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Graphene has unique physical properties, and a variety of proof-of-concept devices based on graphene have been demonstated. A 
prerequisite for the application of graphene is its production in a controlled manner because the number of graphene layers and the 
defects in these layers significantly influence transport properties. In this paper, we briefly review our recent work on the con-
trolled synthesis of graphene and graphene-based composites, the development of methods to characterize graphene layers, and 
the use of graphene in clean energy applications and for rapid DNA sequencing. For example, we have used Auger electron spec-
troscopy to characterize the number and structure of graphene layers, produced single-layer graphene over a whole Ni film sub-
strate, synthesized well-dispersed reduced graphene oxide that was uniformly grafted with unique gold nanodots, and fabricated 
graphene nanoscrolls. We have also explored applications of graphene in organic solar cells and direct, ultrafast DNA sequencing. 
Finally, we address the challenges that graphene still face in its synthesis and clean energy and biological sensing applications. 
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Graphene is an atomically thin layer of sp2 hybridized car-
bon atoms arranged in a honeycomb lattice [1]. It is the 
fundamental building block for all sp2-hybridized carbon 
allotropes (e.g., graphite, nanotubes and fullerenes). Obser-
vation of graphitic monolayers by chemists and surface scien-   
tists dates back to the 1960s [2,3]. In 1986, Boehm et al. [4] 
referred to such a single layer of graphite as graphene. 
However, exfoliation of graphite into individual graphene 
sheets remained a curiosity until 2004, when graphene sheets 
isolated using the simple Scotch tape method were first re-
ported [5,6]. The subsequent discovery of its unusual elec-
tronic properties has led to an extraordinary amount of in-
terest amongst researchers across virtually all scientific dis-
ciplines [7–10]. Graphene has a large theoretical specific 
surface area (2630 m2 g1) [11], high intrinsic mobility (200000 
cm2 V1 s1) [12], high Young’s modulus (~1.0 TPa) [13], 

good thermal conductivity (~5000 W m1 K1) [14] and op-
tical transmittance (~97.7%) [15]. Graphene is thus consid-
ered as an attractive candidate for next-generation electronic 
materials and holds great promise for widespread applica-
tions [16–24] including ultrafast optoelectronic devices, 
chemical and biological sensors, energy generation and 
storage, and novel composites. 

As the first step to investigate its properties and further to 
realize these practical applications, graphene must be syn-
thesized in a controlled manner, so the controlled synthesis 
of graphene is of great importance for both fundamental 
research and practical applications [25]. Recent synthetic 
efforts have diverged in a number of different directions. 
For instance, micromechanical cleavage [6], liquid-phase 
exfoliation [26,27], reduction of graphene oxide [28,29], 
chemical vapor deposition (CVD) [30–32], carbon segrega-
tion [33,34], chemical synthesis [35,36] and deterministic 
placement [37] have been developed to produce single-layer 
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graphene (SLG) or few-layer graphene (FLG). Current ef-
forts in graphene synthesis are mainly focused on the con-
trol of area, structural quality, and number of layers [38].  

Liquid-phase exfoliation (LPE) involves making disper-
sions of graphite in various solvents by ultrasonication. LPE 
can probably be viewed as an alternative to solid-phase mi-
cromechanical cleavage that is more facile and gives larger 
yields. However, it is difficult to control the number of 
graphene layers using LPE [27,39]. In this micromechanical 
approach, interaction between solvents such as N,N-dime-     
thylformamide (DMF) or N-methylpyrrolidone and graphene 
may lower the energy barrier of exfoliation by providing a 
better match of surface energies between the two compo-
nents [27]. Moreover, appropriate organic molecules (both 
small molecules and polymers) can also be used to help 
exfoliate graphite into graphene by insertion between gra-    
phite layers [40,41]. 

Reduction of graphene oxide (GO) is the most popular 
wet chemical approach to produce colloidal suspensions of 
graphene, which is called reduced graphene oxide (rGO) 
[42]. GO in aqueous solution, which is generated by oxidi-
zation (resulting in oxidation of graphite, i.e., graphite oxide) 
and subsequent exfoliation of graphite, can be reduced to 
graphene by reducing agents [43], thermal treatment [44] or 
electrochemical methods [45], transforming electrically non-
conductive GO to conductive graphene. Because of facile 
solution processing, large yields, and low cost, this wet chemi-    
stry approach to graphene is especially attractive in the 
fields of chemistry and biomaterials. However, the transport 
properties of the resulting rGO are moderate because of the 
presence of defects and oxygen groups in the graphene 
plane. 

SLG and FLG can be grown on metal substrates via CVD. 
When a catalytic metal surface is heated to a suitable tem-
perature, gaseous hydrocarbons decompose into carbon at-
oms and hydrogen gas (or oxygen gas), and the carbon atoms 
then form a graphene mono- or multilayer [46]. Although 
large-area SLG or FLG films have been generated by CVD, 
and graphene-like carbon materials have been produced by 
substrate-free CVD, radio-frequency plasma-enhanced CVD, 
aerosol pyrolysis and solvothermal synthesis, the uniform 
growth of SLG or graphene with a predefined number of 
layers is still a major challenge possibly because of the large 
amount of carbon sources adsorbed by catalytic metals [47]. 

Carbon segregation has also been used to prepare gra-
phene layers from silicon carbide (SiC) or carbon-doped 
metal substrates [33,34]. SLG or FLG can be fabricated via 
sublimation of Si from SiC or catalytic decomposition of 
hydrocarbons following high temperature annealing. Similar 
to CVD, this segregation method also faces the challenge of 
how to achieve high quality graphene layers with accurate 
thickness control over an entire substrate.  

In this article, we briefly review our recent work on the 
controlled synthesis of graphene and graphene-based com-
posites, the development of methods to characterize graphene 

layers, and the use of graphene in clean energy applications 
and rapid DNA sequencing. 

1  Synthesis and characterization of graphene- 
based materials 

1.1  Large-scale synthesis of SLG 

In contrast to GO and rGO synthesized by solution-based 
oxidation and reduction, graphene layers synthesized by dry 
methods such as CVD and surface segregation have supe-    
rior electron transport characteristics and features derived 
from these transport properties [1,9]. The unique electronic, 
photonic, mechanical, and thermal properties of graphene 
layers are dependent on the number of layers and crystalline 
structure of graphene layers as well as their stacking. Alt-
hough coverage of SLG grown on Cu foil of more than 95% 
has been achieved [47], this graphene is not epitaxial. The 
controlled synthesis of graphene with a predefined number 
of layers over an entire substrate is still a major challenge. 
Variability in the thickness of graphene layers and grains 
over the same substrate leads to the fluctuation of electron 
transport properties [30], and thus prevents us from taking 
advantage of the distinct properties of monolayer (ML), 
bilayer (BL), and trilayer (TL) graphene in practical large- 
scale integrated applications. 

Among the substrates used in the synthesis of graphene, 
Ni(111) surfaces are one of the best templates because of 
the small lattice mismatch of this surface with that of gra-
phene and highly oriented pyrolytic graphite (HOPG) [48]. 
This makes Ni(111) one of the most promising catalytic 
metals for commensurate epitaxial growth of structurally 
homogeneous graphene. However, the large solubility of 
carbon in Ni makes it difficult to obtain graphene layers 
with uniform thickness over the whole substrate. To solve 
this problem and realize commensurate epitaxial growth of 
graphene on metal templates, we recently developed a sim-
ple method to produce SLG on a Ni film substrate [38] via 
surface segregation [49–51]. We first deposited a thin film 
of Ni (~100 nm thick) on a HOPG(0001) surface and then 
treated the sample under high vacuum. During heating, the 
polycrystalline Ni film was transformed into a Ni(111) sur-
face, and simultaneously carbon atoms diffused into the Ni 
template from HOPG. Finally, SLG on top of the Ni tem-
plate was formed via carbon segregation during cooling. We 
investigated the homogeneity of the synthesized SLG by 
various methods including Raman spectroscopy and scan-
ning tunneling microscopy (STM) [52–54]. All of the re-
sults suggested that the graphene layer synthesized on the 
whole Ni film was SLG (Figure 1). 

1.2  Auger electron characteristics of graphene layers 

As mentioned above, the optical and electronic properties of 
graphenes rely heavily on the number of graphene layers  
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Figure 1  Extended SLG synthesized on a Ni film. (a) Scanning electron microscopy (SEM) image; (b) C KLL Auger electron map corresponding to the 
image in (a); and (c) typical ultrahigh vacuum STM image of graphene on a Ni film. Reprinted with permission from [38], Copyright 2011, American 
Chemical Society. 

and their stacking, dopants, defects, and coupling with the 
underlying substrate. It has been pointed out that ML, BL, 
and TL graphenes show different electronic properties, and 
the electronic structure rapidly evolves with the number of 
layers, approaching the three-dimensional limit of graphite 
at ~10 layers [55]. Thus, identification of the number of 
graphene layers, i.e., determination of the thickness of a 
graphene sample, is essential for informed research and 
distinct applications. Raman spectroscopy is a standard 
technique to identify graphene and count the number of 
graphene layers based on the features of G and 2D bands, 
including the intensity and shape of the peaks and the full 

width at half-maximum of the 2D peak [56]. However, in 
most cases, Raman spectroscopy is only suitable for identi-
fying the graphene layers on SiO2 substrates with a typical 
thickness of ~300 nm [57]. Also, Raman spectroscopy is not 
a high-resolution technique. 

Recently, we established Auger electron spectroscopy 
(AES) as a method to characterize the number and structure 
of graphene layers on arbitrary substrates [58]. We found 
that AES gives distinct spectrum shape, intensity and ener-
gy characteristics with an increasing number of graphene 
layers (Figure 2). Based on a study of standard graphene 
sheets, we directly calculated electron inelastic mean free  

 

Figure 2  AES characterization of the number and structure of graphene layers. (a) SEM image of a graphene flake on SiO2; (b) C KLL Auger electron map 
corresponding to (a), showing the different color contrast of different numbers of layers; (c) AES spectra acquired for ML, BL, and TL graphene, and HOPG; 
(d) AES spectra of a graphene sheet transferred onto SiO2. Fe impurity from FeCl3 etchant used for remove Ni substrate was detected. Reprinted with per-
mission from [58], Copyright 2010, American Chemical Society. 
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paths (IMFP) for graphene layers. Once we know the IMFP 
for graphene layers, we can determine the number of gra-
phene layers simply by measuring the peak intensity ac-
cording to the electron attenuation model. AES can allow up 
to six layers of ML graphene on any substrate to be accu-
rately measured. Furthermore, AES is a high-resolution 
technique so it can be used to study the uniformity of gra-
phene layers at the nanoscale, allowing the resolution of 
defects in graphene layers [59]. Therefore, impurities and 
dopants in graphene layers can be detected based on Auger 
electron characteristics. 

1.3  Covalent surface modification of GO for graphene- 
based materials  

GO is a major precursor of graphene-based materials. It is 
easily produced by chemical oxidation and subsequent ex-
foliation of graphite, which is inexpensive and available in 
large quantities from natural and synthetic sources [28,29]. 
Generally, GO is synthesized by one of the three methods 
developed by Brodie, Staudenmaier, or Hummers [60]. All 
of these methods involve oxidizing graphite to various lev-
els. In the Brodie method [61], graphite is repeatedly treated 
with potassium chlorate (KClO3) and nitric acid (HNO3). 
This method was modified by Staudenmaier [62], who used 
a mixture of sulfuric acid (H2SO4) and HNO3 with KClO3. 
Hummers et al. [63] later developed a less hazardous and 
more efficient method that involves treatment of graphite 
with a mixture of sodium nitrate (NaNO3), potassium per-
manganate (KMnO4), and concentrated H2SO4. Xu et al. [64] 
reported that mildly oxidized GO can be prepared using a 
modified Hummers’ method involving a single chemical 
exfoliation of graphite with a smaller amount of KMnO4. 
Compared with GO made by Hummers’ method, the mildly 
oxidized GO contains fewer defects and can be used to pre-
pare highly conductive graphene by chemical reduction. GO 
is a nonstoichiometric compound of carbon, oxygen and 
hydrogen in variable ratio, which is dependent on the syn-
thesis method and degree of oxidation [65,66]. The chemi-
cal structure of GO is often assumed to be a graphene sheet 
bonded to oxygen-containing functionalities including epoxide 
and hydroxyl groups on the basal plane and carbonyl and 
carboxyl groups at the edges [28,65]. These functional groups 
make GO hydrophilic, which allow it to disperse effectively 
in some polar solvents such as water, alcohol and DMF [67]. 
These groups also facilitate the chemical functionalization 
of GO [68,69].  

A variety of reactions have been developed for chemical 
functionalization of GO. Stankovich et al. [70] successfully 
functionalized GO by treating it with organic isocyanates. 
Isocyanate treatment results in the functionalization of the 
carboxyl and hydroxyl groups in GO via formation of am-
ides and carbamate esters, respectively. Such isocyanate- 
derivatized GOs do not exfoliate in water but readily form 
stable dispersions in polar aprotic solvents such as DMF, 
which facilitates the formation of grapheme-polymer com-
posites [42]. The coupling reaction between carboxyl groups 
and nucleophilic species such as amine or hydroxyl moieties 
can also be used to functionalize GO with activation by thi-
onyl chloride (SOCl2) or catalysis by carbodiimide to form 
amides or esters, respectively [71–73]. 

It has been demonstrated that epoxy groups behave as an 
electrophilic center in typical organic chemistry. Inspired by 
this, we synthesized alkyl-functionalized graphene materials 
by the ring-opening amination of epoxy groups on the basal 
plane of GO with octadecylamine (Figure 3) [74]. Octade-
cylamine-functionalized GO (ODA-GO) is hydrophobic and 
can be dispersed well in many organic solvents as single 
sheets. We fabricated carbon nanoscrolls (CNSs) using 
ODA-GO nanosheets as building blocks by compression of 
Langmuir-Blodgett (LB) films. In this process, a dispersion 
of ODA-GO in toluene was added dropwise onto a water 
subphase in a LB trough. After the evaporation of toluene, 
individual ODA-GO nanosheets floated on the water sur-
face because of their hydrophobic nature. The scattered 
nanosheets were pushed together into a compact ML by two 
moving barriers. Further compression caused the scrolling 
of flexible ODA-GO nanosheets to form CNSs, as shown in 
Figure 4. The scrolls can be unwound by specific solvents. 
Activated by thionyl chloride before amine treatment, GO 
can be grafted with more alkyl chains through both acyla-
tion of carboxyl groups and ring-opening amination of 
epoxy groups [75]. 

1.4  Graphene-based hybrid nanomaterials  

Graphene has been produced efficiently in bulk amounts at 
low cost using chemical conversion from graphite such as by 
chemical reduction from GO [30]. Unlike other approaches, 
chemical synthesis of graphene using graphite, graphite 
oxide or other graphite derivatives as starting materials is 
not only scalable but can also produce graphene that is pro-
cessable and possesses new functions. The unique two-di-     
mensional structure as well as the extraordinary electronic,  

 
Figure 3  Ring-opening amination of epoxy groups on GO with octadecylamine. 
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Figure 4  Typical CNS structures produced by compression of LB films. (a) TEM image of CNSs (the red arrow shows a CNS with a well-defined hollow 
core); (b) a half scrolled CNS without a cap at the end; (c) high-resolution TEM image of a CNS with a tubular structure. Reprinted with permission from 
[73], Copyright 2010, Elsevier. 

optical, mechanical and chemical properties of graphene 
provides a robust atomic-scale scaffold for the design of 
new graphene-based hybrid nanomaterials [76]. For exam-
ple, when decorated with metal nanoparticles, the intrinsic 
properties of graphene can be finely tuned to adapt varied 
applications such as catalysis, energy generation and storage, 
optoelectronics, and sensors [77]. Most hybrids reported in 
the literature consist of graphene with noble metal nanopar-
ticles including Au [20], Pt [78,79], Pd [80] and Ag [81]. Fe 
[82], Cu [83], Sn [84] and Co [85] nanoparticles have also 
been used to fabricate composites with graphene.  

Despite great progress in the synthesis of various metal- 
graphene composites recently, anchoring metal nanoparti-
cles to GO or rGO surfaces to modulate electronic and other 
properties, improving the dispersibility of rGO, and control-
ling the size, uniformity, and density of nanoparticles on the 
graphene planes remains a major challenge. In contrast to 
the unique transport properties of graphene, GO is insulating.  

Randomly distributed oxygen functionalities on the surface 
of GO can result in inhomogeneous GO-based composites 
[86]. Chemical reduction of GO to rGO results in conduc-
tivity but also poor dispersibility because of - stacking 
interactions, which make individual rGO sheets almost in-
accessible for modification or functionalization [74]. Cur-
rently, there are several methods used to prevent aggrega-
tion of rGO and graphene composites [87–89].  

We recently developed a strategy to synthesize a water- 
dispersible graphene composite uniformly functionalized 
with gold nanodots (GNDs) [20]. The basic principle of this 
strategy is to use ethanethiol-perylene tetracarboxylic diimide 
(ETPTCDI) as an adhesive that, on one hand, uniformly 
assembles on graphene with its perylene -motif and, on the 
other hand, bonds to the GNDs through thiol-Au interac-
tions. ETPTCDI causes rGO to disperse well after reduction 
from GO-ETPTCDI, and serves as a template to orderly 
decorate graphene with GNDs (Figure 5). This novel in situ  

 

Figure 5  Uniform decoration of GNDs on rGO-ETPTCDI sheets. (a) Synthesis of rGO-ETPTCDI-GND; (b)(d) TEM images of rGO-ETPTCDI-GND; (e) 
particle size distribution of Au GNDs on rGO-ETPTCDI-GND sheets estimated by measuring the size of more than 400 GNDs, expressed as mean ± stand-
ard error. Reprinted with permission from [20], Copyright 2011, Royal Society of Chemistry. 
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method enables us to produce dispersible, reliable, and pro-
cessable rGO-ETPTCDI-GND sheets with improved elec-
trocatalytic activity and varying size and density of GNDs.  

We demonstrated that to attain dispersible graphene- 
based hybrids, aggregation of nanoparticle-crosslinked rGO 
must be prevented. Nanoparticles themselves generally tend 
to aggregate, so the nanoparticles could attach to more than 
one rGO sheet and thus form nanoparticle-crosslinked rGO 
aggregates. RGO sheets need to be well-dispersed to allow 
further functionalization. These two principles need to be 
considered to synthesize high quality graphene hybrid ma-
terials and explore further potential applications. 

2  Use of grapheme-based materials in clean 
energy applications and as biosensors 

2.1  Organic photovoltaic devices 

Because of unique properties such as tunable electronic 
properties, optical transparency, robustness and flexibility, 
graphene-based materials have been widely explored for use 
in polymer solar cells (PSCs). It has been reported that gra-
phene-based materials and composites can be used as trans-
parent electrodes [90,91] and electron acceptors in PSCs 
[92–95].  

We used GO as an interfacial layer (IFL) to modify the 
bulk-heterojunction (BHJ)BHJ/metal anode contact in in-
verted poly[3-hexylthiophene] (P3HT):[6,6]phenyl C61 bu-
tyric acid methyl ester (PCBM) PSCs [17]. GO was depos-
ited onto the active layer simply by spin-coating a butyl 
alcohol solution of GO. The device containing GO exhibited 
a remarkable improvement in power conversion efficiency 
compared to the device lacking an interfacial layer, indicat-
ing that GO can effectively modify the BHJ/metal anode 
interface to facilitate hole collection. In addition, the device 
performance with a ~2–3 nm thick GO layer is even better 
than that of a control device containing poly(3,4-ethylene- 
dioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) as 
the IFL. Further increase in the thickness of the GO layer 
will result in the decrease of the device performance with 
higher series resistance, which can be attributed to the high 
electrical resistance of GO.  

To further understand the mechanism of GO as an IFL on 
the anode in PSCs, we investigated the chemical composi-
tion of GO by various techniques such as X-ray photoelec-
tron spectroscopy, Fourier transform infrared spectroscopy, 
and pH titration analysis [18]. GO is acidic in nature be-
cause of the presence of chemical species such as carbox-
ylic acid, phenolic and enolic hydroxyl groups, which can 
lead to proton dissociation. The proton density of GO used 
in this research was calculated to be one exchangeable pro-
ton per 8.7 carbon rings. We measured the electrical con-
ductivity of the P3HT thin film before and after GO deposi-
tion by fabricating organic field-effect transistor (OFET) 

devices (Figure 6(a)). It was found that the electrical con-
ductivity of the P3HT thin film increased by six orders of 
magnitude and exhibited metallic-like characteristics when 
GO was deposited on its surface. The dramatic increase in 
conductivity of the P3HT thin film was attributed to pro-
tonic doping of the surface of P3HT by the GO layer, which 
was confirmed by the observation of new charge transfer 
absorption peaks in the NIR region of the UV-Vis-NIR 
spectrum. Compared to small molecule dopants (e.g., FeCl3, 
I2, HCl and NOPF4) [96–98], the unique 2D structure of GO 
prevents it from penetrating into the bulk of conjugated 
polymers, making it an ideal material for surface doping. 
This finding provides a new strategy to improve the electri-
cal contact of metal/conjugated polymer interfaces in or-
ganic electronic devices such as PSCs, organic light-emit-     
ting diodes, and OFETs. The surface doping effect was 
demonstrated in inverted P3HT:PCBM PSCs using metals 
(Au, Ag, Al) with different work functions (WFs) as the top 
anode, as shown in Figure 6(b). When a thin layer of GO is 
incorporated between the anode and active layer, the devic-
es show improved performance with a open circuit voltage 
of ~0.62 V, independent of the WFs of the different metals. 
This can be attributed to the formation of an Ohmic contact 
between the active layer and top metal electrode caused by 
the surface doping of P3HT by GO [99]. 

2.2  Graphene for rapid DNA sequencing 

Biosensing has the potential to improve the quality of hu-
man life. Because of their large surface area and excellent 
transport properties, biological applications of graphene, 
GO and rGO have attracted significant interest based on 
research experience in carbon nanotubes and various nan-
owires. Graphene-based materials have been used in elec-
trochemical, impedance, and fluorescence biosensors, as 
well as biomolecular labels and transducers in OFETs. 

The most ambitious biological application of graphene is 
for rapid, inexpensive electronic DNA sequencing. Afforda-    
ble and rapid genome sequencing is widely regarded as the  

 

Figure 6  (a) Schematic diagrams of the cross-section of an OFET con-
taining P3HT and GO (P3HT/GO); (b) device configuration of inverted 
PSCs containing GO as a hole-selective IFL and different metals as the top 
electrode. Reprinted with permission from [18], Copyright 2011, WILEY- 
VCH Verlag GmbH & Co. KGaA, Weinheim. 
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next great frontier for science and will eventually revolu-
tionize personalized and predictive medicine and custom 
medical treatment, enabling doctors to determine genetic 
susceptibility to a host of diseases and tailor therapies to an 
individual's genome. We proposed in 2009 that using gra-
phene can solve the bottle-neck issue of how to achieve 
single-base resolution of electronic DNA sequencing (Fig-
ure 7) [100]. Our proposal was based on the following facts: 
the base-specific electronic signatures of the four DNA ba-
ses [101,102], and the 0.335 nm thickness of conducting 
graphene is equivalent to or less than the separation between 
neighboring DNA bases in a stretched single-stranded DNA 
chain. We further proposed to integrate the graphene sen-   
sing element with nanofluidics because it could be easy to 
control the movement of DNA chains and the interaction 
between graphene and DNA bases in a nanochannel [103]. 
Later numerical simulation revealed that graphene-based 
nanopores or nanochannels may rapidly read out sequences of 
individual DNA molecules with 100% accuracy [104–106]. 
It has been shown experimentally that graphene nanopores 
can be used as subnanometer electrodes [107–109]. All of 
the studies to date show that graphene is promising for di-
rect, rapid and inexpensive DNA sequencing. This is a new 
and rapidly expanding field, and the development of such 
technology would surely lead to the “$1000 genome” and 
allow personalized medicine to be realized. 

3  Perspective 

Herein, we have highlighted our recent efforts to fabricate 
graphene-based materials and explore their application in 
organic photovoltaic devices and rapid electronic DNA se-
quencing. Because of their unique two-dimensional struc-
ture and excellent electronic, optical and mechanic proper-
ties, graphene-based materials show tremendous potential in 
various applications. In energy conversion, one promising  

 

Figure 7  Graphene for DNA sequencing. (a) Basic principle of using 
graphene for electronic DNA sequencing with single-base resolution. Re-
printed with permission from [100], Copyright 2009, WILEY-VCH Verlag 
GmbH & Co. KGaA, Weinheim; (b) a graphene-based nanopore. 

application is exploiting graphene as a transparent conduc-    
ting electrode for solar cells and displays. Compared to tra-
ditional transparent indium tin oxide films, advantages in 
cost, resources, and mechanical flexibility make graphene 
especially useful in the emerging field of flexible organic 
electronic devices. However, the sheet resistance of gra-
phene electrodes synthesized by CVD remains higher than 
that of ITO, which is mainly caused by structural defects in 
the graphene films. Doping graphene can increase carrier 
concentration; however, the stability of dopants needs to be 
improved. The development of low-cost and solution-   
processable graphene-based IFLs for PSCs also has attract-
ed great attention. Incorporation of semiconductor or metal 
nanoparticles into graphene-based materials can provide 
greater versatility in energy harvesting and conversion, and 
selective catalytic and sensing applications. The use of gra-
phene-based materials to form lightweight, strong, and elec-
trically tunable composites will also emerge in many appli-
cations. One challenge facing graphene used as an active 
material in PSCs is the absence of a band gap in pristine 
graphene. 

Since researchers completed sequencing the first human 
genome in 2003 at a cost of about $3 billion, the cost of 
DNA sequencing has been dropping steadily by using se-
cond generation sequencing platforms. Sequencing the hu-
man genome could improve our understanding of the bio-
logical functions encoded in it and the biological basis of 
inherited diseases and cancer. The ultimate goal is for se-
quencing to become so simple and inexpensive that it can be 
routinely employed as a general-purpose tool throughout 
biomedicine. To fulfill this potential, the cost of whole- 
genome sequencing will need to decrease to a few hundred 
US dollars. With new approaches under development, these 
goals may be feasible within the next decade. Graphene- 
based nanopore technology is one possible method for single- 
molecule DNA sequencing at low cost and with high 
throughput. Despite the theoretical possibility of accurately 
sequencing DNA by graphene nanopores and the demon-
stration of DNA translocation through graphene nanopores, 
there are various fundamental questions about sequencing 
with graphene nanopores that remain. For example, the de-
tection mechanism of the local electrical field [104,105], 
whether high ionic strength prevent detection of charged 
DNA molecules [106], how to make graphene pores with a 
size of ~2 nm [104], and whether single-nucleotide resolu-
tion is possible in the presence of thermodynamic fluctua-
tion all require further study. Without doubt, this exciting 
yet preliminary work will certainly be the precursor for 
many future studies on the use of graphene for DNA se-
quencing. 

To move forward, controlled fabrication of graphene- 
based materials and the fine tuning of their properties 
should be further explored and exploited to meet the needs 
of emerging applications. Chemical exfoliation of graphite, 
yielding GO, provides a practical route towards low-cost 



 Xu M S, et al.   Chin Sci Bull   August (2012) Vol.57 No.23 3007 

bulk production of solution-processable graphene-based mate-
rials. Despite the random distribution of functional groups on 
the GO surface, the presence of such groups provides an 
excellent platform to tune the electronic and optical proper-
ties of graphene-based materials. In particular, the intrinsic 
fluorescence of GO in the visible and NIR range opens up 
exciting and previously unforeseen optical applications for 
graphene-based materials. CVD and surface segregation are 
two of the most promising methods to produce graphene 
over large areas. Besides difficulty in controlling the num-
ber and structural quality of graphene layers on a whole 
substrate, a challenge for graphene produced by CVD and 
surface segregation is reliable and scalable transfer of the 
fabricated graphene from the synthesized substrate to a tar-
get platform for practical applications in ultrafast optoelec-
tronic devices, energy generation and storage, and chemical 
and biological sensors [110]. 
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