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Most of the important agronomic traits in crops, such as yield and quality, are complex traits affected by multiple genes with gene 
× gene interaction as well as gene × environment interaction. Understanding the genetic architecture of complex traits is a 
long-term task for quantitative geneticists and plant breeders who wish to design efficient breeding programs. Conventionally, the 
genetic properties of traits can be revealed by partitioning the total variation into variation components caused by specific genetic 
effects. With recent advances in molecular genotyping and high-throughput technology, the unraveling of the genetic architecture 
of complex traits by analyzing quantitative trait locus (QTL) has become possible. The improvement of complex traits has also 
been achieved by pyramiding individual QTL. In this review, we describe some statistical methods for QTL mapping that can be 
used to analyze QTL × QTL interaction and QTL × environment interaction, and discuss their applications in crop breeding for 
complex traits. 
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The most important economic traits in crops are quantitative 
in nature. The genetic variation of quantitative traits is usu-
ally controlled by minor-effect genes and the environments 
as well as by epistatic effects between different genes and 
by interactions between genes and environments. Because 
of their complicated genetic architecture, quantitative traits 
are usually referred to as complex trait. The genetic archi-
tecture includes knowledge about the numbers and positions 
of the genes in the chromosomes, the magnitude of their 
effects, and the contributions of additive, dominance and 
epistatic effects [1].  

Most plant breeders and quantitative geneticists have 
long been interested in uncovering the genetic architecture 
of yield and other complex traits [2]. Understanding genetic 
architecture can provide insights into how the architecture is 
translated into genetic variation and selection response [3]. 
Based on diallele cross experiments, the genetic architecture 
of a trait has been analyzed by decomposing the trait varia-

tion into additive, dominance, and epistasis variances and 
studying their interaction variances with the environments 
[4–7]. The total genetic covariance between two traits can 
also be dissected into genetic covariate components. With 
the increasing availability of molecular markers, the quanti-
tative genetics theory of complex traits and marker-assisted 
selection has undergone major advances. It is now possible 
to connect marker variations with phenotypic variations, 
and to dissect genetic architecture of traits into individual 
genetic variants. The selection of traits can also be achieved 
using individual quantitative trait loci (QTLs). In this re-
view, we discuss some of the statistical methods used for 
QTL mapping of experimental populations and examine 
their applications in marker-assisted selection (MAS) for 
improving complex traits. 

1  QTL mapping 

In the late 1980s, the discovery of abundant molecular 



2638 Xu H M, et al.   Chin Sci Bull   July (2012) Vol.57 No.21 

markers and advances in rapid genotyping technology led to 
the development of statistical methods for use in the QTL 
mapping of complex quantitative traits. One of the most 
well-known methods is the interval mapping (IM) approach 
developed by Lander and Botstein [8]. This landmark 
method for QTL mapping has established a statistical 
framework for most methods that are currently used to ana-
lyze the QTLs of complex traits. The IM approach can be 
used to search for QTLs in whole genomes using a log like-
lihood (LOD) profile. A QTL associated with a quantitative 
trait is assumed to be located on the genome under the peak 
where the LOD is higher than a specified threshold. Zeng 
[9,10] proposed the composite interval mapping (CIM) 
method which improved upon the precision of QTL map-
ping by including associated markers as covariant variables. 
The CIM approach can provide unbiased estimations of 
QTL positions and effects, under the assumption of no QTL 
× environment interaction. Similarly, Jansen [11] suggested 
that markers outside of the scanned interval in the regres-
sion model could be included as covariant variables to con-
trol type I and type II errors in QTL mapping. The IM and 
CIM methods have been widely applied in experimental 
populations, such as doubled haploid (DH) population, re-
combinant inbreed line (RIL) population, backcross (BC) 
population, and F2 population.  

Epistasis refers to the masking of genotypic effects at one 
locus by the genotypes of another locus [3] and also to any 
statistical interaction between the genotypes at two or more 
loci [12]. It is believed that epistasis and interaction be-
tween genes and environments are involved in the genetic 
variations that underlie quantitative traits. Because multi- 
environmental data cannot be integratively analyzed by the 
IM and CIM methods, mapping analyses are usually con-
ducted separately in individual environments [13–15]. Sep-
arate analysis for the different environmental data cannot 
provide reliable estimates either for the main QTL effects or 
for the QTL × environment interaction effects across multi-
ple environments. Kao and Zeng [16,17] developed the 
multiple interval mapping (MIM) method to analyze the 
epistatic effects of QTLs. This method first screens for sig-
nificant QTLs using the CIM approach; then, a multiple 
QTL model is constructed by including the epistatic effects 
of paired significant QTLs. The MIM method can only de-
tect epistasis between two QTLs that are first detected using 
CIM. Often, epistatic effects can be as large as the main 
QTL effects, and epistasis can also occur in opposite direc-
tions between different pairs of interacting loci and even 
between loci that have no effect on the trait [12,18–20]. 

A mixed linear model approach that includes the main 
QTL effects, environment effects and QTL × environment 
interaction effects has been proposed for mapping QTLs 
[21,22]. The main QTL effects are treated as the fixed ef-
fects and the random effects are the environment effects, the 
QTL × environment interaction effects, and the associated 
markers included in the model to control for background 

genetic effects. Similar to the procedure used in the CIM 
method, the profile of the log likelihood ratio (LOD) is con-
structed for the entire genome, the significance of the main 
QTL effect is tested by the jackknife resampling method, 
and the position of a significant QTL is determined by the 
peak of the LOD profile. The method proposed by Zhu [21] 
is abbreviated to MCIM, denoting mixed-model-based com-
posite interval mapping. Based on the analysis framework of 
the MCIM method, Wang et al. [23] proposed a genetic 
model of QTL mapping for DH and RIL populations and 
developed the QTLMaper software (http://ibi.zju.edu.cn/ 
software/qtlmapper/) to map QTLs with additive and epi-
static effects and QTL × environment interactions. This 
model can analyze the additive effects of two QTLs (ai, aj), 
the additive × additive interaction effect (aaij) of paired 
QTLs, and the interaction effects of the QTLs with envi-
ronments (aeih, aejh, aaeijh). Gao and Zhu [24] proposed a 
genetic model for analyzing the immortalized F2 population 
from random mating among individuals of either DH or RIL 
populations. This model can simultaneously analyze addi-
tive effects (ai, aj), dominance effects (di, dj), and epistatic 
effects for paired QTLs (aaij, adij, daij, ddij) along with their 
interaction effects with environments (aeih, aejh, aaeijh, adeijh, 
daeijh, ddeijh). An advantage of MCIM over the other meth-
ods is that it provides unbiased estimations of the positions 
and effects of QTLs, and also predicts the random QTL × 

environment interaction effects. The MCIM method is very 
useful for analyzing complex traits that are affected by epi-
stasis and QTL × environment interactions. 

The MCIM approach adopts a two-dimensional search 
strategy to scan paired QTLs involved in epistasis and the 
jackknife resampling technique is used to test the signifi-
cance of QTL effects. Although digenic epistasis could be 
analyzed by MCIM, the two loci model cannot reflect the 
intricate architecture of quantitative traits where the interac-
tion of more than two loci may be involved. To calculate the 
inverse of the matrix that is generated using the MCIM 
method a great deal of computation time is required. There-
fore, the MCIM method cannot appropriately handle the 
large amount of experimental data that are generated when 
multiple environments with replications are considered. To 
address this problem, Yang et al. [25] proposed a new QTL 
mapping approach for the complex traits in the form of an 
optimized MCIM that involves four steps: (i) the use of an 
F-statistic based on Henderson method III for hypothesis 
tests. This method is less computationally greedy than the 
corresponding likelihood ratio test; (ii) permutation testing 
to control the genome-wide false positive rate, and model 
selection to reduce ghost peaks in the F-statistic profile; (iii) 
construction of a full-QTL model in which the significance 
of each QTL is re-tested; (iv) application of the Bayesian 
method via Gibbs sampling for mixed linear model to esti-
mate the QTL effects and to conduct statistical inference. 
Based on this new approach, the software of QTLNetwork 
2.0 was developed and can be downloaded from http://ibi. 
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zju.edu.cn/software/qtlnetwork/ [26,27]. Notably, QTLNet-
work can be used to analyze data from DH, RIL and IF2 
populations, as well as data from advanced populations 
(BxFy) derived from the two parents by backcrossing x 
times and selfing y times. The software also provides the 
potentially superior QTL design for improving complex 
traits using the main QTL effects and the QTL × environ-
ments interaction effects [28]. Because of the advantages of 
using MCIM to analyze digenic epistasis and QTL × envi-
ronment interactions, and the user-friendly software that is 
now available, the MCIM approach has been widely applied 
to the analyses of the QTLs for complex traits in various 
plant experimental populations such as wheat [29–34], bar-
ley [35], soybean [36–39], cucumber [40], cabbage [41], 
cotton [42], rapeseed [43,44] and rice [45–48], as well as in 
Drosophila [49]. 

Most QTL mapping methods can only analyze the QTLs 
in one genome at a time. To completely understand the ge-
netic basis of, for example, host-parasite interactions, it is 
necessary to study not only the resistance/infection genes, 
but also to investigate gene interactions between the two 
species. A genetic model that integrates genetic information 
from the host and parasite genomes has been proposed [50]. 
This model can map the QTLs that are involved in host- 
parasite interactions and can be used to detect interactions 
between these QTLs. 

The accurate estimation of QTL positions and effects re-
quires the normal distribution of residuals in the experi-
mental data. However, the data often contain outliers and 
influential observations that may seriously affect the esti-
mation of model parameters and can lead to errors in the 
detection of QTL positions and their predicted effects [51]. 
A method for detecting outliers and influential observations 
prior to QTL mapping analysis has been described [52]. The 
statistical analysis software QTModel (http://ibi.zju.edu.cn/ 
software/qtmodel/) can be used to identify outliers in experi-
mental data. Simulations have shown that the presence of a 
small proportion of outliers can increase false QTL discov-
ery rates and hence decrease the detection power of QTLs. 

2  Dynamic mapping for developmental traits 

The development of quantitative traits occurs through the 
actions and interactions of many genes that may behave 
differentially during growth periods [53]. Conventional ge-
netic analyses of quantitative traits have shown that gene 
effects and their mode of action are different at different 
developmental stages [54,55]. Most QTL mapping studies 
have focused on analyzing the performance traits at the final 
growth stage; however, understanding dynamic changes in 
the genetic architecture of quantitative traits is crucial in 
developmental genetics. Currently, several approaches for 
analyzing the dynamics of QTL expression are available.  
The phenotypic values measured at different growth stages 

are usually analyzed directly by QTL mapping, and the ge-
netic architecture of a trait is dynamically inferred by com-
paring of the results of the mapping [56–58]. Alternatively, 
the increment of traits measured at sequential time points 
can be analyzed to predict the genetic architecture [56,58]. 
A third method includes an appropriate growth function in 
the QTL model and then fits the model before analyzing the 
model parameters using all the phenotypic values [58–60]. 
A fourth method treats the phenotypic values at different 
developing time points as different traits, and use the meth-
ods of the multi-trait CIM method [61] to analyze the QTLs 
[58]. None of these methods take account of either the epi-
stasis of genes or gene × environment interactions, nor do 
they include the possible correlation between different phe-
notypes at different growth stages. A conditional mapping 
approach has been proposed to first predict the conditional 
effects y(t|t1) for the phenotypic values at time (t) given the 
phenotype at time (t1); ŷ(t|t1) is then used to analyze the 
QTLs using an MCIM approach [21,22]. The predicted ŷ(t|t1) 
can be obtained by running the sub-menu “QTL Data” in the 
software QGAStation (http://ibi.zju.edu.cn/software/qga/). 
Because the conditional effects y(t|t1) are independent of the 
phenotypes at time (t1), they can effectively measure the 
net genetic effects of gene expression from the time (t1) to 
the time (t). Therefore, this conditional QTL mapping strat-
egy can identify new QTLs for which the accumulated ex-
pression effects are just large enough to be detected, as well 
as QTLs that begin to appear at an early specific growth 
stage and new genetic effects occur in the period. 

Yan et al. [53] conducted conditional QTL mapping on 
the plant height of rice in a DH population. The results 
showed that the number of QTLs detected at various meas-
uring stages was different. Some QTLs were detected at all 
stages and some were seen only at one or several stages. 
Cao et al. [62] studied the impact of epistasis and QTL × 
environment interactions on the developmental behavior of 
plant height in rice by conventional and conditional QTL 
mapping. Their results showed that most epistasis effects 
could be detected by conditional QTL mapping alone, and 
that QTL × environment interaction effects were detected 
more often than the main QTL effects for plant-height be-
havior. Conditional QTL mapping was widely used as a 
valid way of revealing dynamic gene expression for the 
development of quantitative traits. Recently, conditional 
QTL mapping, or a combination of unconditional and con-
ditional QTL mapping has been used to study the dynamics 
of developmental traits. Sun et al. [63] used conditional and 
unconditional mapping to study the developmental behavior 
of soybean. Yang et al. [45] used conditional mapping to 
dissect the developmental behavior of tiller number and 
plant height, and found that conditional mapping was supe-
rior to conventional mapping for studying developmental 
traits. Han et al. [36] studied the impact of epistasis and 
QTL × environment interactions on the accumulation of 
seed mass in soybean using conditional mapping. Wang et 
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al. [48] employed conditional and unconditional QTL map-
ping to analyze rice fat content and fat index. Jiang et al. [47] 
used a combined conditional and unconditional mapping 
strategy to find QTLs underlying plant height and tiller 
number in rice exposed to two different nitrogen levels. 
Cheng et al. [41] used conditional mapping to identify 
QTLs associated with plant height at various stages of 
non-heading Chinese cabbage. Han et al. [64] conducted 
conditional QTL analysis of the linolenic acid content in 
different developmental stages of soybean seed. 

3  QTL dissection of genetic correlation between 
traits 

Complex traits are sometimes determined by their compo-
nent traits; for example, rice yield may be measured by 
panicle number per plant, filled grain number per panicle 
and/or weight per grain. The relationship at the molecular 
level between traits of interest can yield insights that may be 
of importance for the improvement of multiple traits or for 
designing indirect selection schemes. Studies of this kind 
can be supported by a combined conditional and uncondi-
tional QTL mapping approach. Such an approach can be 
used to estimate the genetic contribution of one component 
trait (cause-trait) to the resultant trait of interest. For exam-
ple, Guo et al. [65] studied rice yield and its component 
traits using this kind of approach and a similar study has 
been reported by Liu et al. [66]. Zhao et al. [67] analyzed 
the relationship between oil content in rapeseed with protein 
content and other traits related to plant development. They 
found clear evidence for a strong genetic link between pro-
tein content and oil content, and also discovered two QTLs 
that controlled oil content but were independent of the pro-
tein content. It was proposed that these two QTLs could be 
used in practical breeding programs to increase oil content 
without affecting seed protein content [67]. Li et al. [68] 
identified three QTLs in popcorn that controlled popping 
expansion volume (PEV) independent from grain weight 
per plant (GWP)/100-grain weight (100 GW). These QTLs 
may be potential candidates to increase PEV in popcorn 
without decreasing the GWP/100 GW value. Ye et al. [69] 
studied the genetic relationships in the panicle characteris-
tics of rice using a similar approach. 

4  Marker-assisted selection based on QTLs 

The principle of the Marker-assisted selection (MAS) uses 
molecular markers in linkage disequilibrium with the quan-
titative trait of interest, to predict the genetic value of indi-
viduals and to improve the selection efficiency of a trait. In 
early 1923, the improvement of a quantitative trait by selec-
tion of a single marker gene, the colour of the seed, was first 
exploited by Sax [70]. Since then, MAS studies of single 

loci have been carried out [71–73]. However, the extensive 
theoretical and practical studies have been conducted only 
in the last 15 years. This growth owes much to the tech-
nique for the development of molecular markers [74] and 
the revolution in statistical methodology for mapping the 
QTLs of quantitative traits. Lande and Thompson [75] pro-
posed a marker-index selection method based on multiple 
variables regression, and this is the theory that was used in 
initial studies of MAS.  

Currently, the main MAS breeding methods include: (i) 
Marker-assisted introgression (MAI) or marker-assisted 
backcross (MAB); (ii) the simple screening of populations; 
(iii) gene pyramiding schemes; (iv) Marker-based recurrent 
selection; and (v) selection on an index combining molecu-
lar and phenotypic scores [76]. Recently, using information 
from QTL analyses, MAS has been successfully applied to 
improve quantitative traits. For example, Tanksley and 
McCouch [77] successfully introgressed QTLs from the 
wide variety of Lycopersicon hirsutum into a cultivar varie-
ty (Lycopersicon esculencum) to create a line that outper-
formed the original elite variety for yield, soluble solids 
content, and fruit color. Ashikari et al. [78] simultaneously 
improved grain number and plant height by pyramiding one 
QTL for grain number and another QTL for plant height; 
however, the trait values of the generated line were slightly 
lower than expected based on single introgression lines. 
Barloy et al. [79] pyramided two cereal cyst nematode re-
sistance genes from Aegilops variabilis into wheat by MAS. 
Many other successful applications of MAS in numerous 
species have been reported [80,81].  

Despite its successful use, MAS is still not as efficient as 
was anticipated for most quantitative traits, probably be-
cause of the epistasis of two or more QTLs, QTL × genetic 
background interactions and/or QTL × environment interac-
tions that may reduce QTL effects compared to what is ex-
pected from single-gene effects [76]. The efficiency of 
MAS also depends on the magnitude of heritability and the 
accuracy of the QTL information, including their positions 
and effects. Traditionally, theoretical and simulation studies 
on MAS have focused only on the additive quantitative 
traits and the non-additive effects, such as epistatic effects, 
have not been included. Gimelfarb and Lande [82] showed 
that selection using marker scores that contain both additive 
and non-additive genetic effects have a higher efficiency as 
compared to selection using the marker scores that contain 
only the additive genetic effects. Liu et al. [83] conducted a 
simulation study on a F2 population derived from two in-
bred lines to investigate the efficiency of MAS when the 
epistatic effects were considered. They showed that MAS 
generally yielded a longer persistence response when the 
epistatic effects were considered, as compared with the re-
sponse that was based exclusively on additive or additive 
and dominance effects. Thus, neglecting epistasis can result 
in a considerable loss in response which becomes more 
pronounced in later generations; the precision of QTL de-
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tection and the magnitude of its effects are imperative to 
realize the potentials of MAS [83]. Liu et al. [84] included 
the additive, dominance and epistatic effects in MAS and 
proposed a potential index to measure the probability of an 
individual showing superior genotypes under selfing. They 
showed that MAS not only revealed larger genetic responses 
but also dramatically increased the frequencies of superior 
genotypes compared with phenotypic selection. However, the 
advantages of MAS over phenotypic selection were consid-
erably reduced when conducting selection in later genera-
tions. Hu [74] extended Lande and Thompson’s theory [75] 
to incorporate both additive and non-additive effects into 
MAS with reference to the mass selection case. There were 
four different indices proposed, which were phenotype-, 
general combining ability (GCA)-, and GCA with reciprocal 
effects-based marker scores. Hu found that these indices 
had higher selection efficiencies than the index with only 
additive effects-associated markers as long as detectable tran-
sient non-additive effects are present; the improvement of 
selection efficiency depends on the magnitude of non-addi-     
tive variances and the proportion of them that are explained 
by the markers. The index with the phenotype-based marker 
scores that are applicable to any population of non-random 
mating has the highest selection efficiency [74]. 

Although some successful examples in improvement of 
quantitative traits by MAS have been reported, some quan-
titative traits were changed from complex traits to Mende-
lian traits after discovering that they were controlled by a 
surprisingly low number of QTLs with large effects [76]. It 
is still challenging to improve the efficiency of MAS for the 
majority of quantitative traits that are generally controlled 
by a large number of QTLs with small effects, and that are 
affected by their interaction with environments. It is well 
known that the efficiency of MAS is essentially determined 
by the genetic architecture of the trait. Yang et al. [28] de-
veloped new methods for predicting superior genotypes (su-
perior line and superior hybrid) based on QTL effects in-
cluding epistasis and QTL × environment interactions. When 
QTL mapping is conducted using QTLNetwork, the predicted 
genotypic values (G) can be obtained for two parents (P1 
and P2) and F1 with G in all environments and G + environ-
ment interaction in the hth environment (GEh), and also the 
superior genotypes of QTLs are also presented. The pre-
dicted superior lines and superior hybrids can be found with 
superiorities over parents and F1 hybrid, indicating the vast 
breeding potential that can still be further improved. Appar-
ently, the dissection of genetic architecture, screening of 
novel QTLs with large effects, prediction of QTL effects and 
their interaction effects with environments, are imperative for 
effectively improving complex traits of interest by the MAS. 

5  Conclusions 

Most plant segregating populations for QTL mapping are 

generated via crosses of two inbred lines with large differ-
ence in the traits of interest. Thus, only the QTLs with gen-
otypes that differ in the two parents can be detected and 
only limited genetic architecture of the traits can be revealed 
by using most of the QTL mapping methods. Further, the 
QTL effects will only apply in the context of this population. 
Recently, new mapping populations derived from crosses of 
multiple inbred lines have been proposed, and correspond-
ing analysis methods have been designed [85]. Nevertheless, 
only a few statistical methods of QTL mapping are availa-
ble for conducting integrated analysis for multiple segre-
gating populations. Multiple population integrated analysis 
can explicitly incorporate genetic heterogeneity into the 
QTL models, and this can help identify QTL alleles carried 
by specific parental lines. For populations with pedigree 
information or for the integration of multiple experimental 
populations, the mixed model approach based on identical 
by descent could be a choice for QTL analysis [86]. How-
ever, this framework needs further extension to be able to 
predict QTL effects and QTL by environment interaction 
effects. 

The development of a quantitative trait and its variations 
usually involves a series of metabolism pathways that are 
regulated by a gene network system; this could generate 
higher-order epistatic interactions. Epistatic interactions 
among loci contribute substantially to the genetic variation 
of complex traits [87]. Recent studies indicated that statisti-
cal epistasis was a generic feature of gene regulatory net-
works, and the proportion of genetic variation that could be 
attributed to statistical epistasis varied from zero to very 
high [88]. Apparently, the incorporation of two-order or 
higher-order interactions of genes in QTL models can ob-
jectively describe the context of complex traits, and accu-
rate results from QTL mapping could be anticipated using 
this approach. Stich et al. [89] investigated the power of 
various methods to detect three-way epistatic interactions 
among QTLs involved in metabolic pathway. Although 
there is more interest in analyzing gene networks or higher- 
order epistatic interactions, an effective methodology for 
examining the quantitative genetics of gene networks has 
not yet been developed. 

QTLs often cover large regions of the chromosome re-
gion where many genes reside. How to finely resolve QTLs 
to be able to distinguish candidate genes or variants among 
many genes in QTL regions is still a challenge in quantita-
tive genetics. More large mapping populations or specifi-
cally designed fine-mapping populations, such as the ad-
vanced intercross or backcross populations, recurrent selec-
tion and backcross populations, are required to develop suf-
ficient recombination within the QTLs. Association map-
ping has been applied to analyze plant populations, although 
there are many limitations like the influence of population 
structure and non-random mating. To improve the accuracy 
of QTL mapping, some methods that combine interval 
mapping with association mapping have been proposed 
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[90,91]. Currently, profiting from the rapid advance in 
high-throughput genotyping, transcriptional profiling and 
decreasing costs, it has become possible to measure many 
intermediate phenotypes in the chain of causation from ge-
netic perturbation to phenotypic variation [12] for large 
mapping population, and even to sequence each individual 
in a population. Genetic data of this kind can provide an 
unprecedented opportunity to dissect the genetic architec-
ture of complex traits by integrated analysis of gene expres-
sion differences, eQTLs, networks of gene regulation, 
and/or protein interactions. We are now developing a new 
methodology for mapping quantitative trait SNPs (QTS) and 
quantitative trait transcripts (QTT) based on genome-wide 
association studies (GWAS) by which real gene- network 
can be detected using gene-by-gene interactions and gene- 
by-environment interactions; QTLNetwork that incorporates 
this method will be released soon for mapping two-way and 
three-way epistasis and their environmental interactions. 
This development will further progress the analysis of the 
genetic architecture of complex traits. A better knowledge 
on the genetic architecture will help in the development of 
efficient strategies for direct gene selection designed to im-
prove complex traits by enhancing the use of additive and 
non-additive genetic effects. 
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