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Highly-efficient blue phosphorescent light-emitting diodes were fabricated based on a conjugated-polymer host by doping 
bis(2-(4,6-difluorophenyl)-pyridinato-N,C2′) picolinate (FIrpic) into poly(9,9-dioctylfluorene) (PFO). Previously, conjugated 
polymers were not considered as potential hosts for blue phosphorescent dyes because of their low-lying triplet energy levels. 
Energy back transfer would occur and lead to poor luminescent efficiency in both photoluminescence (PL) and electrolumines-
cence (EL) processes. However, by inserting a hole-transporting layer of poly(N-vinylcarbazole) (PVK), the energy back transfer 
was suppressed. At low FIrpic-doping concentrations, PFO emissions were completely quenched; with 8 wt% FIrpic, a maximum 
luminous efficiency of 11.5 cd/A was achieved.  
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Despite thirteen years of extensive research attention, phos-
phorescent organic/polymer light-emitting diodes (OLEDs/ 
PLEDs) still generate considerable interest as potential can-
didates for use in flat panel displays and solid-state lighting 
[1–5]. Either a small organic molecular material or a poly-
mer can be adopted as a phosphorescent dye host [6]. Of 
these, polymer hosts are more promising for use in large- 
sized flexible products due to the underlying solution pro-
cessing technology [7,8].  

Non-conjugated polymer poly(N-vinylcarbazole) (PVK) 
has been a commonly used polymer host for phosphorescent 
dyes [9–12]. As a host polymer, PVK has however an in-
herent defect in that its electron and hole mobility differ-
ence is too large. To improve the electron mobility, PVK 
must be doped with an electron-transporting material [13]. 
However, in fabricating functional layer on top of the emis-
sive layer (EML), electron-transporting material would be 
selectively removed resulting in poor luminescent efficiency  
[14,15]. For example, Xu et al. [14] found that the spin- 

coating of the electron-injection layer from the methanol 
solution was capable of selectively extracting the electron- 
transporting material, 1,3-bis[2-(4-tert-butylphenyl)-1,3,4-ox-   
adiazo-5-yl]benzene (OXD-7), of the EML, PVK:OXD-7: 

FIrpic:(piq)2Ir(acac), leading to poor PLED performance.  
Poly(9,9-dioctylfluorene) (PFO) is a commonly-used blue 

material and host polymer for red phosphorescent dyes in 
PLEDs industry [16–19]. Previously, PFO was thought to 
be a bad choice as a host for blue or green phosphorescent 
dyes because of its low-lying triplet energy level. Although 
energy back transfer happened in both PL and EL processes, 
efficient green phosphorescent PLEDs were fabricated re-
cently with a PFO host [20,21]. In contrast to PVK-hosted 
PLEDs, the performances of PFO-hosted PLEDs could be 
enhanced from the selective removal of the electron-trans-     
porting material during fabrication of the functional layer 
[22]. In this manner, PFO becomes a promising polymer host 
for phosphorescent dyes. Obtaining efficient blue phospho-
rescent PLEDs on a PFO host will not only offer greater 
selection of polymer host but extend the approaches towards 
generation of white light that would boost the application of 
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phosphorescent PLEDs. 
In this article, we report on the fabrication of high-effi-     

ciency blue phosphorescent EL with the conjugated-poly-     
mer PFO as a FIrpic host. The triplet energy level of PFO 
lies lower than that of FIrpic, causing energy back transfer 
from FIrpic to PFO that leads to poor PLEDs performances. 
However, by inserting PVK as a hole-transporting layer 
(HTL), the energy back transfer was suppressed because of 
the higher triplet energy level of PVK than FIrpic. At low 
FIrpic-doping concentrations, PFO was quenched com-
pletely. A luminous efficiency of 11.5 cd/A was achieved, 
which was comparable with that of the PVK hosted PLED, 
9.1 cd/A . 

1  Experimental 

The device structure consists of ITO/poly(3,4-ethylenedioxy-    
thiophene):poly(styrene sulfonate) (PEDOT:PSS) (40 nm)/ 

PVK (40 nm) /PFO:OXD-7 (30 wt%):FIrpic (x wt%) (70 nm)/ 
CsF (1 nm)/Al (100 nm), where OXD-7 was incorporated to 
improve the electron current in the EML. The chemical 
structures of the relevant materials are shown in Scheme 1. 
Prior to device fabrication, an ITO-coated glass substrate 
was subjected to wet-cleaning in an ultrasonic bath sequen-
tially filled with acetone, detergent, deionized water, and 
isopropanol. Next, the substrate was baked in a vacuum 
oven at 80C for 2 h. Before the coating with PEDOT: PSS, 
the substrate was treated for 10 min with O2 plasma. The  
40 nm of PEDOT film (P4083) was spun-cast onto the ITO 
surface, and then baked in a vacuum oven at 90C for 12 h 
to remove residual water. Subsequently, HTL and EML 
were sequentially spun-coated to a thickness of about 40 
and 70 nm, respectively, as determined by profilometry 
(XP-2). Finally, cathodes of CsF (1 nm) and then Al (200 nm) 
were thermally evaporated at a basic pressure of 3×104 Pa. 
The active emission area defined by a shadow mask was 
0.15 cm2. Except for the coating process of the PEDOT lay-
er, all processes were performed in a N2 atmosphere dry box 
(Mikrouna) with water and oxygen concentration less than  

 

Scheme 1  The chemical structures of PFO, PVK, OXD-7 and FIrpic. 

1 ppm. PVK-PLEDs doped with 30 wt% OXD-7 as host at  
10 wt% FIrpic were also fabricated and tested under the 
same conditions.  

Data of the current density, operating voltage, and lumi-
nous efficiency were recorded using a Keithley 2400 source 
measurement unit coupled with a calibrated silicon photo-
diode. Emission spectra were measured with a PR-705 
SpectraScan Spectrophotometer (Photo Research). 

2  Results and discussion 

Figure 1 shows the PL spectra of various PFO thin films 
doped with FIrpic at different weight ratios: 0.1%, 1%, 8%, 
10% and 100%. The PL spectrum of FIrpic peaked at 475 
nm. In the spectra of the blended thin films, the peak at 425 
nm originated from PFO, and no FIrpic emission was ob-
served. That is to say, FIrpic was completely quenched even 
at high doping concentrations. Similar quenching phenom-
ena have been observed before for conjugated polymers 
[20,21,23]. Previous studies showed that the lower triplet 
energy level of the polymer host would cause energy back 
transfer from phosphorescent dye to polymer, leading to 
phosphorescent quenching [20,21,23–25]. A schematic dia-
gram of the energy levels for PFO, FIrpic and PVK is dis-
played in Figure 2. Since the triplet energy level of PFO 
(2.3 eV) [20] is lower than that of FIrpic (2.65 eV) [26], 
energy back transfer occurs from the triplet excitons on the 
FIrpic to the low-lying triplet states of PFO that causes the 
FIrpic quenching. Therefore, in the PL process, FIrpic was 
quenched by PFO because of the low-lying triplet energy 
level of PFO. 

FIrpic quenching also occurs in the EL process, as in-
ferred from the EL spectra of the devices without the PVK 
interlayer, ITO/PEDOT/PFO: OXD-7 (30 wt%): FIrpic   
(x wt%)/CsF/Al, with FIrpic weight ratios varying from 0, 
0.1%, 1%, 8%, 10% to 16%, as seen in Figure 3. With no 
more than 1 wt% FIrpic, only the PFO emission was observed,  

 

Figure 1  PL spectra of thin films, PFO doped with FIrpic at different 
weight ratios: 0.1%, 1%, 8%, 10% and 100%. 
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Figure 2  Schematic diagram of energy levels of PFO, FIrpic and PVK. 

 

Figure 3  EL spectra of the devices without PVK layer, with FIrpic con-
centrations varying from 0, 0.1%, 1%, 8%, 10% to 16%. 

the emission peak being located at 427 nm, along with a 
shoulder peak at 450 nm. In contrast to PL spectra, at high 
FIrpic concentrations of 8%, 10%, and 16%, FIrpic emis-
sions were detected simultaneously with a peak at 547 nm 
that can be attributed to charge trapping of FIrpic in the EL 
process. Nevertheless, the relative intensity of FIrpic was 
much weaker than that of PFO, suggesting FIrpic quenching 
by PFO [20,21]. Therefore, in PFO matrix, FIrpic quench-
ing has occurred in both PL and EL processes.  

Device structures of PLEDs were modified by inserting 

HTL PVK between PEDOT and the EML. Figure 4 shows 
the EL spectra of devices with PVK interlayer, ITO/PEDOT/  
PVK/PFO: OXD-7 (30 wt%): FIrpic (x wt%)/CsF/Al, with 
FIrpic weight ratios of varied from 0 to 16%. With the ex-
ception of the PFO emission, another emission band was 
also observed clearly from FIrpic. Differing from the EL 
spectra of devices without PVK layer, here PFO was almost 
quenched at the low FIrpic concentration of 1 wt%, indicat-
ing the PVK layer suppressed the energy back transfer. 
Similar to previous research of ours on the host-guest com-
bination of PFO and Ir(ppy)3, exothermal energy-transfer 
quenching from the excited state of Ir(ppy)3 was circum-
vented by inserting a PVK interlayer [20,21]. According to 
previous studies, two features of PVK were responsible for 
the minimization of phosphorescent quenching, the high 
lowest unoccupied molecular orbit (LUMO) level, and the 
high triplet energy level [20,21,27]. Since the LUMO of 
PVK (2.0 eV) is much higher than that of PFO (2.4 eV), 
electrons can be blocked by PVK at the PVK-EML interface. 
Thus, the recombination zone is located at the PVK-EML 
interface and excitons form on PVK at the interface [21]. As 
seen in Figure 2, PVK has a triplet energy level of 3.0 eV  

 

Figure 4  EL spectra of the devices with PVK layer, with FIrpic weight 
ratios varying from 0 to 16%. 

 

Figure 5  Characteristics of current density-voltage (a) and luminous efficiency-current density (b) of the PFO hosted devices at 0.1%, 1%, 8%, 10%, and 
16% FIrpic. 
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Figure 6  Luminous efficiency-current density characteristics of the 
PLED with PVK: OXD-7 (30 wt%) doped with 10 wt% FIrpic. 

[27], which is much higher than the FIrpic level (2.65 eV), 
energy back transfer from FIrpic to PVK would not occur. 
The PVK excitons can be readily transferred to FIrpic, via 
Förster or Dexter energy transfer, leading to efficient blue 
electrophosphorescence [27]. Thus, quenching of the excit-
ed state of FIrpic to the triplet state of PFO is circumvented.  

Current density-voltage and luminous efficiency-current 
density characteristics of the PLEDs with PVK interlayer 
and various FIrpic concentrations are shown in Figure 5. The 
luminous efficiencies show strong FIrpic concentration de-
pendence, that increased with increasing FIrpic concentra-
tion up to 8 wt% and then decreased. The optimum device 
showed a maximum luminous efficiency of 11.5 cd/A with 
the 1931 CIE coordinates of (0.18, 0.41). PVK hosted PLED 
with the structure of ITO/PEDOT/PVK: OXD-7 (30 wt%): 
FIrpic (10 wt%) was tested [28], for which luminous effi-
ciency-current density characteristic is shown in Figure 6. 
The maximum luminous efficiency was 9.1 cd/A, which 
was slightly lower than that of the PFO hosted device. 

3  Conclusion  

Highly-efficient blue phosphorescent PLEDs based on a 
PFO host were fabricated. Because of the low-lying triplet 
energy of PFO, energy back transfer occurred from FIrpic to 
PFO in both PL and EL processes. At high FIrpic-doping 
concentrations in PFO, only a weak emission from FIrpic 
was observed. By inserting a PVK interlayer, energy back 
transfer was suppressed; at low doping concentrations, PFO 
was completely quenched. A maximum luminous efficiency 
of 11.5 cd/A was achieved with 8 wt% FIrpic. 
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