

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp

*Corresponding author (email: mshou@uestc.edu.cn)

Article

Artifical Intelligence May 2012 Vol.57 No.15: 18861892

 doi: 10.1007/s11434-012-5162-7

A novel method for solving the multiple traveling salesmen problem
with multiple depots

HOU MengShu* & LIU DaiBo

School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

Received December 15, 2011; accepted March 23, 2012

Multi-traveling salesman problem (MTSP) is an extension of traveling salesman problem, which is a famous NP hard problem,
and can be used to solve many real world problems, such as railway transportation, routing and pipeline laying. In this paper, we
analyze the general properties of MTSP, and find that the multiple depots and closed paths in the graph is a big issue for MTSP.
Thus, a novel method is presented to solve it. We transform a complicated graph into a simplified one firstly, then an effective
algorithm is proposed to solve the MTSP based on the simplified results. In addition, we also propose a method to optimize the
general results by using 2-OPT. Simulation results show that our method can find the global solution for MTSP efficiently.

combinatorial optimization, traveling salesman problem, MTSP, algorithm

Citation: Hou M S, Liu D B. A novel method for solving the multiple traveling salesmen problem with multiple depots. Chin Sci Bull, 2012, 57: 18861892, doi:
10.1007/s11434-012-5162-7

The traveling salesman problem (TSP) is a typical combi-
natorial optimization problem. A generalization of the TSP
is the multiple traveling salesmen problem (MTSP), which
determines a set of routes enabling multiple salesmen to
start at and return to depots.

The TSP consists of finding the shortest closed route to
visit all cities. Several methods based on heuristics have
been proposed to solve it, including classical search maps
[1], simulated annealing [2], artificial neural networks (NNs)
(Kohonen-type self-organizing maps [3], Hopfield-type
NNs [4]), genetic algorithms (GAs) [5], evolutionary pro-
gramming [6], ant colony optimization [7], tabu search [8],
fine-tuned learning [9], etc.

Although the TSP has received a great deal of attention,
research on the MTSP is limited. Bektas [10] introduced
comprehensive formulations and solution procedures for the
MTSP, and indicated that exact algorithms [11,12] could
always obtain degenerated results when solving the MTSP.
Heuristic algorithms, neural network-based methods, and
ant systems have all been proposed to solve the MTSP.

Heuristic algorithms are the preferred method, while neural
network-based methods are widely used to solve path plan-
ning [13], robotic systems [14] and authentication [15].
Ryan et al. [16] used tabu search to solve the MTSP, while
Qu et al. [17] used a competition-based neural network to
solve a minmax MTSP. Thus far, GAs have been applied to
a wide range of application areas, including solving the
MTSP. Liaw et al. [18] proposed a hybrid genetic algorithm,
which is based on tabu search, to solve the MTSP. Carter et
al. [19] researched chromosome representation and related
genetic operators to find an applicable method for solving
the MTSP. Additionally, the ant system, which was proved
by [7], is a perfectly acceptable meta-heuristic for a number
of NP-hard problems. In [20], an ant system is applied to
the MTSP.

The MTSP seems to be more appropriate than the TSP
for practical applications and can be used to simulate many
everyday applications such as transportation logistics, job
planning, vehicle scheduling, and so on. Some reported ap-
plications are presented in [10]. The main applications in-
clude print press scheduling [21], crew scheduling [22],
school bus routing [23], mission planning [24], and the de-

 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15 1887

sign of global navigation satellite surveying system net-
works [25]. Moreover, the MTSP can be used to solve the
problem of multiple traveling robots [26,27], and can be
considered as a relaxation of the vehicle routing problem
(VRP) [28] with the capacity restrictions removed. This
means that all the formulations and solution approaches
proposed for the VRP are also valid and applicable to the
MTSP, by assigning sufficiently large capacities to the
salesmen.

The MTSP can be extended to many variations [10]. As
far as the number of depots and the target paths are con-
cerned, it includes a single depot and multiple depots, as
well as closed and open paths. A closed path starts and ends
at the same depot, whereas an open path does not require
returning to the original depot. This paper presents a novel
method for solving a heterogeneous MTSP which allows
salesmen to start from different depots and end their tours at
the original depots.

1 Definition of the MTSP

Given a set of nodes and M salesmen located at each depot,
the MTSP aims to find M routes for each salesman starting
from a set of depots, and ending at the original depots, so
that each intermediate node is visited exactly once and the
total cost is minimized.

Let G=(V, E, W) be a connected graph, where V={v1,
v2,...,vn} is a set of cities, and { , | , , }i j i jE v v v v V i j    

is an edge set with a non-negative cost matrix W={wij| the
weight of <vi, vj>}. The graph is said to be symmetric if any
<vi, vj>∈E satisfies wij = wji. In this paper, we only consider
symmetric graphs that satisfy the triangle inequality.

Definition 1: w(vi, vj) is the distance or side length be-
tween vi and vj, denoted by wij.

Definition 2: d(i) and subD(i) denote the number of edg-
es connecting to vi in a given graph.

Definition 3: A path denotes a route between two end-
point nodes with degree 1.

Definition 4: A tour denotes a route that starts at one
node and ends at the same node.

Definition 5: The edges connected to home depots in the
final result are called primal edges.

2 Simple model

A simple model, referred to as the SModel, is used to sim-
plify an initial graph, G. The detailed operations and related
restrictive conditions are described below.

All edges belonging to E are sorted in descending order
according to weight and stored in the edge set, SortEdgeAr-
ray. Then, all sorted edges are checked by eq. (1) once only.
If <vi, vj> satisfies

() 2,

() 2,

d i

d j


 

 (1)

it is deleted from SortEdgeArray, and d(i) and d(j) are re-
duced by 1. Once all edges have been checked, the left edg-
es together with all nodes constitute one or more sub-graphs.
The statistical data for the degree of each node is given in
Table 1. The first column lists all possible degrees, while
the second column gives the percentage of nodes with each
degree. The number of nodes with degree greater than 2
accounts for about 16.5% of all the nodes. It is worth noting
that the computational complexity of generating an SModel
is O(eln(e)), where e is the number of edges.

3 New solution for the MTSP

The SModel is proposed to implement the new method,
MDCP (multiple depots and closed paths). After it has been
generated, the subsequent workings of the MDCP are based
on the model.

3.1 Generating an SModel and deleting redundant edges

The MDCP first generates an SModel, and then deletes all
redundant edges in the model and reorganizes isolated paths.
According to the given statistics, about 16.5% of the nodes
have a degree greater than 2 in the SModel, which means
that there must be redundant edges in the model. We refer to
those edges connected to nodes with a degree greater than 2
as redundant candidate edges. For each redundant candidate
edge <vi, vj>, if the condition

 () 2d i  or () 2d j  (2)

is satisfied, it is deleted from SortEdgeArray. All redundant
candidate edges are checked in descending order according
to weight. Once all of these have been checked by eq. (2),
no degree of a node is greater than 2. We denote the result-
ing graph as G0.

3.2 Testing paths

S1 and S2 are two node sets used to record the endpoint
nodes of paths, rings, and isolated nodes in G0. If MDCP
discovers a node with degree 0, the node is stored in an en-
try of S2. If MDCP discovers a ring, the maximal weighted

Table 1 Statistical data for the degree of all nodes after the selection
action

Degree Percentage

2 83.5%

3 11%

4 4%

≥5 ≤1.5%

1888 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15

edge of the ring is deleted and the two endpoint nodes are
stored in an entry of S1. The endpoints of left paths are also
stored in S1.

3.3 Generating m routes

Based on the elements of S1 and S2, the number of paths can
be determined and the following operations, corresponding
to the relation between the numbers of salesmen and paths,
would differ.

(i) Examining the number of paths. The number of
paths is, in fact, the sum of the number of entries in S1 and
S2. We denote the number of paths as Ps and the number of
salesmen as M.

Ps < M, if Ps is less than M, MDCP selects some paths
and divides each of them into multiple paths by deleting the
maximum weighted edges of each selected path until Ps is
no less than M, and then continues to examine the number
of paths as explained below.

Ps = M, if Ps is equal to M, MDCP generates M tours by
linking the two endpoint nodes of each path. If two endpoint
nodes of a path are not connected to each other, the opera-
tion proceeds to that given in section 3.4. Additionally, if M
tours are generated successfully, MDCP optimizes the final
result using the method presented in section 3.5.

Ps > M, if Ps is greater than M, the subsequent operation
is described as follows.

(ii) Path connections. MDCP generates a sub-graph
from all the endpoint nodes, denoted as Gsub=(Vsub, Esub).
Vsub includes all the endpoint nodes stored in S1 and S2,
while Esub is an edge set whose elements are connected to
the nodes stored in Vsub. subD(i) denotes the degree of vi in
Gsub. MDCP continues to check each edge stored in Esub.
For each <vi, vj>, if any one of the following three condi-
tions is satisfied, <vi, vj> is deleted from Esub, and subD(i)
and subD(j) are decreased by 1.

(a) d(i)=1, d(j)=1, subD(i)>1 and subD(j)>1;
(b) d(i)=0, d(j)=1, subD(i)>2 and subD(j)>1;
(c) d(i)=1, d(j)=0, subD(i)>1 and subD(j)>2.
According to the above three conditions, it is guaranteed

that there is at least one edge connected to each node in S1
and at least two edges connected to each node in S2. Fur-
thermore, the left edges of Esub are checked by the follow-
ing three conditions. If <vi, vj> satisfies any one of these, it
is deleted from Esub, and subD(i) and subD(j) are decreased
by 1.

(a) d(i)=1, d(j)=1, subD(i)>1; or d(i)=1, d(j)=1, subD(j)>1;
(b) d(i)=0, d(j)=1, subD(i)>2; or d(i)=0, d(j)=1, subD(j)>1;
(c) d(i)=1, d(j)=0, subD(i)>1; or d(i)=1, d(j)=0, subD(j)>2.
Irrespective of whether the M tours are generated suc-

cessfully by the operations described above, MDCP con-
verges. The number of iterations is no greater than the sum
of the number of entries in S1 and S2.

In other words, if the left edge connects two paths that
are stored in S1 and S2, respectively, MDCP joins the node

stored in S2 to the path stored in S1 and removes the corre-
sponding entry in S2. If the left edge connects two nodes in
S2, MDCP links the two nodes together, stores the new gen-
erated path in S1, and removes the related entries stored in
S2. Similarly, if the left edge connects two nodes in S1,
MDCP merges the two paths into one and deletes the entry
that is not used to represent the new path stored in S1. The
number of entries is thus always reduced. So, the number of
iterations is no more than the sum of the number of entries
in S1 and S2. If G is not a complete graph, the M tours may
not be generated successfully by the method described
above, and then the operation proceeds to that described in
Section 3.4.

3.4 Related remedial methods

Definition 6. If G is a simple graph, N is the number of
nodes, and  denotes the minimum connectivity which is the
minimum degree of all nodes divided by N.

If the number of paths whose endpoint nodes are not
connected to each other is  and the number of endpoint
nodes is  , then the number of isolated nodes is 2  .
The largest possible number of edges connected to endpoint
nodes is (1) 2   , and the maximum possibility, , that

all the endpoint nodes are not connected to each othe is
(1) . If  is 0.5 and  is 5, the probability is less than

0.001.
Two remedial methods are proposed for merging paths or

converting a path into a tour.
(i) Merging two paths into one. This method is used to

link two paths. Two models are proposed to implement it.
Model 1: The first model for merging two paths into one

is shown in Figure 1(a). Nodes va, vn, vi, and vk are endpoint
nodes that are not connected to each other, and vb is adja-
cent with vc. The MDCP tries to connect vk to vc, and then
connects a neighbor of vb to vn which is on the other side of
vc. It is worth noting that the dotted lines denote the newly
added edges, while the dotted line with a slash through it
denotes the edge that will be deleted from the model.

The infeasibility probability of this method, denoted as 1,

is 12 2
1(1 2 (1 (1))) (1 (1 (1)))N                 , where

1 is the number of paths containing only 3 nodes.
Model 2: The second model for merging two paths into

one is shown in Figure 1(b). vi and vk are two endpoint
nodes of a path, while two adjacent nodes, vc and vs, are in-
termediate nodes of the other path. If vi and vk are connected
to vc and vs, respectively, the two paths can be merged into
one. Similarly, the infeasibility probability of this method,

denoted as 2, is 2 1 2 2((1 2) (1))N          .

The objective of the two models is the same. The proba-
bility that any two of the paths can be merged into one is no
less than 1 21 . 

(ii) Converting a path into a tour. The model for con-

 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15 1889

verting a path into a tour is shown in Figure 1(c). As before,
vb is adjacent to vc. va and vk are two endpoint nodes on the
path. If va is connected to vc and vk is connected to vb, the
path can be transformed into a tour by deleting <vb, vc> and
adding <va, vc> and <vb, vk>. The feasibility probability that
a path with N nodes can be transformed into a tour is

2 4 2 21 (1)(1 2) (1) .N     

3.5 Optimization

MDCP optimizes each of the generated tours by replacing
two edges of a tour with a better strategy. Differing from
2-OPT [29], MDCP adds a serial number to each node of
the tour and implements the optimization method by check-
ing the serial numbers. The rules are given below:

(i) Any two adjacent nodes are assigned adjacent serial
numbers.

(ii) Serial numbers are assigned to nodes in ascending
order.

(iii) Four endpoint nodes of two paths can be linked to-
gether by two strategies satisfying theorem 1.

(iv) If the edge connecting the node with the first serial
number to the node with the last serial number is fixed, the-
orem 2 is used to change the topology of the previous tour.

Theorem 1: For two new edges eij and euv, if the sum of
the serial numbers of vi and vj is not equal to that of vu and
vv, the two fixed edges can be replaced by the new edges.

Theorem 2: Let the serial number of vi be 0 and that of vj
be n-1 and <vu, vv> be one of the two selected edges. If the
serial number of vu is greater than the serial number of vv,
<vi, vj> and <vu, vv> can be replaced by <vi, vu> and <vj, vv>.

4 Experiments and computational results

Since there are no open-source benchmarks for testing the
algorithms of the MTSP, we computed some instances pre-
sented in TSPLIB [30], which is the standard public library
for the TSP. Although the MTSP is different to the TSP,
typical instances and optimal results of these can reflect the
performance of MDCP to a great extent.

The instances tested were Euclidean, two-dimensional
symmetric problems with different node-scales. The relation
between TSP and MDCP is as follows: if the total number
of nodes is n, the TSP solution is a connected graph with n
edges and the degree of all nodes equal to 2, while the

MDCP solution consists of M (M is the number of salesmen)
connected graphs with n edges and the degree of all nodes
equal to 2.

To the best of our knowledge, no other method has pre-
viously been proposed for solving the same problem. To
evaluate the performance of MDCP, we compared the
computational results with the optimal results presented in
TSPLIB. Although these results cannot be compared per se,
the optimal results can confirm the level of performance of
MDCP to a large extent. Additionally, all computational
results were optimized by the method proposed in section
3.5.

4.1 Computational results

An analysis of the general results of MDCP is presented in
Table 2. The column Instance gives the names of the tested
instances; column Num lists the node-scale of the tested
instances; and column OPT denotes the optimal result pre-
sented in TSPLIB for each tested instance. MDCP solves all
the given instances with the number of salesmen varying
from 2 to 10. The average time cost for each run is listed in
column T in ms. Irrespective of the number of salesmen
used by MDCP, the number of edges for MDCP is equal to
that of the TSP for a certain instance. As shown in Table 2,
it is obvious that the results obtained differ for different
numbers of salesmen. Although the calculated results are
affected by the number of salesmen, there is no obvious rule
to determine how many salesmen should be used to obtain
the best result. For example, the result for eil51 tested using
6 salesmen is the best of all the results for this instance, and
likewise, the result for st70 using 10 salesmen is the best of
all the results for this instance. It is, however, a certainty
that the topology of the fixed instance affects the computa-
tional result with different numbers of salesmen. The ad-
vantage of MDCP is that it converges quickly.

The values for the difference between the calculated re-
sults and the optimal results are plotted in Figure 2. For
each result, the difference is computed by the following
formula:

general result OPTIMAL

diff
OPTIMAL

.


 (3)

The bold line denotes the pivotal line, and markers linked
by other lines denote the difference of different instances
tested by eq. (3). Obviously, the majority of the tested results

Figure 1 The two remedial models (a) and (b) are used to merge two paths into one, while (c) is used to generate a tour from a path.

1890 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15

Table 2 The general results of MDCP. Num is the node-scale of each instance, OPT is the optimal result presented in TSPLIB, M is the number of sales-
men, T is the average time cost for each instance with different numbers of salesmen

Instance Num OPT M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10 T(ms)

Eil51 51 426 446 459 456 454 444 459 471 493 490 1.3

St70 70 675 758 745 794 808 812 776 753 723 702 3.5

Eil76 76 538 573 558 569 568 580 580 601 637 642 4.5

Rat99 99 1211 1687 1543 1421 1365 1312 1290 1274 1254 1396 7.3

Kroa100 100 21282 24934 24180 25353 25294 24555 23870 24049 23399 23379 13.2

Krob100 100 22141 24752 24829 26042 25149 24273 23943 24211 24705 24165 13.0

Eil101 101 629 685 689 668 648 743 733 726 717 703 12.6

Pr107 107 44303 47428 45242 43365 41509 39690 38360 36622 34884 33512 18.9

Krob150 150 26130 30051 28704 28976 30028 30337 30665 30028 29718 28944 25.4

Kroa200 200 29368 51875 51281 50372 49413 50959 50127 49877 49498 50605 60.6

Tsp225 225 3916 4505 4432 4275 4355 4501 4574 4460 4351 4656 82.3

A280 280 2579 3014 3106 3239 3274 3225 3158 3117 3144 3174 139.5

Lin318 318 42029 53790 52380 51193 49821 49515 49839 50178 49220 49558 154.6

Figure 2 The differences between the general results and optimal results.
The bold line denotes the pivotal line.

are worse than the optimal results, but the results for pr107
are better.

4.2 Optimized results

The optimization proposed in section 3.5 was used to opti-
mize all the computational results presented in Table 2.
Compared to the corresponding results in Table 2, the opti-
mized results are much better. The values for the difference
between the optimized results and the optimal results are plot-
ted in Figure 3. Almost all differences, calculated by eq. (4)

Figure 3 The differences between the optimized results and optimal
results. The bold line denotes the pivotal line.

are below 0.2, with the majority between 0 and 0.1.

optimized result OPTIMAL

diff .
OPTIMAL


 (4)

However, optimizing the computational results increases
the time cost. The calculation formula for the increment in
time cost is expressed as

cost1 cost2

time cost increment 100%
cost2


  , (5)

where cost1 is the time cost of the optimization, and cost2 is

 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15 1891

Table 3 Comparison of total cost for general results of MDCP and optimized results. The total cost decrease denotes the percentage difference in cost
between the general results and the optimized results, and time cost increase denotes the percentage increase in time cost

Instance Num OPT
The total cost decrease (%) Time cost

increase (%) M=2 M=3 M=4 M=5 M=6 M=7 M=8 M=9 M=10

Eil51 51 426 6.8 1.9 2.1 2.1 0.9 1.2 1.2 1.9 2.1 69.2

St70 70 675 6.4 14.3 6.9 10.5 9.8 5.9 4.6 4.6 3.1 60

Eil76 76 538 0.7 1.8 0.6 1.5 1.5 1.6 4.8 7.2 7.8 40

Rat99 99 1211 17.3 10.1 8.1 4.4 2.9 2.3 3.1 2.7 5.4 287

Kroa100 100 21282 12.9 9.6 10.2 9.9 9.2 7.1 6.2 5.7 5.6 92.4

Krob100 100 22141 10.2 9.5 8.5 6.2 5.8 4.1 5.5 4.9 4.5 120.7

Eil101 101 629 10.3 8.7 6.8 3.0 8.2 7.9 7.9 7.0 7.0 188

Pr107 107 44303 22.7 19.1 16.1 13.4 11.3 9.8 9.6 5.6 4.8 81.4

Krob150 150 26130 8.7 6.7 8.1 8.9 8.6 9.2 8.8 7.4 6.5 125

Kroa200 200 29368 16.1 10.6 7.3 6.7 6.6 5.3 5.1 4.4 5.5 180

Tsp225 225 3916 8.9 11.1 7.7 9.0 9.7 9.9 9.7 4.8 5.4 67

A280 280 2579 11.3 8.6 8.9 8.7 7.6 6.8 4.6 4.5 4.9 195.6

Lin318 318 42029 10.5 9.1 7.8 8.0 8.5 8.3 9.1 8.9 8.7 178

the time cost of generating the general results listed in Table
2. All the time cost increments are listed in Table 3.

4.3 Differences in results

To visually compare the general results listed in Table 2
with the optimized results, we calculated the percentage
difference in total cost of the general results and optimized
results for each tested instance. The larger the difference is,
the better is the optimal degree. As shown in Table 3, the
column labeled total cost decrease denotes the optimal de-
gree. Most of the results listed in Table 2 decrease by
2%–10%. On the whole, the optimized results are much
better than the general results. The calculation formula for
the percentage difference is expressed as:

general result optimized result

diff 100%
OPTIMAL

.


  (6)

5 Conclusions

This paper proposed a new method known as the MDCP to
solve a heterogeneous MTSP with multiple depots and
closed paths. A simple model was introduced to implement
MDCP. The model can transform a complicated graph into
a simplified one. Based on the model, the subsequent work-
ings of MDCP involve merely linking paths together. Based
on SModel, the greatest advantage of MDCP is that it can
find a global solution efficiently.

An optimization method that is similar to 2-OPT was
used to optimize the general results. Serial numbers were
used to label nodes. It was experimentally verified that the

optimization method can decrease the total cost of MDCP to
a large extent.

This work was supported by the National Natural Science Foundation of
China (61073177).

1 Gu J, Huang X. Efficient local search with search space smoothing:
A case study of the traveling salesman problem (TSP). IEEE Trans
Syst Man Cybern, 1994, 24: 728–735

2 Chen Y W, Lu Y Z, Chen P. Optimization with extremal dynamics
for the traveling salesman problem. Physica A, 2007, 385: 115–123

3 Tarzjan S, Khademi M, Akbarzadeh T M, et al. A novel construc-
tive-optimizer neural network for the traveling salesman problem.
IEEE Trans Syst Man Cybern Part B, 2007, 37: 754–770

4 Qu H, Yi Z, Tang H J. Improving local minima of columnar competi-
tive model for TSPs. IEEE Trans Circuits Syst Part I, 2006, 53:
1353–1362

5 Katayama K, Narihisa H. An efficient hybrid genetic algorithm for
the traveling salesman problem. Electr Commun Jpn, 2001, 84: 76–83

6 Fogel D B. Applying evolutionary programming to selected traveling
salesman problems. Cybern Syst, 1993, 24: 27–36

7 Dorigo M, Maniezzo V, Colorni A. Ant system: Optimization by a
colony of cooperating agents. IEEE Trans Syst Man Cybern Part B,
1996, 26: 29–41

8 Misevicius A, Smolinskas J, Tomkevicius A. Using iterated tabu
search for the traveling salesman problem. Inf Technol Control, 2004,
3: 29–40

9 Coy S P, Golden B L, Runger G C, et al. See the forest before the
trees: Fine-tuned learning and its application to the traveling salesman
problem. IEEE Trans Syst Man Cybern Part A, 1998, 28: 454–464

10 Bektas T. The multiple traveling salesman problem: An overview of
formulations and solution procedures. Omega, 2006, 34: 209–219

11 Laporte G, Nobert Y. A cutting planes algorithm for the m-salesmen
problem. J Oper Res Soc, 1980, 31: 1017–1023

12 Ali A I, Kennington J L. The asymmetric m-traveling salesmen
problem: A duality based branch-and-bound algorithm. Discrete Appl
Math, 1986, 13: 259–276

13 Howard L, Simon X Y, Yevgen B. Neural-network-based path plan-
ning for a multirobot system with moving obstacles. IEEE Trans Syst

1892 Hou M S, et al. Chin Sci Bull May (2012) Vol.57 No.15

Man Cybern Part C, 2009, 39: 410–419
14 Barreto G A, Araujo A F, Ducker C, et al. A distributed robotic con-

trol system based on a temporal self-organizing neural network. IEEE
Trans Syst Man Cybern Part C, 2002, 32: 347–357

15 Wang S H, Wang H. Password authentication using hopfield neural
networks. IEEE Trans Syst Man Cybern Part C, 2008, 38: 265–268

16 Ryan J L, Bailey T G, Moore J T, et al. Reactive tabu search in un-
manned aerial reconnaissance simulations. In: Proceeding of the 30th
IEEE Conference on Winter Simulation. California: IEEE Press,
1998, 1: 873–882

17 Qu H, Yi Z, Tang H J. A columnar competitive model for solving
multi-traveling salesman problem. Chaos Soliton Fract, 2007, 31:
1009–1029

18 Liaw C F. A hybrid genetic algorithm for the open shop scheduling
problem. Eur J Oper Res, 2000, 124: 28–42

19 Carter E, Ragsdale C T. A new approach to solving the multiple trav-
eling salesperson problem using genetic algorithms. Eur J Oper Res,
2006, 175: 246–257

20 Pan J J, Wang D W. An ant colony optimization algorithm for the
multiple traveling salesmen problem. In: Proceeding of 1st IEEE
Conference on Innovative Computing, Information and Control.
Washington: IEEE Press, 2006, 1: 210–213

21 Gorenstein S. Printing press scheduling for multi-edition periodicals.
Manage Sci, 1970, 16: 373–383

22 Svestka J A, Huckfeldt V E. Computational experience with an
msalesman traveling salesman algorithm. Manage Sci, 1973, 19:
790–798

23 Angel R D, Caudle W L, Noonan R, et al. Computer assisted school
bus scheduling. Manage Sci, 1972, 18: 279–288

24 Brummit B, Stentz A. Dynamic mission planning for multiple mobile
robots. In: Proceeding of the IEEE International Conoference on Ro-
botics and Automation. IEEE Press, 1996, 3: 2396–2401

25 Saleh H A, Chelouah R. The design of the global navigation satellite
system surveying networks using genetic algorithms. Eng Appl Artif
Intel, 2004, 17: 111–122

26 Talay S S, Erdogan D R, Dept N. Multiple traveling robot problem:
A solution based on dynamic task selection and robust execution.
IEEE/ASME Trans Mechatronics, 2009, 14: 198–206

27 Qu H, Yang S X, Willms A R, et al. Real-time robot path planning
based on a modified pulse-coupled neural network model. IEEE
Trans Neural Networks, 2009, 20: 1724–1739

28 Lau H C, Chan T M, Tsui W T, et al. Application of genetic algo-
rithms to solve the multidepot vehicle routing problem. IEEE Trans
Autom Sci Eng, 2010, 7: 383–392

29 Croes G A. A method for solving traveling salesman problems. Oper
Res, 1958, 6: 791–812

30 Reinelt G, TSPLIB: A traveling salesman problem library. ORSA J
Comput, 1991, 3: 376–384

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction

in any medium, provided the original author(s) and source are credited.

