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For quantum state trajectory tracking of density matrix in Liouville equation of quantum systems, with the help of concept in 
quantum system control, one can apply unitary transformation both to controlled system and free-evolutionary target system such 
as to change the time-variant and non-stationary target system into a stationary state. Therefore, the quantum state trajectory 
tracking problem becomes a steering one. State steering control law of the system transformed is designed by means of the Lya-
punov stability theorem. Finally, numerical simulation experiments are given for a five-level energy quantum system. The com-
parison analysis of original system’s trajectory tracking with other method illustrates the advantage in control time of the method 
proposed. 
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In recent years, state preparation and steering problem have 
been extensively studied [13] due to their great important 
applications in quantum teleportation [4], quantum compu-
tation and quantum information [5]. Quantum trajectory 
tracking is of equal importance as quantum state steering. It 
requires controlled state to be able to follow a time-variant 
target state, which is more complicated than the control of 
state steering. On the other hand, the convergence of quan-
tum tracking is as much important as its control law design. 
The probability of state in a quantum system makes a stable 
control not enough any more. The asymptotic convergence 
of control strategy in such a case is needed to make sure that 
the experiments are practicable. Therefore the convergence 
of the control of quantum system directly determines 
whether a proper control law is designed. At the same time 
the condition of convergence can provide the methods and 
ways to derive an effective control law. Especially in quan-
tum systems, the complexity of controlled system model, 
various characteristics of different quantum states and the 
probability of controlled variables lead to great difficulties 
in state transferring. Furthermore, non-autonomic system 

appears in tracking control, all of which show many diffi-
culties in a quantum system’s trajectory tracking control.  

In [6], with the help of some concepts in system control, 
we studied trajectory tracking of quantum state: introducing 
an error state e(t) by defining subtraction between target 
state ˆ ( )f t  and system state ˆ ( )t . We changed the tracking 

control goal of ˆ ( )t  following ˆ ( )f t  into a regulation 

problem of error state e(t) from the arbitrary initial error 
state e(0) to its stable state e(tf) which is a zero matrix and 
denoted by e(tf)=O. To design a proper control law, we also 
introduced a unitary transformation: 0( ) exp( )U t itH   to 

remove the drift item with H0 which makes it difficult to 
determine the sign of the first order derivative of Lyapunov 
function. 

We find that the unitary transformation introduced in [6] 
can not only eliminate the drift item with H0 but also turn 
the time-dependent target state ˆ ( )f t  of original system into 

a stationary state 0
ˆ

f . In other words, with the help of the 

unitary transformation the system state ˆ ( )t  tracking target 

state ˆ ( )f t  simultaneously becomes the steering problem 

of the system state toward a target initial state 0
ˆ

f  from 
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which we think the procedure of introducing error state e(t) 
is not necessary in quantum tracking control, which moti-
vates this paper.  

In this work, the unitary transformation will be applied to 
the original system, which changes free-evolutionary target 
system ˆ ( )f t  into a time-independent state 0

ˆ .f  We 

achieve the tracking goal by steering system initial state 0̂  

to 0
ˆ

f . In such a case, the stable final state 0
ˆ

f  of steering 

problem is no longer a zero matrix, which is much different 
from the case in [6]. Therefore the design of control law and 
the proof of convergence are more difficult than that in the 
former.  

1  Description of system model 

The controlled system in this paper is based on quantum 
Liouville equation acting on the Hilbert space: 

    ˆ ˆ, ,i t H t
t
     

    0
ˆ ˆ0 ,   (1) 

    0
ˆ ˆ, ,f fi t H t

t
     

    0
ˆ ˆ0 ,f f   (2) 

where  0
1

.
M

m m
m

H H f t H


   H0 and Hm represent sys-

tem’s internal (or free) and external (or control) Hamiltoni-
an, respectively, and all of them will be assumed to be 
time-independent. fm(t) are time-dependent external control 
fields. We choose the Planck constant 1  for conven-
ience. Eq. (1) is the controlled system and eq. (2) describes 
the target system which is time-dependent and free-evolu-     
tionary. 

For systems (1) and (2), the expected control goal is: for 
arbitrary initial state of system (2), state ˆ ( )t  of (1) will 

follow target system (2). Since the evolution of a closed 
quantum systems is unitary, the spectrum of ˆ ( )t  is time- 

invariant, viz. ˆ ˆ[ ( )] [ ( )]n n
fTr t Tr t  . 

The transformation deduced by a linear unitary operator 
is called unitary transformation. Here we introduce unitary 
transformation 0( ) exp( )U t itH   in original systems (1) 

and (2), and the controlled state ˆ ( )t  and target state ˆ ( )f t  

become 

 
       
       

ˆ ,

ˆ ,f f

t U t t U t

t U t t U t

 

 








 (3) 

where “+” denotes conjugate, ˆ ( )t  and ˆ ( )f t  are system 

state and target state before unitary transformation, respec-
tively. Because of (0) (0) 1U U   (t=0), one has (0)   

0
ˆ ˆ(0) ,  0

ˆ ˆ(0) (0)f f f    after transformation. More-

over, target system (2) is free-evolutionary under free Ham-
iltonian H0. The solution of (2) is ( )ˆ ˆ( ) (0) ( )f fU t Ut t    

where U(t) is the evolution matrix and 0( ) exp( )U t itH  . 

Substituting this solution into (3), the transformed target 
state ( )f t  becomes 

               0
ˆ ˆ ˆ0 0 .f f f ft U t U t U t U t        (4) 

Therefore the original systems (1) and (2) after unitary 
transformation will be 

        , ,m m
m

i t f t H t t
t
       

    0
ˆ0 ,   (5a) 

   0
ˆ .f ft   (5b) 

Eq. (5) is the new controlled and target systems from which 
one can see that: 

Remark 1.  State ˆ ( )f t in original target system (2) evolves 

according to Liouville equation, which is time-dependent 
and non-stationary. After unitary transformation the trajec-
tory of target system in (5) becomes time-independent and 
stationary which is a constant value and equals to the initial 
state 0

ˆ
f of target system.  

Remark 2.  After the transformation the control Hamil-
tonian Hm, which is time-independent, becomes Hm(t) with 
time-dependent and determines the evolution of states in 
interaction picture. 

Unitary transformation in this paper has two meanings, 
one of which is the rotation of the basic vectors in Hilbert 
space. We say a unitary operator leads to the rotation of the 
Hilbert space. New state operators (t) and f (t) are used to 
describe the transformed quantum system (5). Under unitary 
transformation, all physical properties are unchanged. The 
other meaning is that only control Hamiltonian remained in 
new system (5a) makes every item in the first order deriva-
tion of Lyapunov function controllable, which is convenient 
to design control law. 

By introducing unitary transformation, the original tra-
jectory tracking problem of system state ˆ( )t following free- 

evolutionary target state ˆ ( )f t becomes the steering problem 

of state (t) being regulated to ˆ (0)f in system (5).  

2  Design of control law 

Among many control methods, the Lyapunov-based method 
is simple and easy to design. The basic idea of Lyapunov- 
based method is to select V(x) as Lyapunov function, which 
must satisfy the following three conditions: (i) V(x) is con-
tinuous and its first-order partial derivatives is also contin-
uous in its definition; (ii) V(x) is positive semi-definite, i.e. 
V(x)0; (iii) The first order time derivative of the Lyapunov 
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function is negative semi-definite, i.e. ( ) 0V x  . If they are 

true then the control system is stable. In system control field 
one often uses the Lyapunov-based method to design the 
control law because this controller design method can 
guarantee the whole control system is stable. We will use 
the Lyapunov-based method next. 

Select the average value of an observable quantity as the 
Lyapunov function here 

   ,V tr P C   (6) 

where P is the observable operator, and it is not necessarily 
positive definite as it not always corresponds to an actual 
observable quantity. P is also called a virtual mechanical 
quantity operator. C is a constant used to adjust the value of 
Lyapunov function.  

According to the third condition of Lyapunov function 
and system (5), one can obtain 

     ( ) , .m m
m

V f t tr iH t t P      (7) 

For the sake of simplicity and availability we let each 
item in the right side of (7) of summation sign be non-posi-     
tive in order to ensure 0V  . The control law can be derived 
as 

     ( ) , ,m m mf t k tr iH t t P     0,mk   (8) 

where km>0 is the control gain which is used to adjust the 
convergence speed of the system state. 

Generally, control law (8) is only a stable control and 
cannot always guarantee the system converges to its target 
state. Because of the probability control in quantum system, 
only asymptotic stable control can guarantee the system to 
achieve the target state completely. Next we will study the 
conditions of convergence of the control law (8). 

Firstly, an appropriate observable P will be constructed 
to ensure the stable target state ˆ (0)f  to be the minimum 

point of (6). 
One can rewrite the condition (ii) and (iii) as 

    min ,fV V


   (9a) 

   0.fV    (9b) 

These conditions ensure a specific form of P. In those 
cases the target state is a stable point in sense of Lyapunov. 
According to (9b), states ( )t , which induce the control 

fields fm(t) to be zeros, belong to the set 

     : , 0, , .mtr iH t P m t   R  (10) 

Different from the method of introducing error state in 
[6], where stable error state is always zero matrix, the 
method in this paper is easy to get the condition of operator 

P. However no clear information can be obtained from (9). 
The coherent vectors will be used here to construct observ-
able operator P. 

Rewrite (9) as 

    min ,ftr P V


   (11a) 

 f R . (11b) 

A Hermite matrix is decomposed by means of a unitary 
Lie algebra. In such a way, a matrix is expressed as coher-
ent vectors. The bases of a unitary Lie algebra are described 
as 

  1, .mX X  (12) 

And the following conditions hold 

   0ltr X  , (13a) 

   .l j ljtr X X   (13b) 

For , , 0j kl     , one has 

 , .j j k k l
j k

X X iX 
 

 
 
   (13c) 

Then an n-dimensional state density matrix can be rewritten 
as 

 / .l lI n x X    (14) 

In such a way, the coherent vector R of a density matrix 
 can be expressed as 

  21 2 1
, , .

T

n
R x x x 

   (15) 

The module of coherent vector indicates the purity of 

density matrix, which reaches its maximum  1n n  

when  is pure state and zero of maximum mixed-state I/n.  
Because of the unitary characteristic of closed quantum 

system, the purity in evolution is unchanged, then at any 
time it is satisfied 

 
2

l
l

x C , C is a constant. (16) 

We assume that system state and target state both are 
controllable in this paper. 

According to the theoretical analysis mentioned above, 
the target state and observable operator P are unfolded as 
follows: 

 ,f j j
j

I n f X    (17a) 

 0 .k k
k

P c I c X   (17b) 
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Substituting (17) into (11), one has 

   0 .f k k
k

tr P c c f    (18) 

If we want to get the minimum point of (18), then 

 ,  0,k kc f    (19) 

which implies coherent vector RP of operator P is opposite 
in direction from that of target state f : 

 ,  0.
fPR R    (20) 

Therefore the simplest method to construct the observe op-
erator P is to choose 

 .fP    (21) 

The structure of P in (21) is same as that in [6] which 
ensures f  is the minimum point of Lyapunov function (6) 
and control law (8) is stable. 

The other procedure of convergence proof is the same of 
that in [7]. We do not repeat it here. 

3  Numerical simulation experiments and results 
analysis 

In order to demonstrate the effectiveness and advantage of 
the method proposed in this paper, two examples and results 
analysis will be given in this section. 

A five-level energy quantum system used both in [8] and 
[9] is selected, where the free Hamiltonian is  

0

1 0 0 0 0

0 1.2 0 0 0

0 0 1.3 0 0

0 0 0 2 0

0 0 0 0 2.15

H

 
 
 
 
 
 
 
 

. 

Eigenvalues of H0 are 1=1, 2=1.2, 3=1.3, 4=2, 5=2.15. 
The corresponding eigenstates are  

1 2 3 4 5

1 0 0 0 0

0 1 0 0 0

0 ,  0 ,  1  0  and 0 .

0 0 0 0 0

0 0 0 1 1

    

         
         
         
             
         
         
                  

，  

It is assumed that initial state of system (1) is 0̂ . The free- 

evolutionary target system (2) has an initial value 0
ˆ .f  

According to the conditions mentioned above, after uni-
tary transformation new system (5) replaces the original 
systems (1) and (2). The tracking problem has become state 
steering one with new state ( )t  in system (5) from its ini-

tial state 0̂  to a stationary target state 0
ˆ

f . 

In this system, all the transition frequencies are different 
viz. , ( , ) ( , )jk pq j k p q    where ,jk j k     which 

satisfies assumption 1 of convergence conditions in [7]. 
According to assumption 2, control Hamiltonians must be 
full connected, which means ten control Hamiltonians are 
needed for this system. However in most cases, we do not 
need so many control Hamiltonians, the number of which is 
determined by the concrete structure of 0̂  and 0

ˆ
f . 

Example A.  The initial state of system (1) is an eigenstate  

1

1

0

0

0

0



 
 
 
 
 
 
  

 of H0, then 0

1 0 0 0 0

0 0 0 0 0
ˆ 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0



 
 
 
 
 
 
 
 

. 

The probability superposition of eigenstate |2 and |3 is 
the initial state of free-evolutionary target system (2), viz. 

0 2 31 2 1 2f    ,  

0 0 0
ˆ

f f f  

0 0 0 0 0

0 1 1 0 0

0.5 0 1 1 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
  
 
 
 
 

. 

Considering the specific forms of 0̂  and 0
ˆ

f , the density 

matrixes of initial state and target state only have differ-
ences in the population of energies 1, 2 and 3 and the inter-
ference item of energies 2 and 3. So the designed control 
law is aimed to these different items, that is to say, interac-
tion only existed between energies 1, 2 and 3. Three control 
Hamiltonians are enough to deal with the problem in this 
section shown as  

1 2

0 1 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0

,  ,0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

H H

   
   
   
    
   
   
   
   

 

 3

0 0 0 0 0

0 0 1 0 0

.0 1 0 0 0

0 0 0 0 0

0 0 0 0 0

H

 
 
 
 
 
 
 
 

 (22) 

Next, we consider the diagonal elements nn(n=1, 2…5) 
of density matrix which is the population of state, and off- 
diagonal elements 23, which represents interference item. 
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Here we mainly observe the tracking of interference item 
23. 

According to (22), the control fields corresponding to 
each Hamiltonian are f1, f2 and f3, respectively. Control law 
can be obtained from (8) where k=0.5, f0=0.015.  

To demonstrate the tracking of system (1) to system (2) 
we keep data of control function fm(t), m=1, 2, 3 at all times 
and apply them to original system (1). It is known that the 
population of target system (2) is unchanged under unitary 
evolution. Figure 1 displays the effectiveness of state steer-
ing of (t) from its initial state 0̂  to final state 0

ˆ
f  of 

system (5), in which Figure 1(a) is the evolution of diagonal 
items nn, n=1, 2, 3 and interference item 23 of state (t).  

From Figure 1(a) one can see that both of them evolves 
towards relevant items of target state 0

ˆ
f . Figure 1(b) is 

the tracking of interference item in which dot line is free- 
evolutionary trajectory of 23

ˆ
f  of target system state ˆ ( )f t  

and solid line is tracking curve of 23̂  of controlled system 

state ˆ ( )t . Figure 1(c) shows the control fields fm(t). We set 

a performance index to describe the distance between initial 

state and target state:     2

fv t t   . Here, v=1.4125× 

106 (t = 30 a.u.). 
Example B.  We choose the same example as in [8], 

where the initial state of system (1) is a superposition state 

0 1 41 3 2 3    . The initial target state of 

system (2) is an eigenstate 3 [0,0,1,0,0]T  . 

Here we choose the same parameters k=0.15 and 

0.8 0 0 0 0

0 1.1 0 0 0

0 0 0.4 0 0

0 0 0 1.2 0

0 0 0 0 0.6

P

 
 
 
 
 
 
 
 

 

as those in [8], but a different control Hamilton is selected 
of the form:  

0 0 1 0 0

0 0 0 0 0

1 0 0 1 0

0 0 1 0 0

0 0 0 0 0

cH

 
 
 
 
 
 
 
 

, 

where interactions exist between energies 1 and 3 and be-
tween energies 4 and 3, respectively. The simulation ex-
perimental results are shown in Figure 2, which demon-
strates the effectiveness of state steering of (t) from its 
initial state 0̂  to the final one 0

ˆ
f . Figure 2(a) shows the 

population evolution, Figure 2(b) is the control law and 
Figure 2(c) shows the interference item 14 in which dashed  

 

Figure 1  (a) Population of state (t) in system (5); (b) tracking of 23 for 
original systems (1) and (2); (c) control fields fm(t). 

line indicates the item of target state and solid line indicates 
the corresponding item of (t). 

To achieve the same goal one needs a control time of 400 
a.u. in [8], but form Figure 2 one can see that here a differ-
ent control Hamiltonian designed results in a shorter time of 
less than 150 a.u. 

In experiment B, we can divide the control Hamiltonian  
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Figure 2  (a) Population of state (t) in system (5); (b) control fields f1(t); 
(c) tracking of interference item 14. 

into two parts, as in experiment A. If we set 

 1 2

0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

,  ,1 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0

H H

   
   
   
    
   
   
   
   

 (23) 

 

Figure 3  (a) Population of state (t) in system (5); (b) control fields f(t); 
(c) tracking of interference item 14. 

where Hc=H1+H2. Then two control fields will be needed. 
The results are shown in Figure 3, where the three figures 
correspond to the ones in Figure 2. We can see the time to 
complete control task is shorter than that in Figure 2, which 
is less than 100 a.u. In Figure 2, there is only one control 
Hamiltonian included all energy transforms, so control ac-
tion on all energy is the same, which brings restrictions to 
control fields and lengthens the time to complete control 
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task, sometimes even causes larger error.  

4  Conclusion 

In this paper we have developed unitary transformation to 
change tracking problem of quantum state into steering one, 
which leads to the same results as in [6]. The special unitary 
transformation makes tracking problem in closed quantum 
system easier than that in classical one. If a closed quantum 
system is considered, the tracking problem of a free-evolu-     
tionary quantum system, which is a very common situation, 
becomes the regulation of controlled system initial state to 
target system initial state. It is a special case of the tracking 
problem. The error state is not necessary. But it is not the 
case for a non-free-evolutionary target system, such as a con-
trolled target system and a predefined target time-dependent 
function, or in open quantum system [10,11], which need to 
use the method in [6]. We also demonstrate that different 
structure of control Hamiltonians, which in fact describes 
different control paths such as the comparison analysis be-
tween experiment B-2 and [8], affects control time. The 
control Hamiltonians with same structure, such as experi-
ment B-2 and B-3 in this paper, may have shorter control 
time when they are organized separately instead of as a 
whole. 
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