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We discuss the problem of identification of the dynamical generators for open two-level quantum systems in a Markovian environment.
Based on Bloch sphere representation, the identification problem is converted to the estimation of a 3-dimensional real process matrix
A and an inhomogeneous term c. The parameter identifiability and sufficient conditions for completely identification of A and c are
obtained. Further discussion shows that the obtained sufficient conditions are not always necessary. The approach can be generalized
to finite-level open quantum systems in an arbitary Markovian environment.
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The characterization of unknown quantum systems and pro-
cesses is a key problem in quantum information and quan-
tum control [1–3]. In the quantum information domain many
techniques have been developed for the characterization of
quantum dynamical maps, such as standard quantum process
tomography (SQPT) [1,4,5], ancilla-assisted process tomog-
raphy (AAPT) [6–8] and direct characterization of quantum
dynamics (DCQD) [9]. All these procedures are often known
as quantum process tomography (QPT) [1,10]. QPT schemes
are often used to characterize a global process by estimating
the parameters of a superoperator. In the quantum control
domain, however, what we are more interested in are gen-
erators of the dynamical evolution, such as the Hamiltonian
and dissipation generators. The problem of Hamiltonian to-
mography (HT), in particular direct Hamiltonian estimation
from projective measurements, has recently been discussed
by several authors [11–15]. Some generalizations to dis-
sipative systems have also been considered [16, 17] but in
general these have assumed a particular decoherence model
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such as dephasing in the Hamiltonian basis [17] or relaxation
in a fixed computational basis [16].

Here we consider the generalization of these techniques
for two-levels when there are no assumptions on the dissipa-
tive processes except that they are Markovian. The evolution
of an open quantum system in a Markovian environment can
be characterized by the first standard form given in [18] or
the Lindblad equation given in [19]. Alternatively, the state
of a two-level open system can be characterized by a real
vector r and its evolution in a Markovian environment char-
acterized by a system of first order (inhomogeneous) linear
differential equations with constant coefficients, which form-
ing a 3-dimensional real matrix A and a 3-dimensional real
vector c. A and c can be explicitly related to the Hamilto-
nian and dissipation parameters in the first standard form of
the master equation, and therefore the problem of identifying
the dynamics of a quantum system in an unknown Markovian
environment is equivalent to identifying A and c.

When the type of dissipative processes is known then the
problem of fully characterizing the dynamics can often be re-
duced to estimating a small number of parameters such as
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dephasing rates. When there is no a-priori knowledge about
the structure of the environment, however, then a large num-
ber of parameters have to be simultaneously estimated, and
the question arises what resources are required to achieve
this, or alternatively, give certain fixed resources, what pa-
rameters are identifiable. Here we analyze the problem of
identifiability of A and c from time series data obtained from
projective measurements. Based on the Bloch sphere repre-
sentation, the projective measurement is characterized by a 3-
dimensional real unit vector m. Using the Laplace transform
we show that a sufficient condition for complete identification
of A and c is that at least three linearly independent projective
measurements mq(q = 1, 2, 3) and three different initial states
rp(0)(p = 1, 2, 3) be permitted, and {rp(0) − rs} are linearly
independent where rs is a steady state of the system. This
condition is also a sufficient condition in the time-domain but
it is not always necessary, i.e. experimental requirements can
often be relaxed in practice.

The rest of this paper is organized as follows. In Section 1,
the system identification problem for open two-level quantum
systems in a Markovian environment is characterized. In Sec-
tion 2 an estimation method based on the Laplace tansform is
given. The identifiability of parameters based on this method
is analyzed and a sufficient condition for complete identifi-
cation is obtained. A time-domain method for estimation is
also considered, and examples are used to illustrate that the
sufficient condition is not always necessary. The conclusions
are summarized in Section 3.

1 System identification problem

The evolution of an N-level open quantum system in a
Markovian environment is governed by a master equation:

d
dt
ρ(t) = − i

�
[H, ρ] +

N2−1∑

n,m=1

fnmD(Fm, Fn), (1)

where H is a Hermitian operator representing the Hamilto-
nian of the system and ρ(t) is a unit-trace positive operator
representing the state of the system at time t. The dissipation
generators are given by [18, 20]

D(Fm, Fn) = FnρF
†
m −

1
2

(
ρF†mFn + F†mFnρ

)
, (2)

where the operators Fn(n = 1, . . .N2−1) and FN2 = 1√
2

I2 are
orthonormal

(Fn, Fm) ≡ tr{F†n Fm} = δnm (3)

and form a complete basis of the linear operators on N-
dimensional Hilbert space. The matrix formed by the coeffi-
cients fnm is Hermitian and positive.

For a two-level system we can characterize the system

state by a real vector r

r =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rx

ry

rz

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

tr(σxρ)

tr(σyρ)

tr(σzρ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where σi(i = x, y, z) are the Pauli operators. Based on the
properties of the Pauli operators, the Hermitian operator H
can be written as

H
�
= h0I2 + hxσx + hyσy + hzσz, (5)

where the coefficients h j( j = 0, x, y, z) are real, and Fn can be

chosen as F1 =
√

2
2 σx, F2 =

√
2

2 σy, F3 =
√

2
2 σz.

By means of eqs. (1)–(2) and eqs. (4)–(5), the evolution of
two-level Markovian open quantum systems can be expressed
as

ṙ(t) = Ar(t) + c. (6)

Setting fmn = f R
mn + i f I

mn where ( f R
mn) is a real symmetric ma-

trix and ( f I
mn) are real-anti-symmetric matrix, we have

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−( f R
22 + f R

33) f R
12 − 2hz f R

13 + 2hy

f R
12 + 2hz −( f R

11 + f R
33) f R

23 − 2hx

f R
13 − 2hy f R

23 + 2hx −( f R
11 + f R

22)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

c = 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f I
23

f I
13

− f I
12

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7)

Eq. (6) implies that the evolution of r(t) is completely char-
acterized by A and c and eq. (7) further indicates that there
is a one-to-one correspondence between the Hamiltonian and
dissipation parameters and the matrix A and vector c with
respect to the Pauli basis. From eq. (7), it is obvious that
fnm(n,m = 1, 2, 3) and h j( j = x, y, z) can be obtained from A
and c. Thus, the identifiability problem is equivalent to the
estimation of the Bloch matrix A and the vector c.

2 Parameter identifiability

2.1 Information from projective measurements

If the system is initialized in the state r(0) and measured by
projective measurement {|m0〉〈m0|, |m1〉〈m1|} at time t j( j =
1, · · ·NM), then the information obtained is

{
p0(t j) = tr{|m0〉〈m0|ρ(t j)},
p1(t j) = tr{|m1〉〈m1|ρ(t j)}, (8)

where pk(t j) is the probability of obtaining the output k at
time t j and p0(t j) + p1(t j) = 1. Let

rm(t j) = p0(t j) − p1(t j) = tr{(|m0〉〈m0| − |m1〉〈m1|ρ(t j))}, (9)
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then rm(t) contains all information obtained at time t j. Ex-
panding this measurement operator with respect to the Pauli
matrix

|m0〉〈m0| − |m1〉〈m1| = mxσx + myσy + mzσz, (10)

we obtain

rm(t j) = mxrx(t j) + myry(t j) + mzrz(t j) = mT r(t j), (11)

where m = (mx,my,mz)T . Note that m is a real vector and
mT m = 1. Thereby, the information obtained from projective
measurement is {rm(t j) : j = 1, · · ·N}.

2.2 Laplace transform estimation of A and c

As quantum states form a bounded convex set and the evo-
lution operator must map quantum states to quantum states,
it can be shown that quantum systems governed by a Marko-
vian master equation always have at least one steady state. In
particular, the completely mixed states r = 0 is a steady state
of the system only when c = 0.

In the long-term limit the state of the system will either
converge to a steady state or a limit cycle around a steady
state rs. When there are three different projective measure-
ment mj( j = 1, 2, 3), eq. (11) gives

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

rs
m1

rs
m2

rs
m3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mT
1

mT
2

mT
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
rs. (12)

Thus rs can be obtained when mj( j = 1, 2, 3) are linearly
independent and

c = −Ars. (13)

Let
x(t) = r(t) − rs, (14)

then the eq. (6) can be rewritten as

ẋ(t) = Ax(t). (15)

Taking the Laplace transform over eq. (15) gives

sX(s) − x(0) = AX(s), (16)

where X(s) is the Laplace transform of x(t). If there exist
three different initial states r j(0), j = 1, 2, 3, with correspond-
ing Laplace transforms X j(s), then we can use the evolution
equations (16) for the three initial states and get

(sI − A)[X1(s), X2(s), X3(s)] = [x1(0), x2(0), x3(0)]. (17)

Thus if det[X1(s), X2(s), X3(s)] � 0, we formally have

A = sI − [x1(0), x2(0), x3(0)] [X1(s), X2(s), X3(s)]−1 . (18)

Hence, if we can estimate the Laplace transforms X j(s) for
three initial states r j(0), j = 1, 2, 3, for any value of s, we can

reconstruct A, provided the linear independence condition
det[X1(s), X2(s), X3(s)] � 0 holds. c can be reconstructed
accordingly by eq. (13).

In principle, the Laplace transform R(s) corresponding to
r(t) can be estimated from time series data for rm(t j). For
example, the Laplace transform of the measurement signals
rm(t) can be estimated via

Rm(s) =
∫ ∞

0
rm(t)est dt �

N∑

j=1

rm(t j)e
st jΔt j (19)

for sufficiently large NM and sufficiently small Δt j = t j −
t j−1( j = 1, · · ·NM). From eq. (11) we have Rm(s) = mT R(s).
If there are three projective measurements mj( j = 1, 2, 3),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rm1 (s)

Rm2 (s)

Rm3 (s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mT
1

mT
2

mT
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
R(s). (20)

If det(m1 m2 m3) � 0 then

R(s) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

mT
1

mT
2

mT
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−1 ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Rm1 (s)

Rm2 (s)

Rm3 (s)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (21)

Thus, R(s) can be estimated from the results of pro-
jective measurements of the system state at different
times when three different projective measurements satisfy
det[m1 m2 m3] � 0. X(s) = R(s) − rs/s can be obtained
accordingly.

Theorem. The Bloch operator A for a two-level system
governed by the master equation (7) can be completely iden-
tified if the system can be initialized in states {r1(0), · · · rp(0)}
and measured by the projective measurements {m1, · · ·mq}
satisfying

span{r1(0)− rs, · · · rp(0)− rs} = span{m1, · · ·mq} = R3, (22)

where rs is one steady state of the system, p, q � 3 and R3 is
3-dimensional real space.

Proof. From the analysis given above, we can infer that
for span{m1, · · ·mq} = R3, X(s) can be obtained. Thus A
is identifiable when det[X1(s), X2(s), X3(s)] � 0 is satisfied.
By computing the determinant of both sides of eq. (17), it is
obtained that

det(sI−A) det[X1(s), X2(s), X3(s)] = det[x1(s), x2(0), x3(0)].

Then det[X1(s), X2(s), X3(s)] � 0 only when det[x1(0),
x2(0), x3(0)] � 0 is satisfied. When span{r1(0)−rs, · · · rp(0)−
rs} = R3, there exist at least three elements in the set which
make det[x1(0), x2(0), x3(0)] � 0. Thus A is identifiable. Ac-
cordingly, c is identifiable. �
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2.3 Time domain estimation of A and c

Alternatively, we can also consider direct time-domain esti-
mation of A. From eq. (15) we know that

x(t) = eAt x(0) = Ce(t), (23)

where C is a 3-dimensional real matrix determined by the
eigenvectors of A and the initial state r(0), and e(t) is
time-dependent 3-dimensional real vector determined by the
eigenvalues and Jordan normal form of A. The possible e(t)
are given in Table 1.

Hence, we can estimate A in time domain by following
steps:

(1) Determine the type of e(t) of the unknown system and
estimate the coefficient matrix C.

(2) Estimate A from e(t) and C via

A = [C1ė(t) C2ė(t) C3ė(t)][C1e(t) C2e(t) C3e(t)]−1 (24)

when det[C1e(t),C2e(t),C3e(t)] � 0, where C j is correspond-
ing to different initial state r j(0).

The full coefficient matrix C in the first step can be
obtained if three linearly independent projective measure-
ment mp(p = 1, 2, 3) are available. Eq. (23) shows that
det[C1e(t),C2e(t),C3e(t)] � 0 only when x j(0)( j = 1, 2, 3)
are linearly independent, i.e. r j(0)−rs( j = 1, 2, 3) are linearly
independent. c can be reconstructed accordingly by eq. (13).

Comparing the time domain method with the Laplace
transform method, we find that the key point of the time do-
main method is to estimate e(t) while the Laplace transform
approach requires computation of R(s) from the measure-
ment signals rm(t j). The sufficient condition in the Theorem
is also obtained from the time-domain method.

2.4 Necessity of the condition in Theorem

In many cases there are restrictions with regard to the ini-
tial states which we can prepare prior to characterization of
the dynamics. Suppose that one steady state of the system
is 0 and the system can only be initialized in a fixed ini-
tial state r(0), then c = 0 and x(t) = r(t). Let us assume
r(0) = (0, 0, 1)T . If we still have three linearly independent

Table 1 Relation of e(t) and Jordan normal form of A with γm , ω real

Jordan form of A eT (t)
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 1 0

0 γ1 1

0 0 γ1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(eγ1 t , teγ1 t , t2eγ1 t)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ1 1 0

0 γ1 0

0 0 γ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(eγ1 t , teγ1 t , eγ2 t)

diag(γ1 , γ2, γ3) (eγ1 t, eγ2 t , eγ3 t)

diag(γ1 , γ2 + iω, γ2 − iω) (eγ1 t , eγ2 t cos(ωt), eγ2 t sin(ωt))

projective measurements m j( j = 1, 2, 3) at our disposal then
R(s) can be estimated by eq. (21). In particular, given the
same time domain data, we can compute R(s) for different
values of s. By eq. (16), if we choose three different s1, s2, s3

then

A[R(s1), R(s2), R(s3)]

= [s1R(s1) − r(0), s2R(s2) − r(0), s3R(s3) − r(0)]. (25)

Provided det [R(s1) R(s2) R(s3)] � 0, eq. (25) gives

A = [s1R(s1) − r(0), s2R(s2) − r(0), s3R(s3) − r(0)]

× [R(s1), R(s2), R(s3)]−1 . (26)

Assuming A = (anm)(n,m = 1, 2, 3), by eq. (16) we can get

R(s) = (sI − A)−1r(0)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12a23 − a13a22 a13 0

a13a21 − a23a11 a23 0

a11a22 − a12a21 −(a11 + a22) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

s

s2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

det(sI − A)
(27)

for s which are not eigenvalues of A. Then for s j( j = 1, 2, 3)
which are not eigenvalues of A, we still have

[det(s1 I − A)R(s1) det(s2 I − A)R(s2) det(s3 I − A)R(s3)]

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a12a23 − a13a22 a13 0

a13a21 − a23a11 a23 0

a11a22 − a12a21 −(a11 + a22) 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1

s1 s2 s3

s2
1 s2

2 s2
3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⇒ det[R(s1) R(s2) R(s3)]Π3
j=1 det(s jI − A)

=

∣∣∣∣∣∣∣
a12a23 − a13a22 a13

a13a21 − a23a11 a23

∣∣∣∣∣∣∣
(s2 − s1)(s3 − s1)(s3 − s2).

(28)

The condition det[R(s1), R(s2), R(s3)] � 0 can only be satis-
fied if ∣∣∣∣∣∣∣

a12a23 − a22a13 a13

a13a21 − a11a23 a23

∣∣∣∣∣∣∣ � 0. (29)

More generally, if we can prepare the initial state r(0),
there exists a real orthogonal transformation matrix TI that
maps r(0) to TI r(0) = (0, 0, r0)T where 0 < r0 � 1 and eq. (7)
can be represented as

TI R(s) = (sI − TI AT T
I )−1TI r(0). (30)

In particular we have

det [R(s1) R(s2) R(s3)] = det [TI R(s1) TI R(s2) TI R(s3)] ,
(31)

and we can find three different s1, s2, s3 such that
det [R(s1), R(s2), R(s3)] � 0 only when

∣∣∣∣∣∣∣
aI

12aI
23 − aI

22aI
13 aI

13

aI
13aI

21 − aI
11aI

23 aI
23

∣∣∣∣∣∣∣
� 0, (32)
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where TIAT T
I = (aI

i j).
This example shows that knowledge of the trajectory of a

single initial state is sufficient for complete identification, so
the sufficient condition for identifiability is not strictly neces-
sary.

3 Conclusion

The evolution of an open two-level quantum systems subject
to a Markovian environment is characterized by a system of
first order linear differential equations with constant coeffi-
cients, which form a three-dimensional real matrix A, and
an inhomogeneous term c. There is a one-to-one correspon-
dence between A and c and the Hamiltonian and dissipation
parameters. We have considered the problem of identifiabil-
ity of the dynamic generator A and the vector c from time-
series data of a set of observations. Based on the Laplace
transform sufficient conditions for identifiability are obtained.
The sufficient conditions also apply for the time domain es-
timation method. The experimental resource requirements
can often be relaxed, however, i.e. the sufficient conditions
are not always necessary. Furthermore, when there exists
some prior information about the dynamics of the system to
be identified then the resources for complete identification
can be decreased (see e.g. [21]). The minimum requirements
for complete identifiability of A under different experimental
conditions need be analyzed further. The basic approach can
be generalized to N-level systems.
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tional Natural Science Foundation of China (60974037, 61134008). SGS
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