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Land-use change simulation for large-scale regions (i.e. provincial regions or countries) is very useful for many global studies. 
Such simulation, however, is affected by computational capability of general computers. This paper proposes a method to imple-
ment cellular automata (CA) for land use change simulation based on graphics processing units (GPUs). This method can be ap-
plied to large-scale land-use change simulations by combining the latest GPU high-performance computing technology and CA. 
We carried out the experiments by simulating land-use change processes at a provincial scale. This involves a lot of sophisticated 
techniques, such as model mapping, and computational procedure of GPU-CA model. This proposed model has been validated by 
land-use change simulation in Guangdong Province, China. The comparison indicates that the GPU-CA model is faster than tradi-
tional CA by 30 times. Such improvement is crucial for land-use change simulations in provincial regions and countries. The out-
puts of the simulation can be further used to provide information to other global change models. 
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In recent years, many scholars have been using cellular au-
tomata (CA) to simulate changes in patterns and processes, 
such as urban expansion, disease scattering, fire spread, 
population migration, economic development, desertifica-
tion, and flood inundation. This has led to some remarkable 
advances in various geographical researches [1,2]. For ex-
ample, Batty and Xie simulated urban expansion in Buffalo, 
New York [3]. Clarke et al. [4] used the SLEUTH model to 
simulate urban development in the San Francisco Bay area 
in the U.S. Wu and Webster [5] simulated urban land-use 
change in Guangzhou City, and Li and Liu [6] simulated 
urban expansion in the Pearl River Delta region of South 
China. Additionally, Li et al. [7,8] proposed the theory of 
Geographical Simulation and Optimization Systems (Geo- 
SOS), which combines the theories of land-use change sim-
ulation and spatial optimization. It thus provides a powerful 

spatial-process analytical tool for land-use change simula-
tion and optimization, under a complicated resource envi-
ronment.  

Land-use changes at larger scales (e.g. provincial, na-
tional, or even at global scale) have important impacts on 
large-scale environmental problems, such as global climate 
change, food safety, carbon recycling, and so on. Simulating 
and predicting large-scale land-use changes are necessary 
for the studies of these environmental changes. 

When simulating large-scale land-use changes, selecting 
proper data and experimental techniques are very important 
to generate plausible results. Raster data are usually used in 
spatial simulation experiments; thus, selecting proper data 
precision is considerable. For low-resolution data, a single 
data pixel represents multiple land-use types, and the com-
position of these types is expressed as percentages [9]. This 
may affect the precision of model analysis results. However, 
for high-resolution data, each pixel can completely repre-
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sent the dominant land-use type within the involved space. 
Moreover, low-resolution data lose local information and 
non-linear features of geographic patterns; thus, the neces-
sity arises for using high-resolution data to ensure that mi-
cro-scale information will not be omitted. Cellular automata 
(CA) use a bottom-up approach to explore the emerging 
behavior of complex systems, it is preferable to use fi-
ne-grain data in simulations. Therefore, using high-resolution 
data in large-scale land-use change simulation is essential. 

However, large-scale land-use change simulation with 
high-resolution data requires a large amount of data, com-
plicated computing processes, and very long execution time. 
For example, the data storage size can be hundreds of meg-
abytes or even several gigabytes. A PC is unable to perform 
such simulation experiments, because of its limited compu-
ting capability and CPU-based serial computing pattern. 
Therefore, a parallel computing pattern is needed to im-
prove computational capability. There have been some 
studies on parallel computing-based land-use change simu-
lation, e.g., load balancing-based parallel CA simulation 
[10], grid computing-based CA simulation, and others. 
However, these methods have some shortcomings, such as 
high computational cost, complex configuration, and lower 
performance relative to computing acceleration. Thus, a 
new parallel computing pattern with low cost, simple con-
figuration, and better acceleration performance is necessary, 
to provide better computational capability for large-scale 
land-use change simulation. 

Therefore, a new method is proposed that combines the 
graphics processing unit (GPU) high-performance technique 
with CA. This high-performance technique uses GPUs in 
the computer graphics card to execute general-purpose 
computations. As a type of high-performance computing 
technique, GPU computing is a recently developed, typical 
parallel computing model. It is characterized by low cost, 
and a high degree of parallelization, programmability, and 
flexibility [11]. The “CPU + GPU” computing pattern is a 
trend representing the future development of high-perfor- 
mance computing techniques [12]. NVIDIA proposed the 
CUDA (Compute Unified Device Architecture) computing 
platform in 2007 [13], which provided a GPU-based gen-
eral-purpose computing environment and software archi-
tecture that can be developed using C-like language. With 
this platform, general-purpose computing tasks can be per-
formed with any CUDA-supported computer graphics cards, 
so the computational cost is relatively low. Presently, GPU- 
based high-performance computing is extensively applied in 
fields such as physical simulation [14], image processing 
[15], three-dimensional terrain generation, signal processing, 
artificial intelligence, and others. There are greatly im-
proves on the computational efficiency comparing the orig-
inal CPU-based pattern. Geographic problems are generally 
complex; thus, applying the GPU computing technique to 
geographic simulations of large-scale and/or high-resolution 
land-use changes would be of great importance. Some stud-

ies have focused on integration of the GPU technique with 
CA [16,17], but there is no application to geographical sim-
ulation. 

1  GPU-CA computing model framework 

The GPU-CA computing model is a CA model for simulat-
ing land-use changes combined with the GPU-based gen-
eral-purpose computing technique. The model uses the 
high-performance computing capability of the latter tech-
nique. It improves the computational efficiency of CA sim-
ulation, especially in solving computing bottleneck prob-
lems within large-scale and/or high-resolution land-use 
change simulation. The GPU-CA model framework in-
cludes three aspects, namely, mapping the CA model, ad-
dressing key technical problems, and designing computing 
procedures. The GPU-CA land-use change model can use 
any mature CA model, such as logistic regression-based CA 
[18], artificial neural-network CA [2], decision tree-based 
CA [19], and others. We focus on the non-urban to urban 
land conversion process, thus, we use the logistic regres-
sion-based CA model and the data parallel computing pat-
tern.  

1.1  Model mapping 

According to the logistic regression model, the probability 
of a site occurring land conversion can be computed as fol-
lows: 
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where   urba( )ng ijP S   refers to the conversion probability 

of a cell at position ij in cellular space when the land-use 
state is urban; its value is between zero and one. z describes 
the influence of spatial factors that affect land-use change, 
and is expressed as 
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where  refers to the regression constant, bk is the coeffi-
cient of the logistic regression model, and xk represents the 
value of spatial factors of the cell at position ij.  

The probability of land conversion in a cell at position ij 
and time t is expressed as 
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where  (1 ( ln ) )   is a stochastic interference repre-

senting the stochastic influence on land-use change,  is a 
stochastic value between zero and one, and  is an integer 
between 1 and 10. con( )t

ijs  is the constraint condition for 

land conversion of a cell at position ij.  
t
ij  represents the 
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neighborhood influence on the CA model, indicating the 
land-use state within the neighborhood window.  

Finally, the following equation determines whether land 
conversion will occur within a cell: 

 threshold
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If the value of t
ijp  is larger than or equal to the preset 

threshold value pthreshold and the cell’s state is non-urban, 
then the cell’s state will be converted to urban; otherwise, 
there will be no conversion. One iteration is finished when 
computation is done for the entire cellular space. Through 
multiple iterations, the entire process of land-use change 
can be simulated.  

The GPU-CA computing model maps the aforemen-
tioned computation procedure to the GPU programming and 
memory models. The GPU-CA model architecture is shown 
in Figure1.  

GPU general-purpose computing can be logically divided 
into three levels. The smallest computing unit is the Thread. 
Multiple threads compose a Block (one block has one 
shared memory), and one or more blocks compose a Grid. 

The GPU-CA computing model uses a data parallel 
computing pattern, which maps a thread to a cell in the cel-
lular space, and this thread is responsible for the computa-
tion of the corresponding cell. The data, consisting of the 
simulation data and related space variables, are read by 
graphics cards from the computer mainframe (host) memory 
to global memory. These data are then copied to each 
shared memory of the blocks, where each thread reads the 
data according to the cell it maps. Since the CA model re-
quires information about the neighborhood of each cell, 
each thread simultaneously reads data from the neighbors of 
the mapped cell. We adopted the 3×3 Moore neighborhood. 
When the data reading is complete, a computation iteration 
is done by the multiple thread units, and resulting data are  

 

 

Figure 1  GPU-CA computing model architecture. 

written back to global memory. The next iteration then be-
gins, until the termination condition is reached. 

1.2  Key technical problems solved by GPU-CA 

(i) Data mapping.  The CA model adopts a raster data 
structure and is naturally similar to the GPU thread compu-
ting model. Therefore, the GPU-CA model maps raster data 
units to the thread units in GPU, and uses a data parallel 
computing pattern. Related factors in this process must be 
considered, such as the mode of data index mapping, num-
ber of GPU computing units, and size of the memory units. 
The mode of data index mapping can take the form of a 
one- or two-dimensional array, which links the position 
index information in the thread computing model with their 
counterparts in the raster data, thus ensuring correctness of 
the mapping relationship. The two mapping modes are 
shown in Figure 2(a) and (b), where T1, T2,  and Tn 
represent threads in a block. As shown in Figure 2, the in-
dex mapping using one-dimensional array mode is charac-
terized by a simple relationship and directness. The index 
mapping using two-dimensional array mode has representa-
tion advantages but also has a more complicated relation-
ship. Our index mapping uses the two-dimensional array 
mode. The number of GPU computing units and memory 
unit size determine the data size that can be processed by 
the computing function (kernel) at each execution, which is 
closely related to the graphics card hardware attributes. If 
the data size for execution is less than the overall data size, 
then data cannot be read into the graphics card memory 
once. Thus the data must be divided into blocks, for reading 
and computing by the kernel function multiple times.  

(ii) Data competitive writing.  In CA simulation, global 
information is generally present, e.g. the number of cells 
that change state after each iteration. For this type of data, 
each cell can alter the values of these data. As shown in Fig-
ure 3, each thread in each block can possibly write the value 
of global information in global memory during each iteration.  
In the serial computing pattern, each cell can successively  

 

 

Figure 2  Diagram showing two modes of data index mapping. (a) Index 
mapping using one-dimensional array mode. (b) Index mapping using two- 
dimensional array mode. 
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Figure 3  Phenomenon of competitive data writing solved in GPU-CA. 

alter the value and will not cause conflict between cells. 
However, in the parallel computing pattern, if each compu-
ting unit simultaneously performs data alteration, a problem 
with competitive data writing results. This means that the 
correctness of the global information cannot be guaranteed. 
Therefore, the atom operation function in the CUDA envi-
ronment is introduced to avoid this competitive data writing. 
The atom operation function ensures the correctness of a 
value while multiple threads are simultaneously written to 
the same address by the function’s computing mechanism. 
The atom operation function thereby effectively avoids the 
competitive data writing problem, solving related problems 
that may arise in large-scale land-use change simulation.  

1.3  GPU-CA computing procedure 

The procedures of GPU general-purpose computing gener-
ally include initialization of the computing environment, 
data transfer, parallel computing using the kernel function, 
and exiting the environment. The pseudo code for the GPU- 
CA model is:  

1. Defining sizes of the grid and block used in computing, 
and corresponding storage space sizes.  

2. Starting the CUDA environment. 
3. Reading data into the memory of the host side.  
4. At the GPU side, allocating the graphic memory and 

copying data into it from the host side.  
5. Using the kernel function to calculate the Pg value of 

the entire cellular space.  
6. Using the kernel function to perform multiple iteration 

computation.  
While (if the termination conditions of the simulation 

are not reached) 
6.1 For each block, reading the land-use type and Pg 

values of corresponding cells from global memory into 
shared memory, according to the indexes. 

6.2 For each thread, reading 3×3 neighborhood infor-
mation of the corresponding cell from global memory, ac-
cording to the indexes.  

6.3 For each thread, computing the land conversion 
probability using the logistic regression-based CA formulas. 

If (conditions of conversion into urban are met) 
Converting land-use type of the corre-

sponding cell into urban land 
End if 

6.4 For each thread, if the land-use type of the corre-
sponding cell is converted to urban land, then the atom op-
eration function is used to update the number of total con-
verted cells in this iteration.  

6.5 For each block, copying the updated land-use type 
value of the corresponding cells from shared memory to 
global memory.  

End while 
7.  Computing the accuracy of the simulated result. 
8. Copying simulated result from the GPU graphic 

memory to the host memory, and outputting the result to 
files. 

9. Releasing storage spaces at the GPU and host sides, 
and exiting the CUDA environment. 

2  Case application and analysis 

The study area is in Guangdong Province, China, which has 
a land area of 179800 km2. The land use classification data 
of Guangdong Province from 2000, 2005, and 2006 were 
acquired, as well as related space variable data. The land- 
use classification data are raster data files in ArcGIS ASCII 
format, with 80 m spatial resolution and the raster size is 
9792×7376. The single data document has a storage size of 
approximately 500 MB. There are six land-use types, namely, 
farmland, forest, grassland, water area, construction land, and 
unused land. The space variables include distance to city 
center for each raster cell, and distances to the railway, 
highway, and roadway. Based on the logistic regression- 
based CA model, the land-use classification and space var-
iable data from 2000 and 2005 were used to determine the 
rules of conversion, which define the conversion of non- 
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construction to construction land in Guangdong Province. 
Subsequently, the land use data of 2005 was used as initial 
data to simulate the land conversion process in the period 
2005–2006. After the simulation results were produced, 
they were then compared with the 2006 land-use classifica-
tion data using two accuracy assessment approaches to val-
idate the simulation result, these are the point-to-point and 
naked-eye approaches [1]. The general CA provided by Geo- 
SOS software (GeoSOS, http://www.geosimulation.cn/) was 
used to simulate the same land-use change process in this 
province, for analyzing the degree of improvement in com-
putational efficiency by GPU-CA. Finally, the construction 
land conversion process in Guangdong Province during 
2010 and 2015 was predicted. Figure 4 shows the GPU-CA 
simulation results.  

To compare with the general CA based on the CPU serial 
computing pattern, we adopted a powerful hardware plat-
form configuration. This platform consists of 2× Intel Xeon 
E5620 2.5 GHz CPU, 24 GB mainframe memory, Windows 
7 64-bit professional edition operating system, and Tesla 
1060C graphics card manufactured by NVIDIA Inc., which 
has 4GB graphic memory and1.30 GHz core frequency. The 
GPU computing environment is CUDA 3.2, and the devel-
opment environment is Microsoft Visual C++ 2008.  

Figure 4(a)–(c) describes land use in Guangdong Prov-
ince in 2000, 2005, and 2006, respectively. Figure 4(d) de-
scribes simulation results for 2006, using land use transition 
patterns extracted from the data of 2000 and 2005. Figure 
4(e) and (f) shows predicted results for 2005–2010 and 
2005–2015, respectively. 

By using a point-to-point comparison method which 

commonly used in image consistency evaluation, a confu-
sion matrix is generated to test the simulation accuracy. The 
results indicate that the overall accuracy of GPU-CA simu-
lation is 82.9%, indicating that the GPU-CA model is very 
effective and can be applied to large-scale land-use change 
simulations.  

Based on experimental data and the simulated and pre-
dicted results, we evaluated the percentages of construction 
land areas to total land area for each municipal administra-
tive region, and the percentage of construction land expan-
sion for each city in Guangdong Province for three periods. 
These are 2000–2006, 2000–2010, and 2000–2015 (Table 
1). Each municipal administrative region in the province 
showed an expansion of construction land. Percentages of 
construction land area to total land area over the entire 
province were 4.57% in 2000 and 7.39% in 2006; they are 
predicted to be 7.70% in 2010 and 7.89% in 2015. The per-
centage of construction land expansion was 61.76% in 
2000–2006, and is predicted to be 68.60% in 2010 and 
72.55% in 2015. We conclude that a large area of land is 
converted to construction land in Guangdong Province, and 
the tight situation for land resources will continue in the 
future. However, the expansion ratio is different between 
municipal administrative regions. 

Based on the different percentage of construction land 
area to total land area in each municipal administrative re-
gion in 2000–2015, the regions in Guangdong Province can 
be divided into three types (Figure 5). Guangzhou, Shenzhen, 
Dongguan, Foshan, Zhongshan, and Zhuhai show percent-
ages exceed 20%. Jiangmen, Yangjiang, Maoming, Zhan-
jiang, Huizhou, Shantou, Shanwei, Chaozhou, and Jieyang  

 
 

 

Figure 4  Diagram showing the simulated results of GPU-CA. 
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Figure 5  Diagram showing percentages of construction land area to total land area in each municipal administrative region of Guangdong Province for 
2000–2015. 

show percentages varying between 5%–20%, where as 
Shaoguang, Zhaoqing, Qingyuan, Yunfu, Heyuan, and 
Meizhou show less than 5%. The six cities with percentages 
of over 20% are all in the Pearl River Delta region. Ac-
cording to the rapid growth of the regional economy in 
2000–2006, a larger area of land was converted to construc-
tion land. In particular, in Dongguan, the percentage was 
43.63% in 2006 and will be 51.63% in 2010 and 52.95% in 
2015. Thus, large areas of land will be converted to con-
struction land in the future (Figure 6). The cities with per-
centages between 5%–20% are generally along coastal re-
gions in the province. These cities benefited from an open-
ing-up policy and location advantages, so their economic 
development is also rapid. Again, a large construction land 
area is needed to meet the requirements of economic devel-
opment. The cities with percentages of less than 5% are 
generally in the northwestern and northeastern mountainous 
regions and in economically underdeveloped regions. Only 
small areas of construction land are required in these re-
gions, because of constraints in economic conditions.  

Based on the ratio of construction land expansion in the 
various regions from 2000–2015, the municipal administra-
tive regions in Guangdong Province can also be divided into 
three types (Figure 7). For Zhongshan, Zhaoqing, Qingyuan, 
Meizhou, Heyuan, and Shanwei, expansion rates all ex-
ceeded 100%. A typical rate was 132.41% for Zhongshan, 
where large areas of land have been converted to construc-
tion land (Figure 8). For Guangzhou, Zhuhai, Foshan, 

Shaoguang, Dongguan, Huizhou, Yangjiang, Zhanjiang, and 
Chaozhou, expansion rates all ranged between 50%–100%. 
A typical rate was 66.95% for Huizhou, which belongs to 
the intermediate ratio of construction land expansion (Fig-
ure 9). For Shenzhen, Shantou, Jiangmen, Jieyang, and 
Yunfu, expansion rates were all less than 50%. A typical 
rate is 41.71% for Yunfu, where less land is converted to 
construction land (Figure 10).  

In simulating multiple urban expansion types as dis-
cussed above, the GPU-CA model can precisely simulate 
the construction land development process for each type. 
This indicates that the model is very adaptable and capable 
of effectively simulating the pattern and process of con-
struction land development.  

3  GPU-CA model performance analysis 

For the performance analysis of parallel computation, the 
concept of speedup is introduced [20,21]. It uses the ratio of 
parallel computation time to CPU serial computation time, 
to represent the acceleration performance of parallel com-
puting. For analyzing GPU-CA model performance, the 
time for GPU-CA simulation and that for CPU computation 
under the same conditions, are recorded. The speedup is 
calculated to determine how the GPU computing improves 
the CA simulation efficiency. To compare acceleration per-
formances of GPU-CA more completely, Dongguan, the  
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Figure 6  Diagram showing construction land expansion in Dongguan from 2000–2006, and the GPU-CA simulated and predicted results. (a)–(c) describe 
land use in Dongguan in 2000, 2005, and 2006, respectively, (d) describes simulated results for 2006, (e) and (f) show predicted results for 2010 and 2015, 
respectively. 

 
Figure 7  Diagram showing ratio of construction land expansion in each municipal administrative region of Guangdong Province from 2000–2015. 

Pearl River Delta region, and Guangdong Province were 
selected as study zones for the simulation respectively. 
CPU-CA and the general CA in GeoSOS were used for the 
simulation computations. The computation performances of 
the two different computing patterns were compared, and 
results are shown in Table 2. To ensure that the comparison 
conditions were the same, there were no image refresh op-
erations in the simulations with GeoSOS. Instead, only sim-
ulation computation was done. Moreover, data reading and 

output processes in the two patterns were basically the same. 
Therefore, only the time for CA simulation computing are 
compared, to investigate the difference in computation effi-
ciency between the GeoSOS serial and GPU-CA parallel 
patterns.  

As shown in Table 2, GPU-CA can remarkably acceler-
ate the CA simulation, with the greatest speedup reaching 
33.97. This is much greater than the execution efficiency of 
the CPU computing pattern, indicating that GPU-CA is very  
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Figure 8  Diagram showing construction land expansion in Zhongshan from 2000–2006, and the GPU-CA simulated and predicted results. (a)–(c) describe 
land use in Zhangshan in 2000, 2005, and 2006, respectively, (d) describes simulated results for 2006, (e) and (f) show predicted results for 2010 and 2015, 
respectively. 

 

Figure 9  Diagram showing construction land expansion in Huizhou from 2000–2006, and the GPU-CA simulated and predicted results. (a)–(c) describe 
land use in Huizhou in 2000, 2005, and 2006, respectively, (d) describes simulated results for 2006, (e) and (f) show predicted results for 2010 and 2015, 
respectively. 
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Figure 10  Diagram showing construction land expansion in Yunfu from 2000–2006, and the GPU-CA simulated and predicted results. (a)–(c) describe 
land use in Yunfu in 2000, 2005, and 2006, respectively, (d) describes simulated results for 2006, (e) and (f) show predicted results for 2010 and 2015, re-
spectively. 

Table 2  Table of comparison of computation time between GPU-CA and general CA 

Study area Cells count GPU-CA (s) General CA (s) Speedup 

Dongguan 768×544 1.059 17.700 16.71 

Pearl River Delta 2912×2096 14.715 258.876 17.59 

Guangdong 9792×7376 150.729 5102.147 33.97 

 
 

efficient in computation.  
Figure 11 shows the relationship between the GPU-CA 

computation scale and time speedup. It shows that time 
speedup increases with computation scale. This is because 
under computation involving small data amounts, the time 
required for data transfer maybe greater than the time for 
data computation. As the computational scale increasing, 
the time required for data transfer decreases in total compu-
tation time. Therefore, given a large volume of data, 
GPU-CA achieves a better acceleration performance. This 
result demonstrates that GPU-CA is more suitable for pro-
cessing problems involving large amounts of data, and it’s 
consistent with theoretical analysis of the acceleration per-
formance of parallel computing [20]. Further, the GPU 
high-performance computation is characterized by good 
parallelism and high computing density. Hence, we con-
clude that the GPU-CA computing model is very suitable 
for solving problems involving large-scale land-use change 
simulation.  

We also compare the acceleration performances of GPU- 
CA with the load balancing-based parallel CA [10]. Parallel 
CA uses a 3×3 neighborhood to simulate land conversion in 
the Pearl River Delta region, with the computation time 
approximately 1200–1600 s and a speedup around 2. The 
simulation time using GPU-CA is approximately 15 s, and  

 

Figure 11  Diagram showing relationship between GPU-CA computing 
scale and time speedup. 

speedup around 18. Therefore, GPU-CA shows much im-
proved computing performance over parallel CA. Moreover, 
parallel CA requires eight PCs for parallel computing. 
GPU-CA only requires one computer with a graphics card 
supporting the CUDA environment; thus, the computational 
cost is much lower than parallel CA. This result fully 
demonstrates that GPU-CA has a low computational cost 
and high computing capacity.  
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4  Conclusions 

We used the GPU general-purpose computing technology 
for large-scale land-use change simulation, and established 
the GPU-CA computing model. The proposed model not 
only guarantees valid simulation results, but also remarka-
bly improves the efficiency of simulation computation. This 
new model helps solve the problems encountered in some 
simulations which have a computation with large amounts 
of spatial data and excessively long computation time. The-
se problems cannot be effectively solved by the original 
CPU serial computing pattern. Hence, this model is a highly 
efficient computing tool for future large-scale geographic 
simulation and computation. In comparison with other par-
allel computing models, the GPU general-purpose model 
has advantages of low computational cost, high computing 
density, easy configuration and installation, computational 
speedup increasing with the increased computational scale. 
Thus, the model is more suitable for geographic simulation 
and intensive geographic computing. Guangdong Province 
was selected as the study area here, for large-scale land-use 
change simulation. The GPU-CA computing model can be 
conveniently applied to the entire country or even on a 
global scale.  

We used the logistic regression-based CA model for 
land-use change simulation. This is suitable for simulating 
changes of a single land-use type, but the model cannot 
produce the patterns of conversion for multiple land-use 
types. Therefore, models for multiple land-use types, like 
artificial neural-network-based CA, decision tree-based CA, 
and others, can be used in the future to better explain and 
simulate the land-use change process. Moreover, GPU 
computation time maybe remarkably reduced by using pro-
gram optimization. Alternatively, parallel computing pro-
tocols, such as OpenMP, can be used to construct a compu-
ting cluster based on multiple GPU graphics cards. It can 
improve computing efficiency and expand the data pro-
cessing scale. This is the subject of our future research.  
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