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The dissociation chemistry of primary fragment ions from the protonated proline-containing tripeptides glycylprolylglycine, 
prolylglycylglycine, and prolylprolylglycine was investigated by electrospray ionization multi-stage mass spectrometry. Calcula-
tions showed the a2 ions generated from b2 ions were cyclic, which is energetically more favorable than the linear form. The prolyl 
residue in the structure affected the energy hypersurface of the dissociation reaction from the b2 ion to the a2 ion. In the fragmen-
tation of a2 ions, the iminium-imine complex corresponding to loss of CO from the a2 ion was suggested to be an ion-neutral com-
plex (INC). The a1 ion was generated from direct separation of this INC, and the internal iminium ion, which was absent in PGG, 
was generated from another INC that was formed from the first INC via proton-bridged complex-mediated intramolecular proton 
transfer. Although these intermediates are unstable, their existence is supported by experiments and density functional theory 
calculations. 

proline, cyclic a2, ion-neutral complex, proton-bridged complex, intramolecular proton transfer, internal iminium ion, 
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Determination of amino acid sequences in peptides and pro-
teins by mass spectrometry (MS) [1–4] is of considerable 
practical importance. Soft ionization techniques, such as 
electrospray ionization (ESI) [4–7] and matrix-assisted laser 
desorption/ionization (MALDI) [8,9], are used to produce 
intact peptide ions in the gas phase. The target peptide ion 
can be selected for fragmentation to provide sufficient 
structural information by tandem MS (MS/MS) and multi- 
stage MS (MSn) techniques. Combined with theoretical 
calculation methods, the primary fragmentation pathways 
and ionic structures of protonated peptides can be well es-
tablished [10–15]. Peptide precursor ions under typical low- 
energy, collision-induced dissociation (CID) conditions 

fragment along amide bond backbones forming structurally 
informative sequence ions, including bn and yn ions con-
taining N- and C-termini, respectively. The bn and yn ions 
formed on the primary peptide sequence can further frag-
ment to form lower b ions, a ions, internal fragments, and 
internal immonium ions. Competition among these pathways 
is one of the main factors that determine the MSn spectra of 
protonated peptides. Iminium ions (RCH=NH2

+) are frequently 
observed at low mass/charge (m/z) ratios. These ions are 
good indicators of the particular amino acids present in a 
peptide sequence. For example, the ion at m/z 70 is a good 
indicator of the presence of proline if it is abundant in a pep-
tide and no arginine is present [16,17]. Previous studies 
[18–23] have mainly focused on these initial fragmentation 
reactions rather than the subsequent fragmentation reactions 
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leading to the final observed fragment ions. Currently, the 
dissociation mechanisms are not well understood, even for 
peptides that contain relatively “simple residues”. RCH=NH2

+ 
can be generated as a1 or an internal iminium ion.  

Siu and co-workers [24–26] reported that iminium ions 
(RCH=NH2

+) generation from a2 ions proceeds via an imin-
ium-imine complex. This intermediate is called a proton- 
bridged complex (PBC), which is a special type of ion-neutral 
complex (INC). INCs [27–32] are prominent in gas-phase 
unimolecular ionic reactions [33–39], and consist of an ion-
ic fragment and a neutral molecule bind together through 
electrostatic attraction instead of a covalent bond. Before 
their final separation, various interesting chemical reactions 
occur in these temporary systems, including hydride transfer 
[35], charge transfer [37] and transacylation reactions [38,39], 
which do not occur between the same two components 
when connected by a covalent bond. In a PBC, two incipient 
neutrals are attached to a common proton, and the PBC of-
ten represents the transition state for the interconversion of 
INCs [28,39–41]. According to the literature on PBCs (Fig-
ure 1), proton transfer between INCs should be governed by 
the proton affinities (PAs) of the related molecules. When B 
has a substantially greater PA than A (by 12 kcal mol1), 
the proton transfer from INC_A to PBC is essentially irre-
versible [29]. Intramolecular proton transfer from the first 
INC is thought to yield the second INC via PBC, and then 
the two INCs dissociate to a1 and the internal RCH=NH2

+.  
In this research, the tripeptides glycylprolylglycine (GPG), 

prolylglycylglycine (PGG), and prolylprolylglycine (PPG) 
were studied. Proline is unique DNA-encoding -amino 
acid because it has a secondary -amino group. Its cyclic 
pyrrolidine ring imposes rigid constraints on N–C rotation. 
Prolines play an important role in protein folding, which is 
necessary for the formation of the three-dimensional struc-
tures of physiologically active proteins (e.g., HIV-1 capsid 
protein [42]). Addition of proline can induce inactivation, 
for example, insertion of a proline at critical locations in 
amylin severely inhibits amyloid formation [43]. The bio-
logical functions of prolines are of considerable interest to 
researchers. 

The presence of proline residues is important in MS 
studies of peptides and proteins. Because of their importance 
in the conformations of small peptides, proline residues may 
have a considerable influence on fragmentation patterns in 
MS/MS. With many protonated proline-containing peptides, 
the position of the proline residue has a major effect on the 
type of fragmentation that occurs. For example, when the 
prolyl residue is located at the C-terminal of a tripeptide, 
only the products of cleavage at the C-terminal can be  

 

Figure 1  Interconversion of a pair of INCs via PBC. 

observed [11]. By contrast, when the prolyl residue is lo-
cated centrally, both b2 and y2 ions are typically formed 
competitively [11]. In addition, these proline-directed pro-
cesses are sometimes the only dissociation pathways ob-
served for large proteins [44]. This proline effect is at-
tributed to high gas-phase basicity or proton affinity of pro-
line [11,45]. 

Considering the importance of proline to peptides, we are 
interested in subsequent fragmentation reactions of proto-
nated proline-containing peptides. The purpose of the pre-
sent study was to probe the dissociation pathways of pri-
mary fragment ions from the aforementioned protonated 
proline-containing tripeptides by positive ESI combined 
with multi-stage MS. Density functional theory (DFT) cal-
culations were performed to support the proposed fragmen-
tation pathways.  

1  Methods 

(i) MS.  Collision-induced dissociation experiments were 
performed using a Varian 500-MS (Palto Alto, CA) ion trap 
MS operated in positive ion mode and equipped with an ESI 
source. Data were acquired using the Varian MS Workstation. 
Samples were dissolved in methanol containing 0.1% for-
mic acid at a concentration of approximately 0.1 g mL1, 
and infused into the source chamber at 6 L min1. The pa-
rameters were set as follows: spray chamber temperature, 
50°C; needle voltage, 5000 V; spray shield voltage, 600 V; 
capillary voltage, 75 V; RF loading, 85%; scan mode, stan-     
dard; drying gas temperature, 250°C. Nitrogen was used as 
the drying gas at a pressure of 15 psi and the nebulizing gas 
at a pressure of 35 psi (1 psi=6.895×105 Pa). Helium was 
used as the collision gas.  

(ii) Theoretical calculations.  All theoretical calculations 
were performed by density functional theory (DFT) at the 
B3LYP level with the 6-31G++(d,p) basis set in Gaussian 
03 [46]. Previous studies have established that DFT calcula-
tions at the B3LYP level with the 6-31G++(d,p) basis set 
are satisfactory for molecules, such as protonated peptides, 
in which hydrogen bonds are ubiquitous [10–12,15,24–26, 
47–51]. Hydrogen bonds are important in many structural 
details of protonated peptides and their fragmentation prod-
ucts, but are relatively weak. The candidate structures of the 
reactants, products, intermediates and transition states were 
optimized by calculating the force constants, while no sym-
metry constrains were imposed in the optimizations. The 
reaction pathways were traced forward and backward by the 
intrinsic reaction coordinate (IRC) method. All optimized 
structures (Table S1) were subjected to vibrational frequency 
analysis, shown in the reaction profiles by Gauss View 
software (version 3.09) to give higher quality images of 
these structures (red for oxygen and blue for nitrogen). All 
relative free energies (G2°98) are given in kcal mol1, and 
the lengths of the chemical bonds are given in Å (Table S2). 
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To obtain theoretical relative proton affinities for the final 
fragments, both the neutral and protonated forms were 
computed, and the proton affinities were approximated from 
relative enthalpies (∆H0°) (Table S3).  

2  Results and discussion 

For all the compounds studied, the protonated tripeptides 
were produced under positive ion ESI conditions. In the 
MSn experiments, the product ion spectra of the precursor 
ion were obtained under the conditions described in the ex-
perimental section (Figures 2 and 3). All the protonated 
tripeptides tended to generate the relevant sequence ions 
(abundant b2, a2, and a1 ions) mainly by charge-directed 
reactions [52–54] upon activation under low-energy colli-
sion conditions. However, the position of the proline residue 
in the peptide affected the type of fragmentation that oc-
curred [11]. The present study primarily focused on the 

formation and fragmentation of the a2 ions. Theoretical 
computations were performed to support the proposed mecha-
nisms and show the possible existence of some transition 
states and intermediates involved.  

2.1  Structures of the a2 ions  

In previous studies, protonation of the nitrogen in the oxa-
zolone ring [55–57] of the b2 ion was believed weaken the 
carbonylic C–O bond. Elimination of CO occurred through 
a concerted pathway [51,56,57] involving the rupture of two 
covalent bonds of the cyclic b2 ion and formation of the 
linear a2 ion [53]. However, Siu and co-workers [24–26] 
proved by infrared multiple-photon dissociation spectros-
copy and DFT calculations that linear a2 ions can be further 
stabilized by intramolecular nucleophilic attack of the N- 
terminal amino nitrogen on the carbon of the iminium moiety. 
This forms a cyclic structure, such as an N1-protonated 4- 
imidazolidinone for the a2 ion derived from triglycine. The  

 

Figure 2  CID mass spectra of the [M+H]+ ions of PPG (a), PGG (b), GPG (c). 
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Figure 3  CID mass spectra of the b2 ions from protonated PPG (a), PGG (b), GPG (c). 

tripeptides studied herein all contain one or two proline res-
idues. To assess whether the cyclic structures of the a2 ions 
derived from proline-containing tripeptides are energetically 
favorable, the reaction profiles for the dissociation of b2 
from protonated PPG, PGG, and GPG to a2 ions are illus-
trated in Figure 4.  

The energy profiles of protonated PPG, PGG, and GPG 
were qualitatively similar to that from GGG [23], but dif-
fered quantitatively. The calculation results agree with those 
in the literatures, with the cyclic forms (a2’’) more energe-    
tically favorable than the linear forms (a2’) by 9.61, 19.24, 
and 1.32 kcal mol1 for PPG, PGG, and GPG, respectively. 
Furthermore, the energy barriers (TS2) to this isomerization 
process were only 4.25, 8.94, and 7.21 kcal mol1 for PPG, 
PGG, and GPG, respectively. These results indicate that the 
isomerization processes are not difficult to overcome and 
the cyclic forms (a2’’) are much more stable than the linear 
forms (a2’). Notably, the formal positive charge center is 

transferred from the nitrogen of the second amide residue to 
the nitrogen of the first amide residue (Figure 5). This is the 
main cause of the distinct energy difference between the 
two forms of the a2 ion.  

In PPG and GPG, the formal positive charge centers of 
the a2’ ions are located on the second prolyl residue, and the 
inductive effect of the pyrrolidine ring in this prolyl residue 
confers considerable charge stabilization on the H–N+ group, 
which results in a rather dramatic decrease in the energy. By 
contrast, the a2’ ion from PGG is relatively higher in energy 
because of the absence of the second prolyl residue and the 
minimal influence on the H–N+ group from the pyrrolidine 
ring of the N-terminal prolyl residue. This is also why the  
energy hypersurface of PGG is much higher than that of 
PPG and GPG. Table 1 compares the G2°98 values of the 
minima and transition-state structures.  

However, the a2’’ ion of PPG is a notable exception, with 
an energy difference to the a2’ ion of 19.24 kcal mol1. This  
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Figure 4  Reaction profile for dissociation of the b2 to a2 ions from pro-
tonated PPG (a), PGG (b), GPG (c).  

 

Figure 5  Optimized structures of the two forms of the a2 ions (linear form: 
a2’; cyclic form: a2’’ ) from protonated PPG (a) , PGG (b) and GPG (c). 

occurs because in the cyclization that forms a2’’, the formal 
positive charge center is transferred to the nitrogen of the 
first N-terminal prolyl residue, which places the formal pos-
itive charge center in the pyrrolidine ring. For the same 
reason, the energy difference between a2’’ and a2’ of PPG is 
also distinct (9.61 kcal mol1), but smaller than that of PGG. 
As for GPG, the energy difference is only 1.32 kcal mol1, 
because the formal positive charge center is transferred to 
the first glycyl residue, and the influence of the pyrrolidine 
ring is lost. Therefore, the proline in the peptide affects the 
energy hypersurface of the reaction, and this effect is much 
stronger than that from alanine [25]. 

Table 1  Relative free energies (G2°98) for protonated GPG-, PGG-, PPG-derived ions and transition states (kcal mol1) 

 PPG PGG GPG N-benzyl GPG 

b2 0.00 0.00 0.00 NA a) 

TS1 30.81 32.33 28.85 NA a) 

a2’+CO 0.04 13.20 0.53 9.41 

TS2+CO 4.29 22.14 6.68 14.00 

a2
’’+CO 9.57 6.04 1.85 0.00 

TS3+CO 17.05 28.52 25.67 28.48 

INC_A+2CO 20.61 8.61 NAa) 4.16 

PBC_TS+2CO 21.74 NA a) NA a) 4.73 

INC_B+2CO 20.61 NA a) 9.64 4.91 

a) Not applicable. 
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Figure 6  CID mass spectra of the a2 ions from protonated PPG (a), PGG (b) and GPG (c).  

2.2  Fragmentation of the a2 ion 

Figure 6 shows the product-ion spectra of the a2 ions from 
protonated PPG, PGG, and GPG. Generally, all the a2 ions 
provided similar fragmentation in the collision-induced 
dissociation MS experiments, yielding an abundant proto-
nated molecule at m/z 70. The other product ions (m/z 99 
and m/z 139) generated from the precursor a2 ions by the 
loss of CO were minor but noteworthy, for they are consid-
ered to be important gas-phase unimolecular ionic reaction 
intermediates, INCs, which are rarely seen in the product- 
ion spectra. 

The fragmentation of a2 ions to a1 and internal RCH= 
NH2

+ proceeded via the aforementioned INC. However, to 
date, the dissociation chemistry of the INC to the internal 
RCH=NH2

+ has not been investigated in detail. We propose 
that the subsequent proton transfer between the ionic and 
neutral partners within the INC results in the PBC, and then 
isomerizes it to another INC. This hypothesis may account 
for the sufficiently long lifetime of this proton-bridged di-
mer under low-energy conditions for the proton transfers 
between the two fragments in the dimer. The two INCs split 
to a1 ions and internal RCH=NH2

+. To describe the energy  

requirements of the reactions quantitatively, the mecha-
nisms are shown in Figure 7, and the reaction profiles for 
the proposed mechanisms that fit the experimental data are 
shown in Figure 8. 

For PPG (Figure 8(a)), the collisional activation of a2’’ 
resulted in breaking of the middle ring and formation of a2’. 
Then, the simultaneous lengthening of the C–C and C–N 
bonds adjacent to the carbonyl group in a2’ resulted in TS3. 
This step was critical in the dissociation, and TS3 was only 
26.62 kcal mol1 higher in energy than a2’’. On the product 
side of the TS3, there was an adduct between an INC and 
CO. Once the weakly bound CO was repelled, an INC 
(INC_A) formed, in which the formal positive charge center 
was located on the imine of the first prolyl residue. Stabi-
lized by N1

+–H…N2, the H–N2 hydrogen bond between the 
ion and the neutral partner was at 1.58 Å, INC_A was 11.04 
kcal mol1 lower in energy than a2’’. Dissociation of INC_A 
led to formation of the a1 ion and neutral cyclic RCH=NH. 
A proton transfer reaction via PBC_TS can lead to INC_B, 
the minimum on the product side of PBC_TS is determined 
by an intrinsic reaction coordinate calculation, for which 
there is proton located at the imine of the second prolyl   
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Figure 7  Proposed fragmentation mechanisms of the a2 ions from protonated PPG (a), PGG (b), GPG (c) and N-benzyl GPG (d). 

residue. In the PPG energy hypersurface, PBC_TS was 
slightly lower in corrected zero-point energy (ZPE) than 
both INC_A and INC_B, which indicates that efficient pro-
ton transfer occurs and that INC_B can form easily after the 
preceding complex INC_A. These three important proton- 
bridged dimer isomers are schematically presented in Figure 
9(a)–(c). It was obvious that the N1–H–N2 hydrogen bond 
lengths between the two neutral partners of PBC_TS were 
both at 1.29 Å, which meant that PBC_TS for PPG was 
symmetric because of the same two neutral partners, which 
were from the first and second prolyl residues. For the same 
reason, the two INCs were identical both in structure and 
energy. Dissociation of INC_B led to formation of the inter-
nal cyclic RCH=NH2

+, which was indistinguishable from the 
a1 ion because they shared the same fragment ion at m/z 70.  

The intramolecular proton transfer reaction can be observed 

in the spectrum only when the first two residues are differ-
ent. Nevertheless, no internal proton transfer occurred in 
PGG, and the dissociation of the a2 ions provided only the 
a1 ion. The original proton was on the nitrogen of the first 
prolyl residue, so the proton was on the imine of the first 
prolyl residue in INC_A. The hydrogen bonds between  
cyclic RCH=NH2

+ and neutral CH2=NH from the second 
glycyl residue were 1.68 Å (Figure 9(d)). The subsequent 
proton transfer to form INC_B is a difficult process. This is 
because the PA of the imine of the first prolyl residue is 
16.65 kcal mol1 higher (in terms of relative enthalpies 
(H0°), Table S3) than that of the imine of the second glycyl 
residue in PGG. Consequently, no protonated methanimine 
(m/z 30) was produced (Figure 7(b)). 

Theoretically, as in GPG, given that the imine of the se-
cond prolyl residue has a greater PA than the imine of the  
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Figure 8  Reaction profile for dissociation of the a2 to a1 ions from protonated PPG (a), PGG (b), GPG (c) and N-benzyl GPG (d).  

 

Figure 9  Optimized structures of INC_A (a), PBC_TS (b) and INC_B (c) from PPG; INC_A from PPG or INC_B from GPG (d); INC_A (e), PBC_TS (f) 
and INC_B (g) from N-benzyl GPG.  
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first glycyl residue, an observable intramolecular proton 
transfer reaction should occur (Figure 7(c)). This should 
produce two distinguishable product ions at m/z 70 and 30. 
However, the calculation results (Figure 8(c)) only yielded 
one optimized INC for protonation, which was more fa-
vored at the imine of the second prolyl residue than that of 
the first glycyl residue. In addition, there was no peak at m/z 
30 in the spectrum of GPG because its mass was outside the 
mass range of the instrument. To address this limitation, the 
derivative of GPG, N-benzyl GPG, was studied to prove the 
existence of the intramolecular proton transfer reaction in 
GPG. Figure 7(d) shows the proposed fragmentation mech-
anism of the a2 ion from N-benzyl GPG. The reaction pro-
file (Figure 8(d)) supported the proposed mechanisms and 
showed the likelihood of INC_A, PBC_TS, and INC_B. 
PBC_TS existing was slightly lower than that of INC_A but 
higher than that of INC_B. This was reflected in the relative 
corrected ZPEs by 0.57 and 0.18 kcal mol1, which indi-
cates that a very rapid transition occurs between the INC_A 
and INC_B valleys.  

Based on this calculation result, we speculated that in 
previous GPG’s calculations, INC_A had a much higher in 
corrected ZPE relative to PBC_TS and INC_B, which was 
why INC_A was unstable in the intramolecular proton 
transfer reaction and rapidly generated to INC_B via 
PBC_TS and rarely directly separated to a1 ions. This frag-
mentation pathway is similar to the a1-yx pathway in the 
dissociation of the N-terminal [amino acid(1)-amino acid(2)] 
amide bonds of underivatized protonated peptides proposed 
by Paizs et al. [58,59]. This fragmentation pathway also 
agrees with the results of Harrison et al. [60]. In the a1-yx 
pathway, the ratio of the abundances of the a1 and yx ions 
determined by the relative PA of the two monomers can be 
approximated using a linear free-energy relationship [58,59] 
(eq. (1)):  

 N-term C-term1

eff

PA PAa
ln .

y RTx

   
   

   
 (1) 

This indicates that competitive proton transfer exists be-
tween the two complexes. The proton transfer between the 
two INCs may also be competitive in PPG, GPG, and 

N-benzyl GPG. The relative PAs of the two residues influ-
ence the abundances of the a1 and internal RCH=NH2

+ ions. 
The PA of the imine of the first glycyl residue is considera-
bly smaller than that of the second prolyl residue, and it is 
possible to infer that the a1 ion (m/z 30) should be much less 
abundant than the RCH=NH2

+ (m/z 70) in GPG.  
Important experimental evidence was obtained for the 

existence of the intermediates for N-benzyl GPG. If the in-
termediate is to survive collisional activation, it should have 
an m/z of 189. In the present study, a distinct fragment ion 
observed in the product-ion spectrum of a2 (Figure 10) oc-
curred at this m/z. The competitive intramolecular proton 
transfer reaction between the INCs via the PBC yielded two 
different product ions: an a1 ion at m/z 120 and an internal 
immoniun ion at m/z 70. However, the abundance of the 
former was higher than that of the latter, which had a PA 
value that was 2.84 kcal mol1 lower (in terms of H0°, Ta-
ble S3). This is because part of the a1 ion may be directly 
generated from a2 ions cleaved at the OC–C bond bypassing 
the formation of the INC. The results from the study of the 
fragmentation of the a2 ion from N-benzyl GPG proved that 
competitive intramolecular proton transfer reactions oc-
curred between the INCs. The main characteristics of this 
pathway can be used to explain most of the corresponding 
experimental results obtained for the protonated tripeptides 
and small peptides. 

3  Conclusions 

In the present research, the dissociation chemistry of pri-
mary fragment ions from protonated proline-containing 
tripeptides was discussed and the formation and fragmenta-
tion of the a2 ion were investigated. Calculations showed the 
structures of the a2 ions generated from b2 were cyclic and 
much lower in energy than the linear form. This agreed with 
results from earlier studies about this novel a2 ion structure. 
The prolyl residue in the structure had a significant effect on 
the energy hypersurface of the reaction by stabilizing the 
structure and lowering the energy. Fragmentations of the a2 
ions from GPG and PPG produced both the a1 and internal  

 

Figure 10  CID mass spectrum of the a2 ion from protonated N-benzyl GPG. 
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RCH=NH2
+ ions. By contrast, only the a1 ion was produced 

from PGG. In GPG and PPG, the dissociation chemistry of 
a2 ions can be described by intramolecular proton transfer 
from the first INC produced to another INC via a PBC. The 
second INC then dissociates to the internal RCH=NH2

+, 
which is absent in PGG. 
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