, an inverse cascade suggests that turbulence processes   
 

 
Figure 7  Climatological annual mean meridional-vertical stream function 
(Sv), calculated by SODA.  
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dominate the density distribution and increase the potential 
energy of the entire system, which further modulates large- 
scale oceanic circulation. With the advance of research on 
large-scale oceanic circulation, there is more attention di-
rected toward multi-scale dynamic processes involving 
mesoscale eddies, internal waves, and others. This signifi-
cantly shifts the focus of oceanic observation techniques, 
from large-scale to multi-scale processes. American scien-
tists recently conducted synchronous observation of mul-
ti-scale dynamic processes in the upper ocean [36,37], fur-
thering research on mechanisms of internal wave evolution 
and turbulence mixing processes. In short, deep dynamic 
processes in the SCS result from interactions and coexist-
ence of multi-scale motions. Therefore, with a focus on is-
sues like regulatory mechanism, variations and climatic 
effects of abyssal circulation, achieving synchronous ob-
servation of macroscopic motions and microscopic mecha-
nisms of the deep SCS circulation is one of the prospects of 
abyssal observation. 

4.2  Promotion of effective long-term continuous  
observation of the deep SCS circulation  

The deep water exchange of the BC and abyssal mixing 
processes are major impacts on the deep SCS circulation. 
The circulation upstream of the deep BC (possibly a branch 
of the deep circulation of the Philippine Basin), the BC in-
ternal tide energy flux, and their variations, may directly 
influence the space-time structure and variability of the 
deep SCS circulation. Current studies show that the deep- 
water exchange in the BC varies significantly, from 0.2 to 
1.2 Sv, and temperature in the deep northwest Pacific con-
tinues to increase [38]. These factors will modulate the deep 
SCS circulation and further affect the climate change of the 
SCS. Advances in research on abyssal science must be 
based on long-term continuous observation of deep-water 
exchange in the BC and Luzon Trough, with a focus on is-
sues like variation of the deep SCS circulation. Also neces-
sary are formulation of a long-term continuous observation 
system of the deep western boundary current in the area 
outside the BC, and knowledge of the main pathways of 
SCS deep water and evolution of the deep SCS circulation.  

4.3  Integration and supplementary observation of  
essential data such as on SCS bottom topography  

Bottom topography consists of large-scale landforms like 
shelves and basins, mesoscale landforms like continental 
slopes, canyons, trenches, ridges, plus complex small-scale 
landforms. These multi-scale landforms shape pathways of 
the deep SCS circulation, trigger or scatter mesoscale and 
small-scale internal waves, and regulate small-scale turbu-
lence mixing processes. The latter further modulate the 
structure of the deep SCS circulation. Complex landforms 
like continental shelves, slopes, BC, Luzon Trough, Manila 

Trench, chains of volcanoes and canyons, generate and reg-
ulate various multi-scale oceanic processes. Nevertheless, 
given the absence of high-resolution topographic data for 
the SCS, only the ETOPO datasets can be used to study the 
deep SCS circulation. This constrains research on its dy-
namic processes. Given this present limitation, it is signifi-
cant for the study of the deep SCS to make supplementary 
observations of the blank zone and build an integrated 
high-resolution topography dataset for the SCS. 

5  Conclusion 

Deep-sea circulation is important for world climate. It has 
been a substantial research topic in ocean science, leading to 
various breakthroughs and discoveries. With its various 
oceanic phenomena and processes, the SCS provides a nat-
ural platform for research on abyssal science. Hence, multi-
disciplinary study of abyssal science and synchronous de-
velopment of abyssal observation technology and research, 
with emphasis on abyssal observation of the SCS, will ad-
vance research on the deep and open seas. 
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