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The breakup of a spiral wave by blockade of sodium and potassium channels in a small-world network of Hodgkin-Huxley neu-
rons is investigated in detail. The influence of ion channel block in poisoned excitable membrane patches of a certain size is 
measured, by varying channel noise and channel densities resulting from the change in conductance. For example, tetrae-
thylammonium is known to cause a block (poisoning) of potassium channels, while tetrodotoxin blocks sodium channels. We 
observed the occurrence of spiral waves, which are ordered waves believed to play an important role in facilitating the propaga-
tion of electric signals across quiescent regions of the brain. In this paper, the effect of channel block was measured by the factors 
xK and xNa, which represent the ratios of unblocked, or active, ion channels, to the overall number of potassium or sodium ion 
channels, respectively. To quantify these observations, we use a simple but robust synchronization measure, which succinctly 
captures the transition from spiral waves to other collective states, such as broken segments resulting from the breakup of the spi-
ral wave. The critical thresholds of channel block can be inferred from the abrupt changes occurring in plots of the synchroniza-
tion measure against different values of xK and xNa. Notably, small synchronization factors can be tightly associated with states 
where the formation of spiral waves is robust to mild channel block. 
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A spiral wave is a characteristic spatiotemporal pattern that 
is often observed in excitable media [1–10]. The formation 
and propagation of spiral waves in reaction-diffusion sys-
tems have been studied extensively [11–16], and some ef-
fective schemes have been used to remove spiral waves and 
prevent ventricular fibrillation [17]. Stable rotating spiral 
waves have been observed in rat neocortical slices visual-
ized by voltage-sensitive dye imaging [18,19]. Spiral waves 
might serve as emergent population pacemakers, generating 
periodic activity in non-oscillatory networks without indi-
vidual cellular pacemakers. The formation, death, and 
breakup of spiral waves in the mammalian cortex can be 
simulated using regular and/or small-world networks [8–10]. 

In networks using Hodgkin-Huxley model neurons [20], the 
effects of channel noise [21,22] on spiral waves needs to be 
studied in detail. 

Normal signal propagation between neurons in networks 
with different topologies deeply depends on the collective 
behavior of neurons. Abnormalities of neurons in one do-
main can destroy the normal communication between neu-
rons, and neurological disorders can occur when the normal 
electrical activity of neurons is violated. The response of 
neurons to external stimuli (drugs or electrical forcing) is 
often a result of the collective behaviors of all the neurons 
in one or more domains. It is reliable to study the collective 
electrical activities of neurons in functional domains using 
complex network schemes. Most previous schemes have 
been proposed to remove spiral waves in reaction-diffusion 
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systems, with the expectation that they may provide reliable 
ways to prevent ventricular fibrillation. However, spiral 
waves observed in neocortical slices have been found to 
play an active role in preserving normal communication in 
quiescent domains of the neuronal system. It is therefore 
critical to study the robustness and transition of spiral waves 
in neocortical slices using complex network schemes. Some 
interesting studies have shown that ordered waves in neu-
ronal networks could be relative to coherence resonance, 
and the state could be changed by time delay or other bifur-
cation parameter shifts [11,23,24]. Channel noise in Hodg-
kin-Huxley neurons can greatly affect electrical activities 
[21,22], and it is believed that the probabilistic gating of 
voltage-dependent ion channels is a source of electrical 
channel noise in neurons [21]. The collective electrical be-
havior of neurons is regulated by the size of the membrane 
patch or the channel noise. A potential mechanism could be 
coherence resonance-like behavior induced by internal noise. 
Schmid et al. [22] reported that capacitance fluctuations 
caused channel noise reduction in stochastic Hodgkin- 
Huxley systems. Fox et al. [25] used the autocorrelation 
functions of the channel noise to measure the effect of 
channel noise. Ozer et al. [26] suggested that channel 
blocking was effective in controlling the regularity of spon-
taneous spiking in Newman-Watts networks of Hodgkin- 
Huxley neurons. Sun et al. [27] investigated the effects of 
channel noise on firing coherence in small-world Hodgkin- 
Huxley neuronal networks. Gong et al. [28,29] simulated 
the effect of channel block on the collective spiking activity 
of coupled stochastic Hodgkin-Huxley neurons and random 
networks. 

Some previous studies have discussed the effect of ion 
channel block on the excitability of neurons and collective 
electrical behavior of neurons in networks. For example, 
Uchitel [30] investigated the effects of toxins affecting 
neuronal calcium channels. Johnson et al. [31] studied the 
roles of drug and channel structure in Ca2+ channel block by 
phenylalkylamines. Schmid et al. [32] discussed the effect 
of channel block on the spiking activity of excitable mem-
branes in a stochastic Hodgkin-Huxley model.  

In this paper, we focus on ion channel block-induced 
breakup of spiral waves in a two-dimensional square array, 
in which Hodgkin-Huxley neurons are connected in a 
small-world network. The factors xK and xNa are defined to 
describe the fraction of unblocked (active) potassium and 
sodium channels, respectively. A smaller value of xK or xNa 
is approached when channels are poisoned deeply. Based on 
mean field theory, a statistical variable is also defined, to 
allow detection of the critical condition for breakup of spiral 
waves induced by ion channel block in neurons. 

1  Mathematical model and discussion 

The dynamics of the membrane potential of Hodgkin-  

Huxley neurons in a small-world network, and the stochas-
tic properties of this model [25], are described by the fol-
lowing equations:  
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The integer subscripts i and j denote the position of neu-
rons in the two-dimensional small-world network. The var-
iables V, m, n, and h describe the membrane potential and 
gating parameters of neuronal ion channels. The membrane 
capacitance is Cm=1 μF/cm2. The maximal potassium con-
ductance is K 36g mS/cm2, the maximal sodium con-

ductance is Na 120g mS/cm2, the leakage current con-

ductance is L 0.3g mS/cm2, and the external injection 

current is Iij=0. The reversal potentials were VK=–77 mV, 
VNa=50 mV, and VL=–54.4 mV. D is the intensity of cou-
pling, and εklij describes the connection state (on or off) be-
tween sites (k, l) and (i, j). εklij = 1 if site (k, l) is connected 
with site (i, j); otherwise, εklij = 0. ξm(t), ξh(t), and ξn(t) are 
independent Gaussian white noise sources and their statisti-
cal properties are described by the following equations:  
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Dm, Dn, and Dh describe the noise intensity. The function 
δ(t–t')=1 at t=t', and δ(t–t')=0 at t≠t'. NNa and NK are the 
total numbers of sodium and potassium channels, respec-
tively, present in a given membrane patch. In the case of 
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homogeneous ion channel density, ρNa=60 µm2 and ρK=18 
µm2. The total channel number is decided by NNa=ρNas and 
NK=ρKs, where s describes the size of the membrane patch. 
As reported in [32], the influence of channel block on the 
excitability of a membrane patch of a certain size is twofold: 
The conductance is changed by the change in channel den-
sity, and the channel noise is increased by the down-   
regulation of working ion channels. The change in con-
ductance is measured by 
 max max

K K K Na Na Na,  , g g x g g x   (9) 

where xK and xNa denote the ratios of active ion channels to 
the total number of potassium (NK) or sodium (NNa) chan-
nels, respectively. In the numerical studies, the values for xK 
and xNa are set between 0 and 1, where a higher ratio repre-
sents a larger proportion of active channels. The statistical 
properties [32] of the channel noise [25] are defined by 
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According to these equations, the intensity of channel 
noise will change when different values for xK and xNa are 
selected. The statistical properties of the measurable varia-
bles (e.g. the neuronal membrane potential) are described by 
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where R is a factor of synchronization. A smaller value of R 
is often associated with the ordered state. The number of 
neurons or oscillators is N2 and the variable Vij is the mem-
brane potential of the neuron at site (i, j). In the next section, 
the factors of synchronization are plotted as a function of 
the parameters xK and xNa, to detect the critical condition for 
spiral wave breakup induced by block of ion channels. 

2  Numerical results and discussion 

In this section, a well-developed spiral wave in the network 
is regarded as the initial state, and then channel block (poi-
soning) is considered. In the numerical studies, the Eulerian 
difference method and no-flux boundary condition are used, 

with a time step h of 0.001, coupling intensity D=1.0, and 
external forcing current Iij=0. It is confirmed that a spiral 
can develop and occupy the whole network, in which 40000 
neurons are arranged on the nodes of the 200×200 array. As 
reported previously [33], a minimum size of the domain was 
necessary to support the occurrence of a spiral wave. A 
network with 200×200 nodes could reliably simulate the 
development of a spiral wave. The small-world network can 
be described by local regular networks and long-range con-
nections with a certain probability p. In the following stud-
ies, 90000 neurons were located in a two-dimensional array 
with 300×300 sites. Extensive numerical studies have 
shown that a spiral wave can emerge and cover an entire 
system with low long-range connection probability, and that 
spiral wave breakup is induced when the long range con-
nection probability exceeds certain thresholds [3]. Our aim 
is to focus on the effects of variations of conductance, and 
thus the channel noise-induced transition of the spiral wave. 
Therefore, a long range connection probability p of 0.02 
(which was able to completely support spiral wave survival) 
is used throughout the study.  

As shown in Figure 1, a spiral wave can develop and oc-
cupy most of the area in a network with 300×300 neurons, 
within a transient period of about 3000 time units. It takes 
about 15000 time units for the developing spiral wave to 
occupy the whole network, and the results are similar when 
the network is constructed by the two-dimensional array 
with 200×200 neurons. As a result, the spiral wave in the 
center of the network is surrounded by the segments near 
the boundary of networks. 

At first, no channel noise is considered, and then each 
neuron of the network is described by the deterministic 
Hodgkin-Huxley model. The factor of synchronization is  

 

 

Figure 1  Snapshots of stable rotating spiral waves in the absence and 
presence of channel noise. (a) Spiral wave without channel noise at 2000 
time units; (b) spiral wave without channel noise at 3000 time units; (c) 
spiral wave in the presence of channel noise (s=20) at 1000 time units; (d) 
spiral wave in the presence of channel noise at 3000 time units. Long-range 
probability p=0.02; coupling coefficient D=1. The snapshots are plotted in 
grayscale, from black (about –80 mV) to white (about 40 mV).  
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plotted as a function of xK at a fixed xNa of 1. The initial 
state shown in Figure 1(b) is used, and a distinct phase tran-
sition is observed. These results can be understood using 
bifurcation theory [32]. 

Figure 2 shows that an abrupt decay occurs when the pa-
rameter xK reaches a threshold of about 0.2. Thus, breakup 
of the spiral wave occurs when xK is less than the threshold; 
otherwise, the spiral wave keeps alive greatly. A potential 
mechanism could be that channel noise intensity is in-
creased greatly below threshold and the breakup of the spi-
ral wave is induced. The statistical function R measures the 
collective properties. Spiral wave is an ordered state and a 
distinct phase transition occurs when spiral wave breakup is 
induced. Next, snapshots are plotted to show the final state 
at t=1000 time units when the ratio xK is close to the thresh-
old (Figure 3). 

As shown in Figure 3, the spiral wave encounters breakup 
when the fraction of active potassium channels xK is close to 
the threshold of 0.2, whereas the spiral wave stays robust 
above the threshold. Next, variation of xNa is investigated to 
calculate the distribution of factors of synchronization (Figure 
4). The corresponding snapshots are also plotted to illustrate 
the breakup of the spiral wave (Figure 5).  

Figure 4 shows that the spiral wave encounters breakup 
when the fraction of active sodium channels xNa is close to a 
threshold of about 0.4, whereas the spiral wave is robust 
above this threshold. When xNa is set to 0.3, the spiral wave 
disappears and the network activity becomes homogeneous 
(Figure 5).   

Figure 5 illustrates that the spiral wave transitions into 
different states (broken segments or homogeneous states) 
when xNa decreases below the threshold. Comparison of the 
results in Figures 2 and 3 with Figures 4 and 5 raises some 
questions for discussion. For both potassium and sodium 
channels, a distinct decline in the factor of synchronization 
is seen with increasing values of xNa (xK). Schmid et al. [32] 
reported that channel block can affect the spiking activity of 
excitable membranes in a stochastic Hodgkin-Huxley model. 

 

 

Figure 2  The distribution of factors of synchronization (R) for different 
values of xK. The transient period is about 1000 time units and xNa is   
fixed at 1. 

 

Figure 3  Snapshots of spiral waves under different degrees of potassium 
channel block at t=1000 time units. (a) xK=0.2; (b) xK=0.3; (c) xK=0.4; (d) 
xK=0.5. The snapshots are plotted in grayscale from black (about –80 mV) 
to white (about 50 mV). The coupling coefficient D=1. 

 

Figure 4  The distribution of factors of synchronization for different 
values of xNa. The transient period is about 1000 time units and xK is f  
ixed at 1. 

 

Figure 5  Snapshots showing breakup of spiral waves due to sodium 
channel block at t=1000 time units. (a) xNa=0.3; (b) xNa=0.4; (c) xNa=0.5; (d) 
xNa=0.6. The snapshots are plotted in grayscale from black (about –80 mV) 
to white (about 50 mV). The coupling coefficient D=1. 
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It is helpful to understand the mechanism of the decay in the 
factor of synchronization. A sub-critical Hopf-bifurcation 
takes place, a stable spiking solution and oscillatory solu-
tion arise, and the stable, non-spiking solution becomes un-
stable. With further reductions in xK, the oscillatory spiking 
solution encounters instability. As a result, a breakup of the 
spiral wave occurs, and a distinct phase transition is ob-
served. The block of sodium channels causes only a small, 
practically negligible, change in the resting membrane po-
tential. Therefore, the spiral wave keeps alive at most values 
of xNa. Further decreasing xNa merely decreases the number 
of sodium channels, enhancing internal channel noise and 
inducing a breakup of the spiral wave.  

Next, we investigate this effect of weak channel noise. In 
Figure 6, the distribution of factors of synchronization is 
plotted to visualize the effect of potassium channel block. 

Again, an abrupt decay occurs with increasing xK, at a 
threshold of about 0.2. Figure 7 shows the snapshots corre-
sponding to values of xK close to the threshold, showing 
breakup of the spiral wave. 

The results in Figure 7 show that breakup of the spiral 
wave occurs when the factor xK is less than the threshold in 
the presence of weak channel noise. The spiral wave stays 
very robust when xK exceeds the threshold. Comparison of 
the results in Figures 2 and 3 with Figures 6 and 7 reveals 
that the decay and phase transition occurs at similar thresh-
olds (xK=0.2), whereas the peak values of the factors of 
synchronization are different. A potential cause may be the 
action of channel noise.  

We next test the effects of sodium channel block on spi-
ral waves in the presence of weak channel noise (Figures 8 
and 9).  

In the presence of weak channel noise, an abrupt decay is 
observed when xNa increases to a threshold of about 0.4. The 
corresponding snapshots are plotted in Figure 9. 

Figure 9 shows that breakup of the spiral wave is also 
induced when xNa is less than the threshold. When channel 
noise is present, any slight shift in xNa or xK changes the 

 

 

Figure 6  The distribution of factors of synchronization for different 
values of xK in the presence of weak channel noise. The transient period is 
about 1000 time units, the intensity of channel noise is described by mem-
brane patch s=20, and xNa is fixed at 1 in the numerical simulations.  

 

Figure 7  Snapshots showing breakup of spiral wave due to potassium 
channel block in the presence of weak channel noise, at t=1000 time units. 
(a) xK=0.1; (b) xK=0.2; (c) xK=0.3; (d) xK=0.4. The intensity of channel 
noise is described by membrane patch s=20. The snapshots are plotted in 
grayscrale from black (about –80 mV) to white (about 50 mV). The cou-
pling coefficient D=1. 

 

Figure 8  The distribution of factors of synchronization for different 
values of xNa in the presence of weak channel noise. The transient period is 
about 1000 time units and xK is fixed at 1 in numerical simulation studies. 
The intensity of channel noise is described by membrane patch s=20.   

intensity of channel noise greatly, according to eqs. 
(10)–(12). The distinct decay for factors of synchronization 
and phase synchronization could result from the change in 
conductance and decrease in channel noise. The curves in 
Figures 2, 4, 6, and 8 confirm that a smaller factor of syn-
chronization is often approached, and this is associated with 
an ordered state in which the spiral wave stays robust de-
spite ion channel block and weak channel noise. Breakup of 
the spiral wave can be induced by blockade of either sodium 
or potassium channels. According to the nonlinear terms 

 4
K K ij ijg n V V ,  3

Na Na ij ij ijg m h V V  in eq. (1), any slight 

change in sodium or potassium channel conductance can 
perturb the membrane potential of neurons in different or-
ders of magnitude. Thus, the critical thresholds differ from 
each other.  
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Figure 9  Snapshots showing breakup of spiral waves due to sodium 
channel block in the presence of weak channel noise at t=1000 time units. 
(a) xNa=0.3; (b) xNa=0.4; (c) xNa=0.5; (d) xNa=0.6. The intensity of channel 
noise is described by s=20. The snapshots are plotted in grayscale from 
black (about –80 mV) to white (about 50 mV). The coupling coefficient 
D=1.  

In addition to the above discussion, some other questions 
need clarification. The non-flux-boundary condition is used 
and the robust spiral wave covers most of the area of the 
network and is surrounded by broken segments. This is not 
due to the boundary effect, because the initial states (Figure 
1(b), (d)) are not perfect spiral waves that cover the whole 
network of neurons. Spiral waves are a class of ordered 
waves, and an optimal membrane patch size which internal 
noise alone induces spontaneous generation of regular ac-
tion potentials. Channel block can cause breakup of the spi-
ral wave or a disordered state. An interesting question is 
whether there is a threshold of noise intensity (membrane 
patch size) that keeps the spiral wave robust under channel 
blockade. In fact, the results in Figures 6–9 are obtained at 
fixed channel noise intensity (membrane patch size s=20), 
and the critical values of xK and xNa can be detected from the 
curves in Figures 6 and 8. For any fixed values of xK or xNa, 
the threshold of noise intensity (membrane patch size) for 
the robustness of the spiral wave under channel block can 

be determined by calculating the factors of synchronization 
R vs. different membrane patch sizes s. The distinct chang-
ing point in the curve for R vs. s indicates the threshold of 
the noise intensity that will keep the spiral wave robust un-
der channel blockade. 

It is also interesting to investigate these problems using a 
periodical boundary condition. The two-dimensional square 
array samples a unit or domain of nervous tissue. It is better 
to investigate the above problem under periodical boundary 
conditions, because the neurons close to the boundary of the 
networks could be affected by the neurons outside the net-
work. In fact, the evolution of spiral waves could be greatly 
influenced by the degree of channel block and channel noise, 
while the boundary effect can be neglected because spiral 
waves in the mammalian cortex are not perfect [19]. Chan-
nel noise and/or channel block control the evolution of the 
spiral wave by adjusting the critical bifurcation parameters, 
e.g. conductance or density of channels in a membrane 
patch of a certain size. The dynamics of spiral waves in the 
network are controlled synchronously and the results could 
be independent of the boundary condition. 

We investigated this problem using periodical boundary 
conditions (Figure 10). 

The results in Figure 10 show that a distinct phase transi-
tion of the spiral wave occurs also under periodical bound-
ary conditions. Comparison of the curves in Figure 10(a) 
with the curve in Figures 6 (and Figure 2, no channel noise), 
shows that the lines are similar and the critical point is iden-
tical. The lines in Figure 10(b) and Figure 8 (and Figure 4, 
no channel noise) and their critical points are also very sim-
ilar. This indicates that the statistical factor of synchroniza-
tion can measure the phase transition of spiral waves well. 
We also plotted snapshots using near-threshold values of xK 
or xNa. This showed that slight differences occur close to the 
borders of the network, while the center of the media 
showed similar results to the no-flux boundary condition. 
To our knowledge, the dynamics of spiral waves mostly 
depend on the core, or source, although the boundary condi-
tion can deform the spiral wave in certain ways. The core of 

 

 

Figure 10  The distribution of factors of synchronization R is plotted for (a) different values of xK at xNa=1, and (b) different values of xNa at xK =1. The 
transient period is about 1000 time units, the intensity of channel noise is described by membrane patch s=20, and periodical boundary conditions are used.  
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the spiral wave is changed or completely destroyed during 
ion channel poisoning, and the boundary effect can be ig-
nored under those conditions. A potential mechanism may 
be that core is invaded because of ion channel poisoning, 
and breakup of the spiral wave occurs before the boundary 
effect propagates to the core of the media. In the case of 
mild intoxication, the effect of boundary conditions is also 
reduced because of the self-sustaining properties of the spi-
ral wave. 

3  Conclusions 

In this paper, the breakup of a spiral wave by blockade of 
sodium and potassium channels in a small-world network of 
Hodgkin-Huxley neurons is investigated in detail. A statis-
tical variable is defined to detect the thresholds of the fac-
tors xK and xNa, which represent the ratios of unblocked 
channels to the overall number of potassium and sodium 
channels, respectively. Some interesting results are reported 
and can be summarized as follows: (1) Breakup of a spiral 
wave can be induced by block of either sodium or potassi-
um channels, and the critical threshold of xK and xNa can be 
detected from the abrupt decay points in plots of factors of 
synchronization vs. xK and xNa. (2) The threshold of factor 
xNa is higher the factor xK, which may be related to the fact 
that sodium and potassium channels affect the membrane 
potential in different ways, and potassium channels are 
more important in controlling the neuronal membrane po-
tential. (3) The network activity becomes homogenous and 
synchronous when sodium channel conductance decreases 
below the threshold in the absence of channel noise. The 
reason could be that fewer active ion channels are available 
because of severe ion channel block, terminating membrane 
potential fluctuations. (4) The spiral wave stays robust in 
the presence of weak channel noise, and the spiral wave 
covers a larger area of the network. It also keeps its robust-
ness against the turbulent state outside, in the case of mild 
intoxication. (5) The ordered spiral wave provides an effec-
tive way to propagate electrical signals between neurons in 
the quiescent state, and it is resistant against block of certain 
ion channels. This could explain why animals often main-
tain normal activities in the case of mild intoxication, 
whereas severe poisoning can cause a comatose state. 
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