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The magnetic susceptibility of loess from the Ily Basin, northwestern China shows maximum values in S0 paleosols but minimum 
values in other paleosols, the mechanism of which has been well debated. In this work, systematic magnetic measurements were 
made on a representative section from Neleke county. The results show that the loess horizons (L1, L2 and L3) have multi-domain 
magnetite grains of aeolian origin, S0 is characterized by production of pedogenetic ultrafine-grained ferrimagnetic minerals, and 
the other paleosols (S1, S2, and S3) are characterized by the formation of nonferrimagnetic minerals associated with waterlogging. 
The correlation between the low concentration of ferrimagnets, high paramagnetic content, high magnetic coercivity remanence, 
fine ferrimagnetic grain size and intensified pedogenesis suggest two competing processes of pedogenetic enhancement and pe-
dogenetic depletion in the lower paleosols. Pedogenetic depletion dominates and is responsible for the low susceptibility. Changes 
in magnetic grain size distribution occur during pedogenetic depletion. The susceptibility variations are of multiple origins in the 
loess of the Ily Basin. Pedogenetic enhancement, pedogenetic depletion, and allochthonous input of magnetic minerals should all 
be taken into account to explain the variations of magnetic parameters.  
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Low field magnetic susceptibility of loess records are widely 
used in paleoenvironmental research. The magnetic proper-
ties in loess records can be attributed to both original aeoli-
an input and post-depositional pedogenesis [1]. Post-depo-      
sitional pedogenesis can result in susceptibility enhance-
ment or depletion and the interaction of these processes are 
site-specific [1,2]. Different models have been put forward 
to explain these susceptibility variations of different pat-
terns. The pedogenetic enhancement model suggests that 
ultrafine ferrimagnetic minerals were formed during the 
pedogenesis process. This accounts for the high susceptibility 
in paleosols and low susceptibility in loess, and can be used 

to explain loess deposits on the Chinese Loess Plateau [3–8]. 
The wind vigor model displays low susceptibility in pale-
osols and high susceptibility in loess. It argues that for loess 
from Alaska and Siberia, allochthonous input plays an im-
portant role in magnetic concentration and intensified wind 
vigor is responsible for increases in susceptibility [9–15]. 
However, pedogenesis influences not only the magnetic 
concentration but also the magnetic mineralogy and con-
tributes at least partly to susceptibility variations in loess 
from Alaska and Siberia [16–20].  

A negative relationship between susceptibility and the 
degree of pedogenesis was found in the Ily Basin, north-
western China [21–27]. In that location the susceptibility 
decreased dramatically in paleosols except S0, but was rela-
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tively high and constant in other horizons. YE Wei, SHI 
ZhengTao, SONG YouGui, XIA DunSheng et al. gave dif-
ferent explanations for the susceptibility variations but they 
did not adequately explain this depletion of susceptibility 
[21–27]. In this work, during September 2007 to May 2010, 
we collected loess samples in the Ily Basin during 3 field 
seasons. We focus on a loess section in Neleke County that 
exhibits the most significant susceptibility depletion in 
paleosols.  

1  Study area and stratigraphy 

The Ili Basin is located in central Eurasia (between 42°12′N 
and 44°48′N; 80°10′ and 85°02′E). Except for in the west, 
the Ily Basin is surrounded by high mountains, the average 
altitudes of which are >3500 m. The upper wind is con-
trolled by westerlies throughout the year. Strong surface 
winds occur more frequently from April to July, originating 
from the west, the northwest and the southwest. Aligned 
almost parallel to the prevailing westerly winds and influ-
enced by the great east-west altitudinal gradient, the Ily Ba-
sin is relatively abundant in rainfall [28]. The annual pre-
cipitation is not evenly distributed, falling higher in the east 
compared to the west. There is a linear relationship between 
annual precipitation and altitude. The increase in rate of 
annual precipitation is 40–60 mm/100 m below the altitude 
of 1800 m [29]. At altitudes of 800 m, the annual precipita-
tion is ca. 300 mm, at 1000 m ca. 600 mm and at 1800 m  
>900 mm [28–31]. The zone of maximum precipitation lies 
between 1500 m and 1800 m. Conversely, evaporation de-
creases as the altitude increases. The seasonal distribution 
of precipitation in the Ily Basin is different from that in the 
monsoon areas. Maximum precipitation occurs in May and 
November, while it is drier from July to September. How-
ever, the difference in precipitation between the months is 
not great except for in the mountainous areas. In the western 
plains, the seasonal distribution of precipitation is reasona-
bly even, whereas in the eastern plains it is lower. In the 
mountainous areas, it becomes a single peak pattern, with 
precipitation in May and June higher than those in the other 
months. The average annual temperature in the Ily Basin is 
2.6–9.2°C, with highest temperatures reached in July. The 
hotter seasons roughly coincide with the dry seasons, which 
are generally July and August. The typical zonal vegetation 
and soils in the Ily Basin are desert steppe and sierozems 
respectively. With increasing altitude and improving cli-
mate conditions towards the east, the desert steppe changes 
into mountain steppe and the sierozems change into kasta-
rozems (1100–1500 m) and chernozems (1500–1800 m).  

Loess is widely distributed in the Ili basin, ranging from 
800 m on the river terraces to about 2000 m on the moun-
tain slopes, with thicknesses generally between 20 and 60 m. 
Paleosols are usually also present. The loess section in this 
study was located at Neleke County (NLK), (43°39.4′N, 

82°44.8′, 1237 m), on the northern terrace of Gongnaisi 
river, which is a branch of the Ili river. The section was  
29.7 m thick, and well exposed because of recent road con-
struction. The uppermost 0.5 m of the ection is S0. Besides 
S0, 3 lower paleosols were observed between 3.5 to 6.7 m, 
17.3 to 18.3 m and 24 to 29.7 m. The paleosol at 3.5 to 6.7 m 
is red and abundant in snails. Below 17.3 m, loess/paleosols 
are generally more developed, with 2 paleosols distinguish-
able from the overlying loess by their deep red color and 
fine grain size. Plenty of snails were found between 27.2 m 
and 28.5 m, where the most intensive pedogenesis was ob-
served. The loess-paleosol sequence is underlain by a gravel 
bed.  

2  Methods 

Optically stimulated luminescence dating (OSL dating) was 
conducted in the Institute of Geology, China Earthquake 
Administration.  

A total of 594 powder samples were collected at 5 cm 
intervals from NLK section. All the samples were air-dried, 
and analyzed for grain size using a Mastersizer 2000 laser 
particles size analyzer. 5 g of each sample were packed into 
plastic boxes for the magnetic measurements. Low (470 Hz) 
and high (4700 Hz) frequency magnetic low field suscepti-
bility were measured with a Bartington MS2 magnetometer. 
Anhysteretic remanent magnetizations (ARMs) were im-
printed by a DTECH AF demagnetizer with a peak AF field 
of 100 mT and DC bias field of 0.05 mT. Isothermal rema-
nent magnetizations (IRMs) and saturation isothermal rem-
anent magnetization (SIRM) were imparted by using a 
MMPM10 pulse magnetizer. Remanence measurements were 
made using a Minispin magnetometer. The backfield re-
magnetization of SIRM was carried out using reverse fields 
at 10 mT steps and remanence coercivity (Bcr) calculated 
using linear interpolation. Backfield curves, hysteresis loops 
and thermomagnetic curves were determined on representa-
tive samples using a variable field translation balance (VFTB) 

and related parameters were attained [33]. These parameters 
included Mrs, Ms (ferrimagnetic magnetization at 1 T), Bcr, 
Bc, Brh (median destructive field of the vertical hysteresis 
difference) [34], S300, and para/diamagnetic slopes. The de-
terminations and indications of the parameters are described 
in detail in [33] and [34]. The para/diamagnetic content was 
estimated by the ratio of para/diamagnetic magnetization at 
1 T to Ms. Temperature dependent susceptibility curves were 
measured with a KLY-3 Kappabridge. Two typical samples 
were treated with citrate-bicarbonate-dithionite (CBD) ex-
traction to dissolve fine grained iron oxides. One was from 
L2 with high susceptibility and medium Bcr, the other was 
from S2 with low susceptibility and high Bcr. The same 
magnetic measurements were then performed on the post- 
CBD samples. All the above measurements were conducted 
in the Key Laboratory of West China’s Environmental Sys-
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tems, Lanzhou University. For typical samples, thermo-
magnetic curves were also measured with a Kappabridge 
and Backfield IRM curves with an ASC Magnetizer (Model 
IM-10-30) and a 2G Enterprises Cryogenic magnetometer 
in the Laboratory for Natural Magnetism, Institute of Geo-
physics, ETHZ, Switzerland.  

3  Results 

3.1  OSL Dates 

An OSL age of >100 ka was been obtained at 8.1 m. There-
fore the three lower paleosols were assigned and correlated 
as paleosols S1, S2 and S3 on the Chinese Loess Plateau. 
The age agrees with those of loess sections previously re-
ported in the Ily Basin and along North Piedmont of 
Tianshan Mountains [21,32]. The stratigraphic divisions 
based on our fieldwork observations are roughly consistent 
with our laboratory results (Figure 1).  

3.2  Magnetic properties at room temperature  

Figure 1 shows the stratigraphy, mass specific low field 
susceptibility (), frequency-dependent susceptibility (fd), 
ARM susceptibility (ARM, ARM normalized by the 50 mT 
direct bias field) and grain size parameters versus depth for 
NLK. The <10 m and >63 m grain size fractions are in-
versely correlated (r2=0.66), and indicate that wind intensi-
ties were greater during glaciations than during interglacials 
[35]. The <2 m grain size fraction, which is thought to 

respond to degree of pedogenesis [36], shows higher values 
in the lower half of the section, in agreement with our field-
work observations. However, the magnetic parameters of 
NLK are not consistent with the stratigraphy. Maximum  
is observed in S0 and L1, which ranges from 5.3–7.9×  
107 m3 kg1. Below the L1/S1 boundary,  is low, typically 
below 4.5×107 m3 kg1, except for the maxima at ca. 10.5 
m and 18.7 m. The fd and ARM are high only in S0, but are 
low with little fluctuation in the other horizons. The peaks 
of  between 9.8–11.4 m and ca. 18.7 m can be correlated to 
grain size extreme values, suggesting the susceptibility in 
these horizons is enhanced because of intensified wind vig-
or. The low fd and ARM values indicate that pedogenesis of 
S1, S2 and S3 does not produce a high content of ultrafine 
SP and SSD ferrimagnetic minerals [37–41]. Wind vigor 
alone, however, can neither explain the discrepancy be-
tween S0 and the other paleosols nor adequately account for 
susceptibility variations.  

The parameters that are sensitive to magnetic composi-
tion are shown in Figure 2. Bcr of loess from the Chinese 
Loess Plateau is typically between 20–50 mT and is higher 
in loess than in the paleosols [42–43]. At Neleke, the Bcr 

curves demonstrate the discrepancy between S0 and the 
other paleosols. S0 shows minimum Bcr at 44–54 mT. The 
loess horizons have higher Bcr than S0, which can be inter-
preted to be low temperature oxidization [44–48]. S1, S2 
and S3 display a maximum Bcr typically ranging from 
62–69 mT, indicating higher concentrations of hard miner-
als compared to S0. In addition, the Bc curve is similar to 
the Bcr curve. The S300 curves also suggest a relatively high  

 

Figure 1  Stratigraphy, OSL age (solid dot), , fd, ARM, Bcr and grain size parameters of NLK.  
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Figure 2  Parameters that are sensitive to magnetic mineral composition. Bcr -a was measured using a MMPM10 pulse magnetizer and a Minispin magne-
tometer. Bcr -b was measured using a VFTB.  

content of harder minerals in S1, S2 and S3 [49]. 
The ratio of para/diamagnetic magnetization to ferri-

magnetic magnetization at 1 T (nonferri/ferri) shows the 
same variation pattern to Bcr and Bc, with low values in S0 
and high values in the other paleosols. The differences be-
tween S0 and the other paleosols are mainly due to the 
paramagnetic content. 

Magnetic hysteresis loops for representative NLK sam-
ples are shown in Figure 3. The loops of all samples are 
closed by 300 mT, consistent with a ferrimagnetic phase. 
The linear increase in magnetization at higher fields reflects 
the paramagnetic component [5]. The S1, S2 and S3 sam-
ples show a steeper increase than S0 and loess samples, 
indicating a larger paramagnetic component.  

Backfield demagnetization curves of SIRM (1 T) for 
typical samples are shown in Figure 4. The SIRM of S3 is 
low because of its low concentration of ferrimagnets. S0, L2 
and S3 reversely acquire 96%, 87% and 85% of their SIRM 
intensity respectively under a field of 0.3 T, implying a soft 
magnetic component as the major carrier of magnetic rem-
anence. S0 has a stronger soft magnetic component than L2 
and S3. This is consistent with the Bcr values calculated by 
using linear interpolation, which are 49.5, 63.8 and 74.7 mT 
for S0, L2 and S3 respectively. A gradual increase after the 
300 mT step can be observed in S3. It implies that the con-
tent of hard magnetic minerals in the lower paleosol is rela-
tively high compared to S0 and L2.  

3.3  Thermomagnetic properties 

High temperature thermomagnetic curves (Figure 5) show 
that all samples have a predominant Curie temperature of 
580°C. Magnetite from the samples is thought to contribute 
mainly to the magnetic signals. The increase of magnetiza-
tion at around 160°C is assigned to the presence of goethite, 
which transforms into hematite at 300–400°C. Since all 
cooling curves run below the heating curves, the transfor-
mation of maghemite into hematite is thought to be mainly 
responsible for the decrease in magnetization at 300–400°C 
upon heating. 

The higher magnetization over 600°C indicates higher 
concentrations of paramagnetic minerals and hematite in S1, 
S2 and S3. S0 and the loess samples show a steeper de-
crease of magnetization towards 580°C, suggesting that the 
relative concentration of magnetite in S0 and the loess ho-
rizons is higher than that in S1, S2 and S3. 

Low-temperature susceptibility curves can detect the 
presence of multi-domain (MD) magnetite [40,41]. The 
Verwey transition of magnetite at around 150°C is found 
in S0 as well as in the loess samples (Figure 6). In S1, S2 
and S3 however, the Verwey transition is at the limit of de-
tection. The weak winds during the interglacial periods ap-
parently were not able to carry and deposit coarse magnetite 
grains, and wind vigor probably played an insignificant role 
for the susceptibility variations. S0 not only has a larger  
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Figure 3  Hysteresis loops for representative samples from NLK, magnetization values were normalized to the maximum. 

 

Figure 4  Backfield curves for representative samples from NLK. Back-
field IRMs were measured at steps up to 1 T after the samples were given a 
SIRM (1 T).  

MD component but also a larger SP and SSD component 
than the lower paleosols, as the curves of fd and ARM sug-
gest (see Figure 1). This cannot be explained adequately by 
using the pedogenetic enhancement or the wind vigor model. 
The concave-shape decrease of the -T curves is caused by 
the paramagnetic material, whose susceptibility is inversely 
proportional to temperature. S1, S2 and S3 have higher con-     

centrations in paramagnetic content than the other horizons. 

3.4  Post-CBD measurements 

Citrate-bicarbonate-dithionite (CBD) extraction can efficiently  
dissolve fine-grained iron-oxides such as maghemite, mag-
netite goethite and hematite. Assuming that most pedoge-
netic magnetic grains are sufficiently small and most litho-
genic magnetic grains are sufficiently large, the CBD pro-
cedure can be used to separate the pedogenetic component 
from the initial aeolian component [50,51]. For samples 
from the Chinese Loess Plateau, the residual following 
CBD treatment usually shows higher Bcr and Bc than the 
bulk samples [52], implying that the CBD-soluble 
fined-grained pedogenetic magnetic minerals have lower Bcr 
and Bc. For NLK samples however, the experiments yielded 
opposite results (Table 1). The residual showed lower Bcr 
and Bc than the bulk samples, which indicated the extracta-
ble fine- grained pedogenetic magnetic minerals had higher 
Bcr and Bc. We found that CBD treatment on typical Siberi-
an samples also showed a decrease in Bcr and Bc of the re-
sidual, suggesting a similarity between Neleke and Siberian 
loess (unpublished data). 

3.5  Magnetic grain size distribution 

Figure 7 shows parameters that are sensitive to magnetic  
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Figure 5  J-T curves for representative samples from NLK, magnetization values were normalized to those at room temperature. 

 

Figure 6  Low temperature -T curves for representative samples from NLK, susceptibilities were normalized to the values at room temperature. 



1850 Chen Q, et al.   Chin Sci Bull   May (2012) Vol.57 No.15 

Table 1  Magnetic parameters for typical NLK samples (loess sample at 9.95 m and paleosol sample at 18.3 m) before and after CBD treatment  

Sample (107 m3 kg1) ARM (107 m3 kg1) Bcr(mT) Bc(mT) Bcr/Bc Mrs/MS Brh/Bcr 

Loess pre-CBD 5.67 12.3 58.29 18.17 3.21 0.18 1.39 

loess post-CBD 5.31 6.7 49.58 12.6 3.94 0.13 1.49 

Paleosol pre-CBD 3.36 11.0 63.65 21.16 3.01 0.2 1.3 

Paleosolpost-CBD 2.95 4.1 55.12 14.32 3.85 0.15 1.45 

 
 

 

Figure 7  Parameters that are sensitive to magnetic grain size for NLK.  

grain size. For S0, SIRM/ is the lowest, compatible with 
the relatively high fd values. The correlation between 
SIRM/ and ARM/, demonstrate higher values in paleosols 
and lower values in loess, implies the change in magnetic 
grain size occurs mainly in the range from PSD to SSD 
[40,41]. At around 18.3 m and between 24–28.5 m, rela-
tively low SIRM/ but high ARM/ was observed. This can 
be partly ascribed to paramagnetic minerals, which contrib-
ute to  but not to SIRM. Consistent highs and lows can be 
observed in the curves. At around 19 m and the bottommost 
part (below 24 m), noticeably finer grain sizes were observed, 
responding to the low susceptibility, high content of hard 
component and para/diamagnetic component exhibited above. 
On the Chinese Loess Plateau, neoformation of pedogenetic 
fine grains results in high susceptibility. However, in NLK, 
pedogenetic fine grain size coincides with low susceptibility, 
except for S0. This suggests that the absolute concentration 
of ferrimagnetic component is low while the relative content 
of fine-grained ferrimagnets of pedogenetic origin is high 
and thus there are two competing processes of pedogenetic  

enhancement and pedogenetic depletion. The pedogenetic 
enhancement process results in fine ferrimagnetic grain size. 
The pedogenetic depletion process results in neoformation 
of (or transformation into) hard magnetic minerals and para/ 
diamagnetic minerals. 

Figures 7–10 show that the magnetic grain size distribu-
tions in S1, S2 and S3 are different from those in S0. The 
same distribution as the loess from the Chinese Loess Plat-
eau was exhibited in S0 , with a linear relationship between  
ARM, ARM/, fd, fd% and  [53–59]. For the other pale-
osols, the linear relationship between ARM and  was re-
versed (Figure 10) and the linear relationship between ARM 
and fd was absent (Figure 8). ARM/ can be as high in S3 
as in topsoils, while fd% is consistently low below S0 (Fig-
ure 7). This implies that the grain size distribution in the 
SP-SD range is not consistent through the section. Relative 
content of SSD grains vary in proportion to the degree of 
pedogenesis, but the relative content as well as the absolute 
content of SP grains is consistently very low except for S0 
(Figures 1 and 7). For horizons from L1 to S3, the samples  
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Figure 8  Plots of ARM and fd for S0 (left) and the other paleosols (right). 

 

Figure 9  Plots of ARM/ and  for L1-S3 samples with  lower than 4.8 
×107 m3 kg1(crosses), L1-S3 samples with  higher than 4.8×107 m3 kg1 

(circles), and S0 (solid dots). 

with  <4.8×107 m3 kg1 show a much steeper decrease in 
ARM/ with increasing  than the samples with  >4.8× 
107 m3 kg1 (Figure 9). The latter mostly respond to typical 
loess horizons dominated by strong winds at 0.2–2 m and 
9.8–11.4 m (Figure 1). This data suggests that the interpre-
tation of ARM/ variations should be horizon-specific.  

ARM vs.  (King plot) can be used to detect changes in 
the relative grain-size and amount of magnetite in natural 
materials [49]. The pedogenetic grains and aeolian grains  

 

Figure 10  King plot of NLK. Solid dots are S0 samples, circles are L1- 
S3 samples with  higher than 4.8×107 m3 kg1, crosses are L1-S3 samples 
with  lower than 4.8×107 m3 kg1. 

have different grain size distributions. The minimum grain 
size limit for the original input of aeolian origin is about  
0.1 m whereas the transitional grain size range is 0.1–0.3 m 
[54]. Therefore it is possible to use the King plot to separate 
samples containing magnetic grains of pedogenetic origin 
from those containing magnetic grains of aeolian origin. S0 
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samples at Neleke are in <0.2 µm area, or in the area between 
0.2 and 1 m but adjacent to the 0.2 m boundary (Figure 
10). The two distinct populations of the L1 to S3 samples 
appear in the dataset. Samples with  >4.8×107 m3 kg1 scat-
ter in >0.2 m area are indicative of aeolian origin. This agrees 
with the assumption that grains >0.3 m can be regarded as 
aeolian ones [54]. Like S0, samples with  <4.8×107 m3 kg1 
aggregate in or near the left upper <0.2 m area, indicate 
that the magnetic particles are of pedogenetic origin. Com-
pared to S0 samples, which demonstrate a rapid rise in  ARM 
with increasing  , the other samples show relatively con-
stant  ARM. This suggests that the increase in susceptibility 
of the scattered samples on the right can be ascribed to 
coarse PSD and MD grains of aeolian origin, the decrease in 
susceptibility of the aggregated samples on the left can be at 
least partly attributed to the pedogenetic depletion process, 
which results in transformation into nonferrimagnets of 
PSD and SP ferrimagnets.  

4  Discussion 

MD grains in S0 and loess samples of Neleke can be as-
cribed to as input originating from intensified wind vigor or 
of proximal lithogenic. The source area of the loess in the 
Ily Basin is thought to be the deserts in central Asia [60]. 
However, recent studies show that the surface soils in the 
Ily Basin vary significantly in magnetic grain size and in 
some localities are very coarse [61]. This suggests that local 
sources like river valleys may also contribute to the mag-
netic signals. The wind vigor and local source materials are 
partly responsible for the magnetic variations [62]. Regard-
less of the coarse allochthonous component, the magnetic 
signals are controlled by the pedogenetic ultrafine grains in 
S0. 

Pedogenetic enhancement is observed in different loess 
strata at different altitudes. All S0 paleosols demonstrate the 
magnetic properties that are in line with the pedogenetic 
enhancement model. However, the sedimentation rates from 
all the paleosols studied are quite different, with thicknesses 
ranging from ca. 0 to more than 2 m. S1 paleosols from 
some sections by the Gongnaishi river valley were thought 
to exhibit a decrease in  [21–27]. However, the sharp and 
uneven boundaries between the  highs and lows cannot be 
correlated to the strata or the pedogenetic intensity. Gener-
ally,  shows both maximum and minimum values in S1. 
The variations in fd are similar to those of . Therefore 
pedogenetic enhancement is partly present in S1. At high 
latitudes,  and fd can be correlated to pedogenetic intensity, 
suggesting pedogenetic enhancement due to a more humid 
environment. In sharp contrast to NLK, pedogenetic en-
hancement was found in all the paleosols. 

The loess in the plain area of the Ili bain is similar to that 
in the west edge of the Chinese Loess Plateau, showing the 

presence of coarse magnetic grains and pedogenetic en-
hancement. However, in the Ily Basin,  and fd% are rela-
tively low. For the section in Jiuzhoutai, Lanzhou, where 
the zonal soils are also sierozems, the annual precipitation is 
about 300 mm and the annual temperature is 11.3°C,  and 
fd% are about 9×107 m3 kg1 and >8, respectively, in sur-
face soils and the upper part of S0 [63]. For surface samples 
in the plain area of the Ily Basin (at around 850 m), where 
the annual precipitation is 350–480 mm and annual temper-
ature is about 8°C,  and fd% are 8×107 m3 kg1 and 2–6, 
respectively [22–26]. The values decrease rapidly with 
depth in S0. The lower fd% can be explained by the larger 
component of original aeolian input in the Ily Basin. For 
surface samples at higher altitudes (1400–1875 m) in the Ily 
Basin, where the annual precipitation is approximately 550– 
900 mm and annual temperature is <5°C,  and fd% are 8× 
107 m3 kg1 and <6 respectively [22–24]. The values also de-
crease rapidly downwards in S0. In the case of Neleke section 
(1237 m),  and fd% of surface soils are 8×107 m3 kg1 
and <4 respectively. In northwestern China, there is a linear 
relationship between altitude and the grain size of loess de-
posits [64]. Therefore, less input of coarse magnetic grains 
is expected at higher altitude. In addition, dense vegetation 
at higher altitude may prevent proximal deposition. The 
original input is probably less and a higher fd% is expected 
even if the pedogenetic enhancement is of the same degree. 
However data from the loess in the Ily Basin show little 
increase in  and fd% with increasing altitude and precipi-
tation. This indicates that low temperature may lessen pe-
dogenetic enhancement. High precipitation does not neces-
sarily result in high content of pedogenetic ultrafine grains 
if the temperature is not favorable. The relatively low pe-
dogenetic concentration in the basin is possibly attributed to 
the lower temperature and the absence of coincidence be-
tween hot seasons and rainy seasons. 

The classic pedogenetic enhancement model proposes 
that ultrafine maghemite grains dominate and come from 
oxidation of ultrafine magnetite grains [65], which are in 
turn formed via inorganic [3] or bacterially mediated path-
ways [66] during intermittent wetting-drying periods in 
soils [67,68]. The consistent magnetic grain size distribution 
of pedogenetic particles might be controlled by the constant 
soil pH on the Chinese Loess Plateau because of the high 
buffering capacity of high carbonate content. It has been 
generally accepted that the rainfall component of the cli-
mate system is a key influence on loess magnetic properties 
[67,68]. Temperature may play an insignificant role in pe-
dogenetic enhancement on the Loess Plateau [58]. Alter-
nately, a recent hypothesis has proposed that the ferrihydrite 
→SP maghemite→SD maghemite→SD hematite transfor-
mation may constitute a major pathway accounting for pe-
dogenetic enhancement [69–72]. The consistent magnetic 
grain size distribution may be due to the representation of 
all intermediate stages in the formation and growth of ma-
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ghemite, which in turn results from the continuous for-
mation of ferrihydrite in favorable temperature and moisture 
conditions. The production rate of the ultrafine maghemite 
is sensitive to temperature change. Therefore temperature is 
expected to have effects on  and fd%. However, there is 
controversy over these hypotheses. Further work is required 
to interpret whether the influence of temperature on loess 
magnetic properties and the possible subtle difference be-
tween loess in the Ily Basin and the Chinese Loess Plateau 
with respect to pedogenetic enhancement.  

A sharp decrease in susceptibility was observed in the 
lower paleosols of various loess sections along the Gong-
naishi River valley [22–26]. Minimum  of the whole sec-
tions were found typically in the most strongly developed 
horizons. Relatively high fd and ARM and low  were 
found in the paleosols, suggesting that pedogenetic en-
hancement competes with pedogenetic depletion but cannot 
overcome the decrease in  [24,26]. Different from those 
observations, the Neleke section displays low values of fd 
and ARM as well as , indicative of more intensive pedoge-
netic depletion. Waterlogging in loess deposits was reported 
along the valley. In the fieldwork, waterlogging can be re-
vealed by ferruginous mottles and abrupt changes in color. 
We found that the durations of waterlogging were section 
specific and the magnetic properties of the waterlogged 
paleosols are very similar. For Neleke section, we suggest 
that the pedogenetic depletion was due to continuous wa-
terlogging or overwet conditions. During the interglacial 
periods, the westerlies moved northwards and controlled the 
climate in the Ily Basin, which was humid and mild. The 
river plains and depressions were susceptible to waterlog-
ging due to increased precipitation and melt water.  

The Neleke section is located between the small hills. 
Given this favorable topography, the paleosols were proba-
bly constantly waterlogged and poorly drained. Intermittent 
reduction is required for the formation of the ferrimagnets. 
Constant oxidation or reduction favors formation and ac-
cumulation of non-ferrimagnets [1,17–20,41,73]. The wet 
reducing conditions in NLK resulted in destruction of fer-
rimagnets and the formation of non-ferrimagnets. Compared 
to typical Siberian loess, NLK shows a larger component of 
paramagnetic minerals and a smaller component of hard 
minerals with high Bcr [15,74]. In south Siberia, all pale-
osols, including S0, usually display low susceptibility. This 
can be explained by the local climate, which causes very 
moist conditions in the soils [20]. However, during glacial 
periods, the climate was conjectured to be drier, resulting in 
relatively oxidizing conditions and preservation of ferri-
magnets. Therefore the susceptibility variations of south 
Siberian loess can be roughly correlated to climate change 
of a broad area. In the Ily Basin, the susceptibility variations 
are of multiple origins and more complicated. The interpre-
tation of susceptibility should be site and horizon specific. 
However, ARM/ of NLK can reflect climate change as 

suggested by its correlation with grain size and pedogenetic 
development. For the lower paleosols of NLK, ARM/ fluc-
tuates while fd% is consistently very low. This suggests 
that SSD grains preserved while SP grains were destroyed, 
which can be ascribed to the difference of specific surface 
area between SP grains and SD grains. SP grains are ex-
pected to be more easily dissolved than coarse grains. Con-
versely, it was reported that pedogenesis decreased  and 
increased fd% at some degree of humidity and the deple-
tion of both  and fd% did not occur until after the water 
content became excessive as waterlogging progressed [73]. 
This suggests that pedogenetic depletion begins with de-
struction of coarse grains, agreeing with the correlation be-
tween relatively high fd% and low  in paleosols from 
some sections in the Ily Basin [24,26]. The absence of MD 
grains in the lower paleosols of NLK is attributed to less 
coarse grained aeolian input, and possibly the pedogenetic 
destruction of coarse grains associated with excessive wet 
conditions. Further work is required to better understand the 
mechanism of magnetic depletion in the Ily Basin.  

5  Conclusions 

Changes in the local environment can complicate loess 
magnetic enhancement mechanism. The susceptibility vari-
ations in the Ily Basin appear to be of multiple origin. The 
interplay between the formation of ferrimagnets and nonfer-
rimagnets is probably competitive and may thus determine 
the degree of magnetic enhancement. Pedogenetic depletion 
dominates in this area and is significantly responsible for 
the susceptibility variations of paleosols, which is due to the 
formation of nonferrimagnets and conversion of ferrimag-
nets to nonferrimagnets in excessive wet conditions. Changes 
in magnetic grain size distribution occur during pedogenesis 
depletion. To interpret the variations of susceptibility and 
other magnetic parameters such as fd and ARM, all the pos-
sibilities of pedogenetic enhancement, pedogenetic deple-
tion, and allochthonous input of magnetic minerals must be 
considered. 
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