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With a reasonable parameter configuration, the passive dynamic walking model has a stable, efficient, natural periodic gait, which 
depends only on gravity and inertia when walking down a slight slope. In fact, there is a delicate balance in the energy conversion 
in the stable periodic gait, making the gait adjustable by changing the model parameters. Poincaré mapping is combined with 
Newton-Raphson iteration to obtain the numerical solution of the final state of the passive dynamic walking model. In addition, a 
simulation on the walking gait of the model is performed by increasing the slope step by step, thereby fixing the model’s parame-
ters synchronously. Then, the gait features obtained in the different slope stages are analyzed and discussed, the intrinsic laws are 
revealed in depth. The results indicate that the gait can present features of a single period, doubling period, the entrance of chaos, 
merging of sub-bands, and so on, because of the high sensitivity of the passive dynamic walking to the slope. From a global 
viewpoint, the gait becomes chaotic by way of period doubling bifurcation, with a self-similar Feigenbaum fractal structure in the 
process. At the entrance of chaos, the gait sequence comprises a Cantor set, and during the chaotic stage, sub-bands in the fi-
nal-state diagram of the robot system present as a mirror of the period doubling bifurcation.  
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In the past decades, there has been great progress in biped 
walking robots, with many types of walking robots having 
been developed. Vast energy consumption and complex con-
trol, however, presented challenges until McGeer’s proposal 
of passive dynamic walking [1].  

A biped passive dynamic robot takes good advantage of 
its gravity and inertia in the walking process instead of con-
trol in terms of gait features. Thus, it has two special inher-
ent properties: stability and low energy consumption [2–7]. 
However, these special properties lead to high sensitivity of 
the gait stability to the inner structural parameters and ex-
ternal disturbances; any tiny change in parameters will cause 
an obvious change in the gait [8,9]. 

The ultimate goal of the biped passive dynamic walking 
robot is to realize natural and efficient humanoid walking 
under different conditions. In most cases, stable walking of 

human beings can be considered as motion with a cycle of 
one step [10,11]. However, humans are able to achieve ape-
riodic gait by controlling the muscle parameters, such as 
changing the step length or step speed of any walking gait 

[12]. If the structural parameters or the slope changes, the 
passive dynamic walking robot will have doubling-periodic 
gait or aperiodic gait besides the single-period motion. This 
is performed by the auto-adjustment of the gait according to 
the balance of energy conversion. 

Liu et al. [13] and Asano et al. [14,15] researched the ef-
fect of the main parameters of the straight leg compass-gait 
model on single-period stable gait. As the slope gradually 
increases, the passive dynamic walking robot displays peri-
odic gait and chaotic gait successively, as represented in the 
simplest model [16], compass-gait model [17], kneed model 
[18], and upper body model [19]. Furthermore, the study in 
[17] identified period-doubling bifurcation gait, which even-
tually leads to chaos, while that in [18] revealed that the 
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ratios of the distances between successive bifurcation values 
on the slope axis are expected to converge to the Feigen-
baum constant. Liu et al. [20] adopted Newton-Raphson 
iteration to analyze the change rule of eigenvalues of the 
Jacobi Matrix when period bifurcation occurs as the slope 
increases. In addition, some researchers restrained the peri-
od bifurcation and chaos caused by an increase in the slope 
through the conservation of energy [21–24]. 

Meanwhile, various different types of chaotic phenomena 
in other fields have been investigated [25–27].  

Thus far, however, there has been no research on the way 
that a robot enters the chaotic state, the dynamic features at 
the entrance to chaos, or the relationship between the period 
doubling mirror and the delicate structural branches in the 
sub-band abruption. 

Moreover, the effect of the parameters on the way that a 
robot enters the chaotic state has also not been researched in 
the present days. In particular, two aspects need to be inves-
tigated, that is, an analysis of the dynamic features at the 
entrance to chaos and the relationship between the period 
doubling mirror and the delicate structural branches in the 
sub-band abruption. Nevertheless, both the robot‘s structur-
al parameters and a slope change can lead to a chaotic gait. 
The former is maintained in the motion process, which 
consequently can be considered before the design of the 
model to remove the periodic gait and aperiodic gait result-
ing from it. Thus, only the effect of the slope on the chaotic 
gait is discussed in this paper. Some methods in the analysis 
refer to the quadratic system presented in [25]. This study 
aims to reveal intrinsic laws of the period doubling bifurca-
tion and chaos by researching the effect the slope has on the 
walking gait of a biped passive dynamic walking robot. This 
provides a theoretical foundation for the restraint and con-
trol strategies for periodic and chaotic gaits.  

1  Model 

The robot studied in this paper is a 2-D walker with 2 
straight legs, each of which comprises 2 leg-structures. Two 
medial and two lateral leg-structures are also connected, 
thus solving the problem of lateral instability. In fact, the 
robot is a biped walking robot model, composed of two rig-
id straight legs connected by a passive hinge. A sketch of 
the model is shown in Figure 1. All movements are limited 
in the plane depicted in Figure 1. The two straight legs in 
the model have the same mass and geometric parameters. 
Both legs are homogeneous. As shown in the figure, the mass 
of each leg is denoted by m, the moment of inertia relative 
to the centre of mass of each leg by J1, the length by l, and 
the distance between the centre of the mass and the mass 
point of the hip by c. The mass of the hip is denoted by m′. 
To make the motivation more stable, the robot has arced 
feet, with a radius of r. The model can be considered to be a 
straight-leg compass-gait model, because the movement of  

 

Figure 1  Sketch of the model (a) collision stage; (b) swing stage. 

each leg is regarded as a double pendulum motion. 
To reduce the number of parameters and make the dy-

namics equation more universal, the parameters are made 
non-dimensional by setting r=r/l, c=c/l, m′=m′/m, J1=J1/ml2, 

and rescaling the time as ( )t t g l . 

Meanwhile, the following assumptions are made: (1) legs 
are rigid without elastic deformation, and the hip is free of 
damping or friction; (2) the contact between the foot and the 
floor is idealized since rounded feet cannot deform them-
selves or slip; the impact is modeled as an instantaneous and 
fully inelastic impact where nether slip nor bounce occurs; 
and (3) the robot is assumed to walk on a rigid, flat and 
shallow slope.  

In this paper, the effect of the slope  on the walking gait, 
i.e., the changing trend in the state variables of the stable 
gait as  increases, is analyzed in detail. Let the main pa-
rameters of the robot model be fixed as: c=0.15, m′=2, 
J1=0.01, r=0.3. 

2  Dynamic modeling 

Under gravity, inertia and reasonable initial conditions, the 
passive dynamic model is simulated to walk down a shallow 
slope stably. This motion process is divided into the fol-
lowing two stages. 

2.1  The swing stage 

Once the swing leg leaves the slope, the stance leg performs 
the inverted pendulum motion. Then the swing leg performs 
a single pendulum motion around the fulcrum that moves 
along the arc trajectory. In this stage, only gravity is at work, 
so mechanical energy is conserved during this stage. The 
dynamic equations of motion are derived from the Lagrange 
equation in the following form: 
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2.2  The collision stage 

We have adopted three idealized assumptions in building 
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the dynamic equations for this stage: (1) the collision be-
tween the swing leg and the slope is instantaneous, at which 
time the roles of the swing leg and stance leg are exchanged; 
(2) since the only external force occurs at the point of im-
pact, there are no moments created around this point; and (3) 
the angular momentum is then conserved for the entire sys-
tem about the collision point and for the swing leg after the 
impact about the hip. Let “” and “+” denote, respectively, 
the state before and after the collision. For convenience of 
notation, we use h to denote the hip of the robot, st, sw to 
denote the stance leg and swing leg, respectively, stc for the 
center of the mass of the stance leg, swc for the center of the 
mass of the swing leg, /stc cp

r  for the vector from the contact 

point to stc before the collision, /swc cp
r  for the vector from 

the contact point to swc before the collision, h
V  for the 

speed of h before the collision, stc
V  for the speed of stc 

before the collision, and swc
V  for the speed of swc before 

the collision. k is a vector of size i × j, with i, j as shown in 
Figure 1. Vectors of r and V annotated with the symbol “+” 
occur after the collision.  

From the conservation of angular momentum of the 
whole robot system about the contact point cp, we get 

/ 1 1 / 1 2 /

/ 1 1 / 1 2 / .

stc cp stc swc cp swc h cp h
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And, from the conservation of angular momentum of the 
swing leg after the collision about the hip h , we get 

 / 1 1 / 1 2 .stc h stc swc h swcJ J          r V θ k r V θ k  (3) 

Simplifying eqs. (2) and (3), we have 
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As eq. (4) shows, the stance and swing legs are ex-
changed at the time of impact, so 1 2

 θ θ  and 2 1
 θ θ . 

2.3  Solution of the model 

The dynamic model of a biped passive dynamic walking 
robot is a non-linear continuous dynamic system, the 
analytical and numerical computation of which is quite 
difficult. Poincaré proposed a method, called Poincaré 
mapping, to transform a non-linear continuous dynamic 
system into a discrete dynamic system preserving the 
main features. For the passive dynamic walking robot in 
this work, we use a state vector at one time of the walking 
period to represent the dynamic features of the whole walk-
ing period. 

In general, the space in which the state vector exists after 
the collision, is referred to as the Poincaré section. Mean-
while, the swing leg has the geometric relationship 1

 θ  

2
θ  with the stance leg. Thus, the independent state varia-

bles are 1θ , 1θ , and 2θ , comprising the state vector 
T

1 1 2[ , , ]  v θ θ θ . The dynamic features of the system can be 

described by the transform S defined on the section. The 
definition of S is given in eq. (5), where vn is the value of 
the state vector v in the n-th step of walking in the Poincaré 
section, and Poincaré mapping calculates the next state 
vector vn+1 according to the current state vector vn. 

 1 ( )n nS v v . (5) 

Because of the high nonlinearity of the system, the ana-
lytical form of the Poincaré mapping S is difficult to deter-
mine; the Newton-Raphson numerical method is adopted. If 
there is fixed point v* in the system, then it must obey: 
v*=S(v*). 

3  Period doubling chaos mirror 

3.1  Period doubling phenomenon 

This is explained by the following model solution. The 
Poincaré section in the phase space orbit can simplify the 
complicated motion, so geometric intuition methods on the 
Poincaré section are used to describe all states in the dy-
namic system of the biped robot. For a given value of , 
beginning with a reasonable initial value, after several itera-
tive transition states, the orbit converges to a fixed points 
sequence, which is called the final state. Figure 2 shows the 
final-state diagram of 1 on the Poincaré section with 

[0.13,0.172677]  . From the view of the bifurcation, the 

gait cycle is continually divided from one cycle into two: 
when period 1 is unstable, it bifurcates period 2; when pe-
riod 2 is unstable, it bifurcates period 4; ···; when period 2n1 
is unstable, it bifurcates period 2n. This process is referred 
to as period doubling bifurcation. 

(i) The period doubling bifurcation series.  The param-
eter sequence at the bifurcation points 1, 2, 3··· is shown in 
Figure 3, where 1=0.139622 denotes the bifurcation value 
from 1 to 2, 2=0.1596231 denotes the bifurcation value  

 

Figure 2  The final-state diagram of 1 on the Poincaré section. 
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Figure 3  Each level of bifurcation points in the period doubling bifurcation. 

from 2 to 4, and so on. Then, the ratio of the difference in  
between 2 adjacent bifurcation values is calculated: (nn1)/ 
(n+1n), n=2,3,···, giving the results shown in Table 1. 

There is a period area in the final-state diagram with 
(0.1351,0.1647)  . In this area, there is a positive 2n(n= 

0,1,2,···) period doubling bifurcation sequence. As seen in 
Table 1, there is a limit to the ratio of differences in  be-
tween 2 adjacent bifurcation points. 
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(ii) The universal constant.  Between adjacent bifurca-
tion points, distance reduction in the horizontal direction 
does not follow as a geometric progression. As  increases, 
it merely approximates a geometric progression by the ratio 
of n = (nn1)/ (n+1n), which converges as n increases. 
Feigenbaum calculated the following:  

 lim 4.66920160910299nn
 


   , (7) 

where  is an irrational number, called the Feigenbaum 
constant. The occurrence of this constant in many different 
systems is referred to as the universality and expresses that 
these types of systems have the same bifurcation speed 
when approaching chaos from period doubling bifurcation. 
Thus, we can predict what the parameter is when the system 
enters chaos in terms of a few bifurcations. 

 lim 0.164729nn
 

  . (8) 

Table 1  Parameters of mapping eq. (5) at the bifurcation points 

Bifurcation case Bifurcation value n 
Difference ratio 
(nn1)/(n+1n) 

12 0.1396  

24 0.1594 4.6817 

48 0.1637 4.6457 

816 0.1646 4.6547 

      

Bifurcation  chaos 0.1647 4.669201661 

(iii) The self-similar fractal of the final-state diagram.  
As parameter  increases, there is an already well-defined 
path that moves from one state, the ordered state, into an-
other state, the chaotic state. Moreover, the path resulting 
from the analysis is universal.  

However, the structure of this universal path is a self- 
similar fractal. We now investigate a close-up of Figure 2. 
From one close-up to another, it is seen that the series of 
distances is not strictly a geometric series, as the scale fac-
tor changes slightly, approaching = 4.669··· in the hori-
zontal direction and = 2.502··· in the vertical direction 
[25]. 

Figure 4 shows the sequence of close-ups. This figure 
resembles the entire structure if we skip the other branch. 
Moreover, by magnifying the rectangular area, and turning 
the result upside down, we obtain the second close-up. In 
the same way, the third close-up is obtained. We now notice 
that the vertical axes of the first and third magnifications are 
inverted, and the color of the images fades gradually be-
cause the number of sample points decrease. Theoretically,  

 

Figure 4  Self-similarity of Feigenbaum diagram. 
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this can go on infinitely, requiring only more detailed areas 
and more iterations. Then the final-state diagram obtained is 
a geometric fractal, which has a structure similar to itself.  

3.2  The entrance of chaos 

Now to highlight the universality of the Feigenbaum con-
stant , there is a threshold 0.164729, i.e., the Feigenbaum 
point ∞, which causes the number of gait bifurcations of the 

robot to no longer increase. This indicates the end of the 
state of the period doubling bifurcation. The Feigenbaum 
point divides the final-state diagram into two entirely dif-
ferent parts: the first part is the period doubling tree, while 
the second part is the area of chaos. However, the second 
part is not the total chaotic area. The complicated structure 
is discussed step by step below. 

(i) Rule of the final-state of the period doubling bifurca-
tion.  The period doubling bifurcation system has an ap-
proximately self-similar fractal. The self-similarity of the 
period doubling bifurcation tree from  = 0.13 to ∞ is con-

tained in the self-similarity features of the final-state dia-
gram (shown in Figure 2). However, branches of the tree are 
not exact copies of the tree. Here, “self-similarity” is used to 
present intuitiveness instead of precision. 

In Figure 5, the period doubling tree is still obtained us-
ing the scale factors  and . Here the difference in the size 
of each branch is overlooked, and the set consisting of all 
leaves of the bifurcation tree, the Cantor set, is focused on. 
Addressing for branches and leaves of the bifurcation tree is 
introduced. Once bifurcation occurs, the branch at a lower 
place is marked as “L” (low) and the one at a higher place 
as “H” (high). When two branches bifurcate four branches, 
the upper two are labeled HH and HL, respectively, while 
the lower two are labeled LH and LL, respectively. This is  
the 2nd stage of the hierarchical addressing. Similarly, 
branches in the 3rd stage are labeled HHH, HHL, HLH, HLL, 
LHH, LHL, LLH, and LLL as shown in Figure 5. Then, for 
the k-th stage, 2k sub-branches are annotated with k letters. 
The leaves have address strings of infinite length. The first k  

 

Figure 5  Address label of each branch of the period doubling tree. 

letters of each address indicate that a certain leaf belongs to 
the sub-branch of the kth stage. Therefore, leaves of the tree 
create a self-similar Contor set.  

(ii) Dynamic features of Feigenbaum points ∞.  For all 

values of  from 1 to ∞, we observe steady periodic orbits, 

as in the final state. Now there is an unavoidable question: 
what dynamic features does the robot present when 1=∞? 

First, the dynamic features of the robot system at period 
doubling bifurcation are considered. The system has a 
steady periodic oscillation with a period of 8 when 

 3 4,   . Three letters are needed for the address, with 

the address mapping:  

LLL HLL LHH HHL LLH

HLH LHL HHH LLL.

   
   

 

The order does not change no matter what the initial state 
is. In addition, there are the following rules in the mapping: 
(a) the address repeats once every 8 iterative processes, 
which corresponds to 8-periodic bifurcation; (b) for the first 
letter of each address, the iteration occurs as 2-periodic bi-
furcation L H L  ; (c) for the first 2 letters of each 
address, the iteration occurs as 4-periodic bifurcation: 
LL HL LH HH LL    ; (d) the address at the top 
of the diagram, HHH, must be followed by the one at the 
bottom, i.e., LLL. It can easily be seen that the above 4 
rules determine the entire sequence, that is, an 8-periodic 
walking gait of the biped robot system. Meanwhile, this has 
definite significance in physics.  

There is a delicate balance in the energy conversion in a 
steady periodic gait of the robot, which causes the adjust-
ment of the gait when parameters of the model change. 
When <1, the energy provided by gravity is exactly con-
sumed at the collision in the motion of each step. Thus the 
gait of the left leg is the same as that of the right leg, which 
is represented as a single-periodic walking gait. 

When 1<<2, the energy lost at the collision of the foot 
and the floor is not enough to consume the energy provided 
by gravity, which requires a great adjustment in the gait. 
The gaits of both legs are no longer consistent; the length of 
one step is longer, and the other shorter, i.e., by way of 
2-periodic bifurcation L H L  . Thus the energy in the 
process of two steps will balance. The phenomenon above 
can also explain why a limp is more laborious in real life. 
When 2<<3, the energy balance is barely achieved rely-
ing only on the different gaits between the two legs during 
two successive steps. Different gaits are needed between 
two successive steps of each leg to consume the additional 
energy caused by the increase in , and thus, the gait of the 
robot resembles LL HL LH HH LL    . Here we 
refer to the different gaits between two successive steps of 
the left leg as: left-first, left-second, and gaits of the right 
leg as: right-first, right-second. These correspond to the 
labels HH, HL, LH and LL, respectively. When 3<<4, a 



1748 Zhao J, et al.   Chin Sci Bull   May (2012) Vol.57 No.14 

further adjustment in the gait is necessary to perform the 
energy balance. The motion of the robot repeats once every 
8 steps, as described in rule (a). 

Now, we can clarify the address mapping rules for 
8-periodic gait. In rule (b), the first letter H or L of the ad-
dress corresponds to the left, right leg of the robot, respec-
tively. In rule (c), for HH, HL, LH and LL, the first letter 
has the same meaning as in rule (b), and the second letter H 
or L corresponds to the front step or the back step. In rule 
(d), after HHH there must be LLL, because firstly, in the 
first two letters, LL comes right after HH; and secondly, 
when the gait is HHH, the energy lost at the collision is at 
its maximum, and is far greater than the force of gravity, 
which causes the kinetic energy to be at its the lowest, and 
the speed of motion to be the slowest, and thus the step- 
length is reduced to the minimum, LLL. 

The same reasoning allows us to determine the address 
sequence described by 2k-periodic orbit (k = 4,5,…). Obvi-
ously, 2k gaits are deduced from 2k1 gaits. However, at each 
periodic bifurcation, the dynamic features of the iteration 
become much more complicated, although they share the 
same mechanism. The final state of the iterative system is 
an infinite aperiodic trajectory as k  , =∞. Each ad-

dress has a one-to-one mapping with each point in the Can-
tor set. This can be considered to be the first mark of chaos, 
through which the robot gait enters chaos. 

3.3  Chaos mirror 

For the second part of the final-state diagram, the parameter 
is between the Feigenbaum point ∞ and =end=0.172677 

(as shown in Figure 6). At a generalized level, this part of 
the diagram is usually called ‘the chaos mirror of the period 
doubling bifurcation tree’. In fact, though in a chaotic area, 
it still has periodicity in reverse order. Meanwhile, in the 
place where chaos dominates, the gait sequence becomes 
infinitely complicated. We can accurately predict the dy-
namic features of the first part of the final-state diagram for 
each value of  ; whereas it is quite difficult for us even to 
differentiate the steady period from the features of chaos.  

(i) Abruption of the sub-band.  On the right-side of the  

 

Figure 6  Chaos area of the final-state diagram. 

final-state diagram, i.e., when =end the graph of S(v) 
crosses the area [0.35, 0.63], the chaos sequence of the ro-
bot gait scatters throughout the entire vertical region. For 
any value of the parameter in the final-state diagram, it ap-
pears that there is a band structure resulting from the uneven 
distribution of points in the vertical direction. Points appear 
to converge on some lines, and each is the border of a 
sub-band, which is encapsulated with dynamic features of 
chaos. For end, there is only one sub-band crossing the 
whole area of [0.35, 0.63]. As  decreases, the width of the 
sub-band becomes small. When = m1, the sub-band splits 
into two parts; and when = m2, it splits again. 

(ii) Merging points.  By magnifying the rectangular area 
in Figure 7(a) with the parameter between ∞ and m1, we 

obtain Figure 7(b), which shows more points where sub- 
bands are abrupt. In fact, at the places where the 2nd, 4th, 
8th,···, 2kth, sub-bands occur from one band, there is an infi-
nite sequence with the parameter values in reverse order m1, 
m2, m3,···. Given this, it is amazing that the sequence con-
verges accurately to the Feigenbaum point, i.e., m∞= ∞. 

This is further evidence that the final-state diagram has 
self-similarity at the Feigenbaum point. Moreover, the dis-
tance of adjacent merging points in one sub-band, dk= ak+1ak, 
obeys the rule of period doubling bifurcation. When k  , 
the ratio dk/dk+1 converges to the Feigenbaum constant  = 
4.669···. That is why the second part of the final-state diagram 
is called “the chaos mirror of the period doubling tree”. 

 

Figure 7  Abruption of the sub-band (a) abruption of the sub-band in the 
final-state diagram; (b) further abruption of the sub-band. 
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To obtain more clarity, the generalized symmetry of 
sub-bands and the period doubling tree are analyzed in de-
tail. The curve S in Figure 8(a) shows a typical gait itera-
tion sequence; when = 0.169, the value of  is a little lower 
than m1. The behavior of dynamic features is chaotic, but it 
oscillates between two definitely different sub-bands step 
by step, that is, it switches between both legs of the robot. 
In other words, when we observe the dynamic features of 

2S , we find that the iteration points move chaotically, either 

just in the upper sub-band or in the lower sub-band, which 
is shown as two curves of 2S  in Figure 8(a). In the same 

way, access times of the iteration orbit of the gait to differ-
ent areas of the sub-band are calculated in Figure 8(b). The 
regions of both sub-bands are clear, which corresponds to 
the motion area of the left and right legs. In conclusion, the 
abruption of the first sub-band is essentially a period dou-
bling bifurcation.  

For the robot in the area after <m1, the chaotic gait area 
of both legs transforms into 2 separate areas instead of be-
ing connected. Similarly, after <mk, the chaotic gait area 
transforms into 2k areas. So the essence of the abruption of 
the sub-band is period doubling bifurcation, and is thus also 
the mirror of the period doubling tree.  

(iii) Rule for the final-sate of the period doubling bifur-
cation. In the section of the period doubling bifurcation,  

 

Figure 8  Abruption of sub-bands (a) two disconnected sub-bands of each 
leg when  is a little smaller than m1; (b) access times of different areas of 
sub-bands. 

there is a periodic rule in the address order that LLL follows 
immediately after HHH. This raises the next problem, 
whether the rule works in the second part of the final-state 
diagram. According to Figure 9, which shows the three iter-
ative processes (marked as 2, 3, 4) of the maximum at value 
end, the periodic rule seems to work. Now, here is another 
assumption: if the rule also applies to the chaotic gait, then 
in the whole parameter region of the final-state diagram, 
critical curves of sub-bands with a period of 8 will be ob-
tained, if we compute the first 7 iterative processes 

7
max( )S ν  of each maximum vmax corresponding to values of 

 , which are depicted as the bright concentrated line in Fig-
ures 6 and 7. 

Now we calculate vmax and the first 7 iterative processes. 
All the 8 iterative processes are shown in Figure 10 (i.e., 
from vmax to 7

max( )S ν ). In the area of the period doubling 

bifurcation, the curves totally overlap the 8-periodic gait 
sequence. In the chaotic area, these curves obviously corre-
spond to the main bands, which are depicted as bright parts 
in the final-state diagram. It is obvious that there is a more 
exact subtle relationship among sub-band structures of the 
final-state diagram when the times of the iterative processes 
increase; however, the gait sequence loses periodicity bit by 
bit as we proceed with the iterative process. Hence, although  

 

Figure 9  Three iterative processes, beginning with the area that is close 
to the maximum value. 

 

Figure 10  Critical curves of sub-bands. 
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the chaotic gait of the robot appears to be quite disordered, 
it is highly ordered at a deeper level, and shows a refined 
structure at some stage.  

4  Conclusion 

This paper focused on a constructed biped passive homo-
geneous compass-gait model. The intrinsic features where-
by a change in parameters leads to a change in the gait, 
were analyzed, revealing the inherent laws of the phenom-
enon of the period doubling bifurcation and chaos. Simula-
tion of the increase in parameter  indicated that the way the 
biped passive dynamic walking robot gait enters chaos is by 
period doubling bifurcation. Moreover, when  is between 
0.1 and 0.172677, the final-state diagram of the robot sys-
tem has the geometrical features of a self-similar fractal. 

When period doubling bifurcation occurs, the robot has a 
definite and regular gait sequence to ensure its energy is 
balanced. The relationship among bifurcation points sug-
gests that when the gait moves from bifurcation into chaos, 
the process obeys the law that they have the same Feigen-
baum universal constant . Moreover, this law is also shared 
by all the period doubling bifurcation phenomena. 

At the start of chaos, the Feigenbaum point, the final-gait 
sequence is given by an infinite-length aperiodic trajectory 
in the Cantor set, which infinitely approaches each point in 
the Cantor set. In the chaotic stage, sub-bands of the final- 
state diagram present periodic doubling bifurcation numbers 
in reverse order, and also have a convergence speed of . 
Moreover, the critical curves of the sub-band present a more 
exact subtle relationship among the sub-band structures, and 
determine the change rule for the motion area of each leg. 
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