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Accurate estimation of non-photosynthetic biomass is critical for modeling carbon dynamics within grassland ecosystems. We 
evaluated the cellulose absorption index (CAI), widely used for monitoring non-photosynthetic vegetation coverage, for 
non-photosynthetic biomass estimation. Our analysis was based on in situ hyperspectral measurements, during the growing sea-
sons of 2009 and 2010, in the desert steppe of Inner Mongolia. ASD (Analytical Spectral Device)-derived and Hyperion-derived 
CAI were found to be effective for non-photosynthetic biomass estimation, yielding relative error (RE) values of 26.4% and 
26.6%, respectively. The combination of MODIS (Moderate Resolution Imaging Spectroradiometer)-derived (MODIS2 
MODIS5)/(MODIS2+MODIS5) and (MODIS6MODIS7)/(MODIS6+MODIS7) showed a high multiple correlation (multiple cor-
relation coefficient, r= 0.884) with ASD-derived CAI. A predictive model involving the two MODIS indices gave greater accura-
cy (RE=28.9%) than the TM (Landsat Thematic Mapper)-derived indices. The latter were the normalized difference index (NDI), 
the soil adjusted corn residue index (SACRI), and the modified soil adjusted crop residue index (MSACRI). These indices yielded 
RE values of more than 42%. Our conclusions have great significance for the estimation of regional non-photosynthetic biomass 
in grasslands, based on remotely sensed data. 
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In recent years, the terrestrial carbon cycle has received 
considerable attention by researchers and studies of its ef-
fect on global warming and other climatic and environmen-
tal issues have been at the frontier of earth science research 

[1]. Estimating size and dynamics of biomass has been one 
of the key issues for studies of the terrestrial carbon cycle 

[2]. Grasslands are one of the most widespread ecosystem 
types, and accurate assessment of grassland biomass is in-
creasingly needed to reduce uncertainty about this terrestrial 
carbon sink [3,4]. Non-photosynthetic vegetation is an im-
portant component of grassland vegetation, and the amount 
of non-photosynthetic biomass is important in estimating 
carbon storage within grassland ecosystems. Traditional 

methods of biomass estimation are based on destructive 
sampling that is expensive and time-consuming. Remote 
sensing techniques offer a cost-effective solution for quan-
titative estimation of biomass from local to regional scales. 
During the past decade, many attempts have been made to 
estimate non-photosynthetic vegetation cover based on re-
motely sensed data [5–17]. Very few studies have been 
conducted, however, of non-photosynthetic biomass estima-
tion based on remotely sensed data. 

The reflectance spectra of both non-photosynthetic vege-
tation and soil lack the unique spectral signature of green 
vegetation in the 400–1100 nm wavelength region [5,14]. 
Non-photosynthetic vegetation and soil are often spectrally 
similar and differ only in amplitude for visible and near 
infrared wavelengths [8,17], making discrimination between 
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soil and non-photosynthetic vegetation difficult or nearly 
impossible using reflectance techniques [11]. A lignocellu-
lose absorption trough at 2100 nm in the reflectance spectra 
of non-photosynthetic vegetation has been observed; this 
may have been caused by cellulose, hemicellulose, lignin, 
or other structural compounds [18,19]. The absorption near 
2100 nm is absent from soil or green vegetation reflectance 
spectra [10,17,20]. Daughtry et al. [9] defined a hyperspec-
tral variable, called cellulose absorption index (CAI), which 
described the depth of the lignocellulose absorption feature 
in the 2000–2200 nm wavelength region. 

In addition, efforts to enhance the discrimination of 
non-photosynthetic vegetation from soil have led to numer-
ous spectral indices that incorporate the Landsat Thematic 
Mapper (TM) shortwave infrared bands, such as the nor-
malized difference index (NDI) [14], the soil adjusted corn 
residue index (SACRI) [7], and the modified soil adjusted 
crop residue index (MSACRI) [21]. However, these broad-
band spectral indices were only weakly correlated to 
non-photosynthetic vegetation cover [12,20]. 

Although CAI was found effective for estimation of 
non-photosynthetic vegetation cover [12,13,15], the poten-
tial of CAI for estimating non-photosynthetic biomass re-
mains to be examined. Additionally, MODIS (Moderate 
Resolution Imaging Spectroradiometer) data have long been 
the primary source in grassland surveys because of their 
large scale, temporal continuity, and low cost. However,  
the narrow wavelength ranges in CAI calculations are      

not available from MODIS. To achieve regional non-     
photosynthetic biomass estimation based on MODIS data, 
the biggest challenge is to find a surrogate index for CAI in 
MODIS surface reflectance data. 

Our aim was to ascertain the utility of CAI for estimating 
non-photosynthetic biomass of desert steppe in Inner Mon-
golia. More specifically, our objectives were to (1) evaluate 
the effectiveness of CAI derived from hyperspectral field 
spectrometer (Analytical Spectral Device, ASD) measure-
ments and a spaceborne hyperspectral sensor (Hyperion) for 
quantifying non-photosynthetic biomass; and (2) find a 
MODIS surrogate index for CAI and compare the perfor-
mance of the surrogate index with TM-derived indices  
such as NDI, SACRI, and MSACRI, in estimating non-     
photosynthetic biomass. 

1  Materials and methods 

1.1  Study site 

The experiment was conducted at Sonid Zuoqi temperate 
desert steppe ecosystem research station (44°05′19"N, 
113°34′20"E, 972 m above sea level) (Figure 1), Inner 
Mongolia, China. The steppe area is characterized by cold, 
dry winters, and warm, humid summers. Long-term mean 
annual temperature is 3.1°C with monthly mean temperature 
ranging from 18.7°C in January to 22°C in July. Long-term 
mean annual precipitation is approximately 185 mm, with 

 

 

Figure 1  The location of Sonid Zuoqi temperate desert steppe ecosystem research station. 
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85% during the growing season (May to September). Ac-
cording to the Chinese Soil Classification System, the soil is 
brown calcic soil; equivalent to orthid and argid in the 
United State Soil Taxonomy [22]. The desert steppe vegeta-
tion is dominated by Stipa klemenzii Roshev. and the main 
species are Agropyron desertorum (Fisch.) Schult., Cleisto-
genes squarrosa (Trin.) Keng, Artemisia frigida Willd. Sp. 
Pl., and Caragana microphylia Lam. 

1.2  Data collection 

Sampling was carried out during the 2009 and 2010 grow-
ing seasons. In 2009, this was 13–17 May, 6–11 June, 
11–17 July, 6–13 August, and 16–20 September. In every 
sampling period, 16 vegetation plots and 1 bare soil plot of 
0.5 m × 0.5 m were selected, following a simple random 
sampling method. In 2010, sampling was undertaken on 
23–30 August, and 38 vegetation plots of 0.5 m × 0.5 m 
were selected following a simple random sampling method. 
In total, 118 vegetation plots and 5 bare soil plots were se-
lected to conduct field spectral and biophysical measure-
ments. The distance between plots ranged from tens to hun-
dreds of meter. All plots were located using a Global Posi-
tioning System (GPS) to avoid sampling a previously sam-
pled area. 

All canopy spectral measurements were taken on clear 
days with no visible cloud cover between 11:30 and 14:00 
(local time), using an ASD spectrometer, FieldSpec3 Pro 
FR (Inc., Boulder, Colorado, USA). This spectrometer cov-
ered a range from 350 to 2500 nm. The sampling interval 
over the 350–1050 nm range was 1.4 nm with a spectral 
resolution of 3 nm. Over the 1050–2500 nm range, the sam-
pling interval was 2 nm and the spectral resolution was be-
tween 10 and 12 nm. Results were interpolated using ASD 
software to produce readings every 1 nm. The sensor, with a 
field of view of 25°, was positioned 1.2 m above the vegeta-
tion canopy at the nadir position; allowing coverage of a 
circular area with a diameter about 0.5 m. Thirty replicates 
were made of each canopy spectral measurement. Prior to 
each reflectance measurement, the radiance of a white stand-
ard panel coated with BaSO4 and with a known reflectivity 
was recorded for normalization of the target measurements. 

Standing biomass and litter on the soil surface were col-
lected using traditional agronomic methods. All biomass 
was separated into live and non-photosynthetic biomass 
(litter and standing senesced biomass). To avoid mismatch 
between the field of view and the 0.5 m × 0.5 m quadrat of 
biomass measurements, a reference stack was placed at the 
centre of each measurement plot for collecting biomass after 
spectral measurements. The litter and standing senesced 
biomass were oven-dried at 65°C to a constant mass, and 
weighed to the nearest 0.1 g. Non-photosynthetic biomass 
(g m2) was determined by dividing the weight of the dried 
litter and standing senesced biomass by the surface area of 
the plot. 

1.3  Data analysis 

(i) Data pretreatment.  To minimize noise in the measured 
reflectance spectra, the ASD spectrometer spectrum of each 
plot was averaged using ViewSpec Pro 5.6 software. The 
averaged reflectance for each plot was used for further 
analysis. 

The simulated TM and MODIS reflectance of each plot 
were generated from the ASD spectrometer reflectance. 
Spectral resampling from ASD channels to simulated TM 
and MODIS bands was performed using the spectral 
resampling routine available in ENVI 4.3 software (Re-
search Systems, Inc.). Sensor-specific spectral response 
functions were set for Landsat-5 TM and MODIS channels. 

“Hyperion” is a hyperspectral spaceborne imaging spec-
trometer consisting of 242 bands ranging from 356 to 2577 
nm that acquire data at approximately 10 nm intervals. The 
spectral response function for Hyperion channels is not cur-
rently available. Therefore, a Hyperion-specific spectral res- 
ponse function was simulated using a Gaussian function 
based on center wavelength and FWHM (full width at half 
maximum). The simulated Hyperion reflectance of each plot 
was then generated from ASD spectrometer reflectance us-
ing the Hyperion-specific spectral response function. 

(ii) Data analysis.  The total set of non-photosynthetic 
biomass data collected in 2009 and 2010 was split into the 
calibration data set (n=83) and validation data set (n=35) by 
random assignment. No saturation problem was found in the 
relationships between non-photosynthetic biomass and the 
investigated indices. Linear regression analyses were per-
formed on the calibration data set. Empirical validation of 
linear regression models was carried out using the valida-
tion data set. The performance of linear regression models 
was compared using root mean squared error (RMSE) and 
relative error (RE) for validation. The RMSE and RE were 
determined using the following equations: 
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where iy  is the measured value of validation sample i , 

iy  is the predicted value of validation sample i , y  is the 

mean value of validation samples, and n  is the number of 
validation samples (n = 35). 

(iii) Spectral indices.  CAI was determined using the 
following equation [9,10]: 

 2.0 2.2 2.1CAI 0.5 ( )R R R    , (3) 

where for ASD spectrometer data, R2.0 , R2.1 and R2.2 are the 
mean reflectances at 2000–2050, 2080–2130 and 2190– 
2240 nm, respectively; for Hyperion data, R2.0 is the mean 
reflectance in three bands centered at 1982, 1992 and 2002 
nm, R2.1 is the mean reflectance in three bands centered at 
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2103, 2113 and 2123 nm, and R2.3 is the mean reflectance in 
three bands centered at 2194, 2204 and 2214 nm. 

NDI, SACRI, and MSACRI were determined using the 
following equations [7,14,21]: 
 4 5 4 5NDI ( )/( )R R R R   , (4) 
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where R4, R5 and R7 are the reflectances at TM bands 4, 5, 
and 7, respectively; and  are the slope and intercept of 
the soil line equation, respectively. The soil line was con-
structed based on the simulated reflectance of TM bands 3 
and 4, using five bare soil samples collected in 2009.  

(iv) MODIS surrogate index selection.  Seven simulated 
single MODIS bands (bands 1–7) and combinations of two 
of these with ASD-derived CAI were tested through simple 
and multiple linear regression models based on the calibra-
tion data set. The optimal MODIS surrogate index for 
ASD-derived CAI was decided based on the Pearson corre-
lation coefficient and the multiple correlation coefficient. 
The three types of combinations of two bands were: the 
simple difference between the i and j bands (ij), the simple 
ratio between the two bands (i/j), and the normalized dif-
ference between the two bands (ij)/(i+j). The structure of 
the simple linear regression model was: CAI = x + y × 
MODISVI. The structure of multiple linear regression model 
was CAI = x + y × MODISVI1 + z×MODISVI2. 

2  Results and analysis 

2.1  Performance of CAI for estimating non-      
photosynthetic biomass 

The performance of CAI for estimating non-photosynthetic 
biomass is presented in Table 1. The ASD-derived CAI 
yielded high R2 (0.70, P<0.001) with non-photosynthetic 
biomass. The RMSE and RE of the model involving the 
ASD-derived CAI were 14.4 g m2 and 26.4%, respectively. 
Models based on the Hyperion-derived and ASD-derived 
CAI yielded similar performance for both calibration and 
validation. The R2, RMSE, and RE of the model involving 
the Hyperion-derived CAI were 0.69 (P<0.001), 14.5 g m2, 
and 26.6%, respectively. 

The sampled area was small compared with the pixel size 
of spaceborne Hyperion hyperspectral data, and atmospheric 
conditions also differed from plot-scale field observations. 
Nevertheless, we concluded that the shortwave infrared por-
tion of the Hyperion data was sensitive to non-photosynthetic 
biomass change, and the hyperspectral Hyperion data had 
potential in monitoring regional non-photosynthetic bio-
mass. 

Several studied have shown that CAI was easily affected 
by green vegetation cover [11,12]. Because the shortwave  

Table 1  Performance of CAI for prediction of non-photosynthetic bio-
mass 

Spectral indices 
Calibration (n=83) Validation (n=35) 

R2 P RMSE (g m2) RE (%) 

ASD-derived CAI 0.70 <0.001 14.4 26.4 

Hyperion-derived CAI 0.69 <0.001 14.5 26.6 

 
 
infrared region is strongly affected by water content, the 
high moisture content of green vegetation significantly at-
tenuated the reflectance signal from the lignocellulose ab-
sorption features near 2100 nm [23]. Daughtry et al. [11,12] 
found that small fractions of green vegetation in the scene 
had little effect on the overall linear relationship between 
CAI and crop residue cover, but as the fraction of green 
vegetation (>30%) increased, the errors for estimating crop 
residue cover using CAI increased. The vegetation in our 
study area was sparse, and green vegetation cover was less 
than 30%. Further research is necessary to assess the per-
formance of the CAI for predicting non-photosynthetic bio-
mass of grasslands with a high fraction of green vegetation. 

2.2  Optimal MODIS surrogate index 

As shown in Table 2, simple linear correlations between 
single MODIS bands or combinations of two MODIS bands 
and ASD-derived CAI were low (|r|<0.65). The best corre-
lation was between the ASD-derived CAI and a NDVI-like 
normalized index of MODIS bands 2 and 5 with r=0.64 
(P<0.001). No single MODIS band or combination of two 
MODIS bands was able to provide the same information as 
the CAI derived from ASD hyperspectral bands. 

Several combinations had high multiple correlation coeffi-
cients with the ASD-derived CAI in the multiple regression 
analyses, and the five best combinations are reported (Table 
3). The best of those tested was a combination of nor-   
malized difference indices (MODIS2MODIS5)/(MODIS2+ 
MODIS5) and (MODIS6MODIS7)/(MODIS6+MODIS7). 
The multiple correlation coefficient (r) was around 0.884 
(P<0.001), indicating that this combination was able to pro-
vide approximately the same information as the ASD-  
derived CAI. 

Table 2  The best five MODIS indices from simple linear models fitted 
between MODIS individual bands and combinations of two MODIS bands 
with ASD-derived CAI 

MODISVI r P 

(MODIS2MODIS5)/(MODIS2+MODIS5) 0.641 <0.001 

MODIS2/MODIS5 0.636 <0.001 

MODIS3MODIS4 0.630 <0.001 

(MODIS2MODIS6)/(MODIS2+MODIS6) 0.623 <0.001 

MODIS2 0.612 <0.001 
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Table 3  The best five combinations of MODIS indices from multiple linear models fitted between MODIS individual bands and combinations of two MODIS 
bands with ASD-derived CAI 

MODISVI1 MODISVI2 r P 

(MODIS2MODIS5)/(MODIS2+MODIS5) (MODIS6MODIS7)/(MODIS6+MODIS7) 0.884 <0.001 

(MODIS2MODIS5)/(MODIS2+MODIS5) MODIS6/MODIS7 0.883 <0.001 

(MODIS2MODIS5)/(MODIS2+MODIS5) MODIS6MODIS7 0.864 <0.001 

MODIS2 MODIS6MODIS7 0.836 <0.001 

MODIS2 (MODIS6MODIS7)/(MODIS6+MODIS7) 0.810 <0.001 
 

 
2.3  Performance of multi-band indices for estimating 
non-photosynthetic biomass 

The performance of four multi-band indices for estimating 
non-photosynthetic biomass is presented in Table 4. The 
multiple regression model involving (MODIS2MODIS5)/ 
(MODIS2+MODIS5) and (MODIS6MODIS7)/(MODIS6+ 
MODIS7) showed a higher R2 (0.61) than the TM-derived 
indices (NDI, SACRI and MSACRI); the latter showed an 
R2 of less than 0.32. The multiple regression model also 
produced a lower RMSE (15.8 g m2) and RE (28.9%) than 
the TM-derived indices; these yielded RMSE and RE values 

of more than 23 g m2 and 42%, respectively. 
As shown in Figure 2, predicted values based on the 

multiple regression model involving (MODIS2MODIS5)/ 
(MODIS2+MODIS5) and (MODIS6MODIS7)/(MODIS6+ 
MODIS7) were distributed near the 1:1 line in the plot of 
observed versus predicted non-photosynthetic biomass. 
However, the models involving TM-derived indices overes-
timated low values and underestimated high values. The 
low values fell below the 1:1 line and the high values fell 
above the 1:1 line in the plot. A possible explanation was 
that the TM-derived indices were created based on only two 
components (soil and non-photosynthetic vegetation) 

 

 

Figure 2  Observed versus predicted non-photosynthetic biomass based on four multi-band indices (the solid line corresponds to the 1:1 line). 
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Table 4  Performance of four multi-band indices for predicting non-photosynthetic biomass 

Spectral indices 
Calibration (n=83) Validation (n=35) 

R2 P RMSE (g m2) RE (%) 

(MODIS2MODIS5)/(MODIS2+MODIS5) 
(MODIS6MODIS7)/(MODIS6+MODIS7) 

0.61 <0.001 15.8 28.9 

NDI 0.25 <0.001 25.0 45.8 

SACRI 0.31 <0.001 23.5 43.0 

MSACRI 0.16 <0.001 27.3 50.0 

 
 

excluding green vegetation, and were unsuitable for dis-
criminating non-photosynthetic vegetation from green veg-
etation and soil. 

Analysis of the above data indicated that TM-derived in-
dices (NDI, SACRI and MSACRI) were not reliable pre-
dictors for estimating regional non-photosynthetic biomass. 
We suggest that MODIS data are preferable for non-   
photosynthetic biomass calculation when a MODIS surro-
gate index is found for the CAI. 

3  Conclusions 

We have demonstrated the utility of CAI based on hyper-
spectral and multispectral remotely sensed data for estimat-
ing the non-photosynthetic biomass of desert steppe in Inner 
Mongolia. Our main conclusions can be summarized as 
follows: 

(1) Hyperspectral CAI, widely used for monitoring 
non-photosynthetic vegetation coverage, was found equally 
effective for non-photosynthetic biomass estimation. Re-
gression models involving ASD-derived and Hyperion-  
derived CAI produced high prediction accuracy (RE=26%– 
27%). 

(2) Although the narrow wavelength ranges in CAI cal-
culation are not available from the MODIS sensor, the 
(MODIS2MODIS5)/(MODIS2+MODIS5) and (MODIS6 
MODIS7)/(MODIS6+MODIS7) showed a high multiple 
correlation with ASD-derived CAI. A predictive model 
based on this combination produced higher accuracy 
(RE=28.9%) than the previously developed TM-derived 
indices, such as NDI, SACRI, and MSACRI. 

(3) The TM-derived NDI, SACRI, and MSACRI indices 
were found to be unsuitable for monitoring nonphoto-  
synthetic biomass from a three-component mixture of green 
vegetation, non-photosynthetic vegetation and soil. 

In addition, the Hyperion, TM, and MODIS data we used 
were convolved from field ASD bands based on corre-
sponding spectral response functions. The spatial resolu-
tions, atmospheric conditions, and observation angles of 
these data also differed from plot-scale, field observation. 
Additional research focusing on estimation of non-    
photosynthetic biomass from satellite and airborne remotely 
sensed images is thus needed to confirm our findings. 

This work was supported by the National Basic Research Program of Chi-
na (2010CB951303) and the National Natural Science Foundation of Chi-
na (90711001 and 40971123). 
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