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Silicon-based nanomaterials have been of scientific and commercial interest in lithium-ion batteries due to the low cost, low tox-
icity, and high specific capacity with an order of magnitude beyond that of conventional graphite. The poor capacity retention, 
caused by pulverization of Si during cycling, triggers researchers and engineers to explore better battery materials. This review 
summarizes recent work in improving Si-based anode materials via different approaches from diverse Si nanostructures, Si/metal 
nanocomposites, to Si/C nanocomposites, and also offers perspectives of the Si-based anode materials. 
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Lithium ion batteries (LIBs) as attractive energy storage 
devices have become ubiquitous power sources for mobile 
electronics. Increasing power and energy requirements for 
applications such as electric and hybrid electric vehicles, 
have spurred intense interest in developing high capacity 
electrode materials to surpass the capacities of electrode 
materials used in current LIBs [17]. To achieve the re-
quirements, much research work has been performed on 
new anode materials with high specific capacities.  

Silicon has attracted increasing attention as a potential 
high-capacity anode material because of numerous appeal-
ing features such as high theoretical specific capacity of 
4212 mAh g–1, higher safety and stability than graphite 
(lithiated silicon is more stable in typical electrolytes than 
lithiated graphite). Si anode materials, however, suffer from 
some drawbacks involving the drastic volume change (larg-
er than 300%) during the alloying/de-alloying reactions 
with Li [8], the intrinsic low electrical conductivity, and the 
unstable solid electrolyte interphase (SEI) formed in the 
common electrolyte of LiPF6. These limitations still chal-
lenge the investigation and development on identification of 
higher capacity for the next generation LIBs. Various ad-

vances in Si morphology have been achieved in the past 
years, demonstrating that nanostructured Si-based materials 
particularly offer superior properties in LIBs. 

In this review, we address the recent developments in op-
timizing Si-based materials via diverse Si nanostructures, 
Si/metal nanocomposites, and Si/C nanocomposites. In ad-
dition, we offer some perspectives for the design of better Si 
nanomaterials. 

1  Si nanostructures 

In principle, Si-based bulk materials exhibited a marked 
loss of capacity in a few cycles. To alleviate the absolute 
volume variation during cycling, diverse Si nanostructures 
have been developed. It has been demonstrated that Si 
nano-powder (78 nm) could exhibit a better capacity reten-
tion than the commercial Si powder (250 mesh) [9]. The 
improvement was assigned to the shortening of lithium ion 
diffusion distance and enhancing the electroactivity toward 
Li uptake/release. 

Controlling the nanoparticle shape as well as size can of-
fer advantages, which is illustrated by recent results on dif-
ferent morphologies of Si. Zero-dimensional (0D) Si nano-
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spheres were constructed with enhanced electrochemical 
performances due to preventing Si particles’ aggregation on 
the nanometer scale. Nest-like Si nanospheres prepared by a 
modified solvothermal method exhibited a large specific 
capacity of 3052 mAh g–1 under a current density of 2000 
mA g–1 (ca. 0.5 C) in the electrolyte of 1 mol/L LiPF6 dis-
solved in a 3:1:1 mixture of ethylene carbonate (EC), pro-
pylene carbonate (PC) and diethyl carbonate (DEC) [10]. 
After cycling of up to 48 cycles under 2000 mA g–1, the 
electrode modified by the nest-like Si nanospheres still 
showed a specific capacity of 1095 mAh g–1. Additionally, 
an excellent capacity retention was noted for the intercon-
nected Si hollow nanospheres electrode (Figure 1) [11], 
synthesized via chemical vapor deposition (CVD) of Si on 
silica particles and then etching SiO2 by HF. The as-   
prepared hollow spherical structure was capable of deliver-
ing a high initial discharge capacity of 2725 mAh g–1 at a rate 
of 0.1 C in the electrolyte of 1 mol/L LiPF6 in a 1:1 (w/w) 
EC/DEC mixture. Even after 700 cycles, the Si hollow sphere 
electrode still retained 1420 mAh g–1 at a rate of 0.5 C. 

One-dimensional (1D) nanowires or nanotubes are also 
intriguing structures with good cycle stability. For example, 
Si nanowire electrode without binder, synthesized via the 
vapour-liquid-solid process on stainless steel substrates us-
ing Au catalyst, exhibited a reversible capacity of 3193  

mAh g–1 over 10 cycles at a C/20 rate in the electrolyte of 1 
mol/L LiPF6 in a 1:1 (w/w) EC/DEC mixture [12]. Array of 
sealed Si nanotubes (Si NT), prepared by CVD of Si onto 
ZnO nanorods and selective removal of ZnO (Figure 2), 
showed 3360 and 1490 mAh g–1 of charge capacity at rates 
of 0.05 and 0.2 C respectively in the electrolyte of 1.3 
mol/L LiPF6 in EC/DEC (3:7 in volume). The capacity re-
tentions after 50 cycles are about 81% and 82% at 0.05  
and 0.2 C, respectively [13]. Possibly, 1D nanostructures 
might undergo facile strain relaxation and expand freely to 
accommodate the volume change during cycles. 

Two-dimensional (2D) Si thin film is another promising 
nanostructure with improved cycle stability and rate capa-
bilities. Basically, nanosized thin film can minimize the 
volume variation and retain structural integrity. The cycling 
stability and the Li accommodation capacity mainly depend 
on the film thickness as thinner films deliver larger accom-
modation capacity. A 50 nm-thick Si film prepared from 
n-type Si was found to deliver a charge capacity over 3500 
mA h g−1 and maintained during 200 cycles at a rate of 2 C, 
while a 150 nm-thick film showed around 2200 mAh g−1 
during 200 cycles at 1C in the electrolyte of 1 mol/L LiClO4 
in PC [14]. Although Si thin films offer high specific capac-
ity, good capacity retention and fast charge/discharge rate, 
the practical application is hampered because of their 

 

 

Figure 1  (a) TEM image and (b) reversible Li discharge capacity and Coulombic efficiency versus cycle number of interconnected hollow Si spheres.  
Reprinted with permission from [11]. Copyright (2011) American Chemical Society. 

 

Figure 2  (a) SEM image (insets showing high magnification TEM images of the sealed tip of a Si NT) and (b) cycle performances at a rate of 0.05 and 0.2 
C (square: 0.05 C, circle: 0.2 C) of a vertically aligned Si NT array. Reprinted with permission from [13]. Copyright (2010) American Chemical Society. 
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prohibitively high synthesis costs for industry and low ac-
tive material content. 

2  Si/metal composites 

In comparison with bulk Si materials, the pristine nanostru- 
ctures of Si have shown improved capacity retention. How-
ever, the greatest disadvantage of the pristine nanostructures 
with high surface areas may lead to the risk of excessive 
side-reactions with the electrolyte [6]. Furthermore, the 
pristine nanosized Si anode materials are still plagued with 
the intrinsic low electrical conductivity of Si. Various stud-
ies have demonstrated that utilization of Si-based nano-
composites can circumvent the limitations of pure Si nano-
materials. In this context, metal with good electronic con-
ductivity is one appealing candidate to cooperate with Si for 
improving lithium storage properties, especially rate capa-
bilities.  

Ag-coated three-dimensional (3D) macroporous Si has 
been constructed, in which Ag nanoparticles formed an in-
terconnected conductive network, providing electron path-

ways from the current collector to the whole surface area of 
the 3D porous Si particles. The Ag-coated 3D macroporous 
Si delivered not only a reversible capacity of 1163 mAh g–1 
at a rate of 0.2 C after 100 cycles (Figure 3), but an en-
hanced rate capability of 1930 mAh g–1 at a rate of 1 C in 
the electrolyte of 1 mol/L LiPF6 in dimethyl carbonate 
(DMC)/EC (1:1 in volume) containing 2 wt% vinylene car-
bonate (VC) [15]. 

In addition to the electrochemical active silver toward 
lithium storage, electrochemical inactive metal silicides 
with good conductivity also favor the effective charge 
transport. Si/TiSi2 heterostructures (Figure 4), consisting of 
TiSi2 nanonets coated with Si nanoparticles, displayed 
above 99% capacity retention per cycle at the level 
of >1000 mAh g–1 over 100 cycles under a charging current 
density of 8400 mA g–1 in the electrolyte of 1 mol/L LiPF6 
in EC/DEC (1:1 in volume) [16]. The excellent performance 
was attributed to the highly conductive TiSi2 nanonets used 
as the structural support. Another typical metal silicide, 
Cu3Si, as reported recently by our laboratory, was in situ 
formed on the surface of Si nanoparticles by annealing 
Si/copper alginate microspheres in an inert atmosphere. The  

 

 

Figure 3  (a) Cyclability of 3D macroporous Si, Ag-coated 3D macroporous Si, and commercial Si nanoparticles; (b) rate capabilities of 3D macroporous 
Si and a Ag coated 3D macroporous Si electrode. The current densities are indicated in (b). All of them were tested at a rate of 0.2 C in a voltage range of 5 
mV–1.0 V. Reprinted with permission from [15]. 

 

Figure 4  (a) Schematic and (b) charge capacity and Coulombic efficiency under a current density of 8400 mA g–1 between 0.15–3.00 V of the Si/TiSi2 
heteronanostructure. Reprinted with permission from [16]. Copyright (2010) American Chemical Society. 
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utilization of Cu3Si endowed the resulting Si/C nanoporous 
microspheres with enhanced cycling performance and rate 
performance compared with Si nanoparticles [17]. Aside 
from the improvement of conductivity for Si/metal nano-
composites, inactive metal oxides coating was utilized to 
form stable SEI on the surface of electrode materials in the 
common electrolyte of LiPF6. An elegant Cu-Si nanocable 
array (Figure 5) was prepared firstly from the growth of 
CuO nanowire arrays by heating a copper current collectors 
in oxygen atmosphere. Then the CuO nanowire arrays were 
coated with Si and Al2O3 step by step, and subsequently 
annealed in reduced atmosphere [18]. The Cu-Si-Al2O3 
nanocables exhibited a specific capacity of about 1560  
mAh g−1 after 100 cycles under a current density of 1400 
mA g−1 in the electrolyte of 1 mol/L LiPF6 in a mixture of 
EC/DMC/DEC (1:1:1 wt%) plus 2 wt% VC. Furthermore, 
the nanocables displayed a specific capacity of 1490 and 
1140 mAh g−1 as increasing the current density to 2800 and 
7000 mA g−1, respectively. The remarkably high rate capa-
bility mainly benefits from the unique configuration of 
nanocables with excellent ionic-electronic conductivity 
[19–21]. The attractive structure of Cu-Si-Al2O3 nanocables 
enabled lithium ion to diffuse readily into Si nanolayer from 
the outside liquid electrolyte. The copper core inside acts as 
the continuous electron diffusion pathway and thereby al-
lows for fast electron transport in the electrode. In addition, 

the Al2O3 coating layer on Si surface serves as a thin    
and stable surface and thereby facilitates the formation of 
stable SEI layer in the common electrolyte of LiPF6 upon 
cycling. 

3  Si/C composites 

Concerning graphite, the commercial anode material, tre-
mendous studies have focused on carbonaceous materials, 
owing to their unique characteristics (relative softness, 
small volume change during Li insertion/extraction, good 
electronic conductivity, and the moderate SEI formation). 
Incorporation of Si/C nanocomposites represents one attrac-
tive route to conquer the intrinsic drawbacks of Si. 

Highly conductive carbon (such as graphite) was utilized 
to load Si nanoparticles by ball milling and subsequently 
coated with amorphous carbon, in which Si nanoparticles 
were embedded into a relatively dense carbon matrix 
[22–25]. The as-prepared Si/C nanocomposites only showed 
limited enhancements of cycle stability and capacity be-
cause the dense carbon matrix could accommodate the 
volume changes only to a limited degree. 

Carbon nanotubes (CNTs) and graphene nanosheets have 
been widely investigated as conductive substrates to facili-
tate charge transport, flexibility and mechanical strength to 

 

 

Figure 5  (a) Schematic; (b) annual dark-field TEM image and (c) corresponding EDX elemental mappings of O, Al, Si, and Cu for the Cu-Si-Al2O3 nano-
cables; (d) comparison of the rate capabilities of Cu-Si-Al2O3 nanocables and Cu-Si cycled under different current densities; (e) cycling behavior under a 
current density of 1400 mA g−1 of Cu-Si-Al2O3 nanocables. Voltage limits are between 0 and 2 V (vs. Li+/Li). Reprinted with permission from [18]. 
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accommodate the volume change of active electrode mate-
rials during cycles. The resulted Si/CNTs and Si/graphene 
nanocomposites could exhibit good cycle stability and rate 
performances. In this aspect, Si/CNT nanocomposites with 
enhanced properties were prepared either via depositing Si 
nanoparticles on the surface of CNTs [26] or CNTs’ film 
[27–29], or via growing CNTs directly on the surface     
of Si nanoparticles [30]. Additionally, Si/graphene compo-
site [31,32], including Si nanoparticles highly dispersed 
between graphene nanosheets via freez-drying [32], showed 
a reversible specific capacity above 1153 mA h g–1 after 100 
cycles in the elelctroylte of 1 mol/L LiPF6 in a mixture of 
EC/DMC/DEC (1:1:1 wt%) containing 2 wt% VC. Note 
that it is vital to uniformly disperse Si nanoparticles in 
CNTs or grapheme nanosheets to sustain good cycle stabil-
ity. The well-dispersed Si nanoparticles were actually pre-
vented from agglomeration into even larger particles, which 
are considered to be more vulnerable to fracture and pul-
verization during cycling.  

In addition to the utilization of conductive carbonaceous 
materials to combine with Si, core/shell structure with Si 
core were utilized for the formation of stable SEI via pyrol-
ysis of organic precursors [33–36]. For example, Si nano-
particles were coated with carbon by the hydrothermal car-
bonization of glucose to obtain Si@SiOx/C nanocomposite 
[34]. The reversible capacity of Si@SiOx/C nanocomposite 
was as high as 1100 mAh g–1 under a current density of 150 
mA g–1 with no further decay of capacity even after 60 cy-
cles in the electrolyte of 1 mol/L LiPF6 in EC/DMC (1:1, 
v/v) containing 2 wt% VC.  

Porous configuration of Si/C anode materials was con-
firmed to be a viable solution due to accommodating the 
large volume changes of Si during cycles, although the 
volumetric energy density of porous materials was lower 
than that of dense materials. Porous Si particles with tiny 
walls were prepared by annealing and etching of physical 
composites obtained from butyl-capped Si gels and SiO2 
nanoparticles [37]. The porous Si/C composite with a highly 
porous and interconnected structure, showed a reversible 
capacity of about 2500 mAh g–1 at a 1 C rate after 100 cy-
cles due to its better accommodation of large strains without 
pulverization during cycles in the electrolyte of 1 mol/L 

LiPF6 in a EC/DEC/ethyl-methyl carbonate (EMC) mixture  
(30:30:40 vol%) (Figure 6). Furthermore, Coulombic effi-
ciencies of the porous Si/C particles at both 0.2C and 1C 
rates were higher than 98%. The good rate capability can be 
attributed to the interconnected 3D porous structure that 
provides fast lithium-ion mobility, and the improved effi-
ciency may be associated with the carbon coating layer, 
which decreases the occurrence of side reactions with the 
electrolyte. 

Similar to the role of porous Si framework, Si/C spheri-
cal granules with spherical carbon black scaffold was re-
ported with impressive lithium storage properties [38]. An-
nealed carbon black scaffold were coated with Si nanoparti-
cles and carbon respectively to assemble the porous Si/C 
granules, which exhibited the specific capacity above 1500 
mA h g–1 at the fast discharge rate of 1C after 100 cycles in 
the electrolyte of 1 mol/L LiPF6 in an EC/DEC/DMC/VC 
mixture (Figure 7). Highly conductive porous carbon 
framework provides a mechanical support for Si nanoparti-
cles and an electrical conducting pathway to lithium ion and 
electrons. Also, the carbon deposited on Si nanoparticles 
could facilitate the formation of a stable SEI on the surface 
of Si nanoparticles and prevent the agglomeration of tiny Si 
nanoparticles. 

4  Perspective 

In this review, we have focused on the improvements on Si- 
based anode materials in terms of morphology and structure 
design, i.e. diverse Si nanostructures, Si/metal nanocompo-
sites, and Si/C nanocomposites. Either designing diverse 
pristine Si nanostructures, or hybridizing Si/metal and Si/C 
nanocomposites can significantly improve the lithium stor-
age properties of Si-based materials. As shown from previ-
ous studies, fascinating cyclic stability and high rate capa-
bilities could be achieved when the Si-based materials have 
the following structure features: (1) Nanoporous structure to 
accommodate the volume variation during cycling; (2) fast 
electron conducting pathways to improve the poor electrical 
conductivity of Si; and (3) stable surface coating to form 
stable and thin SEI layer on the surface of Si. 

 

 

Figure 6  (a) SEM image and (b) plot of charge capacities versus cycle number of the 3D porous Si particles cycled at different rates (0.2 and 1 C) between 
0 and 1.5 V. x=charge capacity, N=cycle number, Q=Coulombic efficiency. Reprinted with permission from [37]. 
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Figure 7  (a) Schematic formation of Si-C nanocomposite granule and (b) reversible Li deintercalation capacity and Coulombic efficiency of the Si-C gran-
ule electrode versus cycle number. Reprinted with permission from [38]. 

Although considerable advances have been achieved in 
the last decade to design and synthesize Si-based anode 
materials, some perspectives could focus on electrolytes and 
binders, greatly influencing the electrochemical perfor-
mances of Si-based anode materials as mentioned in recent 
research. For nanostructured Si anode materials, the com-
monly used LiPF6 electrolyte decomposes gradually and 
produces HF, which can etch Si. Additionally, the stable 
SEI film on the surface of Si is difficult to form owing to 
repeatedly huge volume change during cycling and the un-
stable nature of the surface of nanosized Si. As a result, 
nanostructured Si anode materials exhibited a large irre-
versible capacity loss (i.e. low Coulombic efficiency) and 
short cycle life. Except for the stable coating layer on the 
surface of Si [18,39], the electrolyte containing VC with 1 
mol/L LiPF6 in EC/DMC solution has been recognized to 
favor the formation of stable SEI [34]. Furthermore, sodium 
alginate, polyacrylic acid and sodium carboxymethylcellu-
lose with carboxyl groups are potential binders for Si-  
based electrodes compared with the commonly used poly    
(vinylidene fluoride) for Si-based electrode materials 
[40–43]. Particularly, sodium alginate can assist in building 
a deformable and stable SEI film on the surface of Si, clari-
fying that it is vital to use a suitable binder to enhance the 
lithium storage for Si-based anode materials. Achieving 

Si-based anode materials with good cycle stability and high 
specific capacity require the inputs of multiple disciplines, 
which challenges the design of new structures, reveal more 
suitable electrolytes and binders to assemble the next gener-
ation LIBs with high-energy densities and long cycle life. 
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