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An ensemble method was used to combine three surface soil moisture products, retrieved from passive microwave remote sensing 
data, to reconstruct a monthly soil moisture data set for China between 2003 and 2010. Using the ensemble data set, the temporal 
and spatial variations of surface soil moisture were analyzed. The major findings were: (1) The ensemble data set was able to 
provide more realistic soil moisture information than individual remote sensing products; (2) during the study period, the soil 
moisture increased in semiarid regions and decreased in arid regions with anoverall drying trend for the whole country; (3) the soil 
moisture variation trends derived from the three retrieval products and the ensemble data differ from each other but all data sets 
show the dominant drying trend for the summer, and that most of the drying regions were in major agricultural areas; (4) com-
pared with the precipitation trends derived from Global Precipitation Climatology Project data, it is speculated that climate change 
is a possible cause for the drying trend in semiarid regions and the wetting trend in arid regions; and (5) combining soil moisture 
trends with land surface temperature trends derived from Moderate Resolution Imaging Spectroradiomete, the study domain was 
divided into four categories. Regions with drying and warming trends cover 33.2%, the regions with drying and cooling trends 
cover 27.4%, the regions with wetting and warming trends cover 21.1% and the regions with wetting and cooling trends cover 
18.1%. The first two categories primarily cover the major grain producing areas, while the third category primarily covers nona-
rable areas such as Northwest China and Tibet. This implies that the moisture and heat variation trends in China are unfavorable 
to sustainable development and ecology conservation. 
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Drought is considered a major natural disaster in China. 
Recently, the spatial extent of drought has shown an ex-
panding trend in the primary agricultural regions of North 
China, especially in the North China Plain, where both the 
drought severity and drought affected area have showna 
significant increasing trend. Several consecutive drought 
events occurred on the North China Plain in or after the 
1990s. Among them, the drought event of 1997 and of 
1999–2002 were the most prominent. As a result of succes-
sive droughts, most parts of the plain suffered a water defi-

cit for 5–6 years, which in turn caused a huge loss of agri-
culture and ecological deterioration [1]. In order to mitigate 
the damage, drought monitoring and disaster assessing is 
necessary. Currently, droughts are estimated through indices 
derived from meteorological observations in the Beijing 
Climate Center [2] which are unable to monitor the agricul-
tural droughts accurately and timely. Contrary to the limita-
tions of meteorological drought indices, soil moisture is 
closely related to agricultural drought as it is a major water 
source for crops. Soil moisture also serves as an important 
indicator for production estimation and is therefore key in 
agriculture drought monitoring and impact assessment. 
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Soil moisture is also an affecting factor in land surface 
processes, which affect land-atmosphere interactions. Soil 
moisture distribution at regional or global scales has been 
the subject of much research in many disciplines such as 
hydrology, agriculture, meteorology and ecology. The tem-
poral and spatial variation of soil moisture also plays a piv-
otal role in climate change impact assessment. 

The traditional observation system of soil moisture, such 
as the soil wetness observation network, operated by the 
China Meteorological Administration, is only able to pro-
vide observations at a local scale. This point information is 
insufficient for research and application at a regional scale, 
considering the high heterogeneity of soil moisture. There-
fore, the numerical simulation, in which meteorological 
observations and land surface models are employed, became 
the main approach for studying soil moisture variation. Li et 
al. [3] analyzed the temporal and spatial variations of soil 
moisture in China between 1950 and 2008, by running the 
Community Land Model driven by meteorological station 
observations. Wang et al. [4] simulated the soil moisture 
distribution in China between 1950 and 2006 using four 
land surface models. They adopted an ensemble method to 
estimate the agricultural drought severities and durations. 
Ma et al. [5] analyzed the drought trend in North China be-
tween 1951 and 2004, using soil wetness data retrieved 
from monthly precipitation and air temperature data. These 
numerical simulations revealed the soil moisture distribu-
tion and variation characteristics in China over the last 50 
years and confirmed that climate change had affected soil 
moisture in China. 

The limitations of the numerical simulation approach 
such as the simplification of physical processes, the uncer-
tainty in parameters and the biases in atmospheric data are 
significant. Consequently, the accuracy of simulation results 
is highly dependent on the quality of the atmospheric data 
from which the uncertainties and biases were inherited.  
Unlike model simulations, remote sensing is able to provide 
land surface soil moisture observationsthat do not rely    
on atmospheric variables. This independence is important  
to ensure objectivity of the climate change impact assess-
ment. 

In this research, three sets of soil moisture products re-
trieved from the Advanced Microwave Scanning Radiome-
ters for EOS (AMSR-E) were combined into a new ensem-
ble of soil moisture data. With this ensemble data, the tem-
poral and spatial variations of the surface soil moisture in 
China between 2003 and 2010 were analyzed. Trends of 
surface soil moisture data were compared with those of pre-
cipitationderived from the Global Precipitation Climatology 
Project (GPCP) data, to identify the possible causes for the 
temporal variation of the soil moisture. The soil moisture 
trends were also combined with those of the land surface 
temperaturederived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) to assess their impacts on the 
agricultural sustainability and ecological conservation.  

1  Data and methods 

1.1  Soil moisture products retrieved from AMSR-E 

AMSR-E was launched onboard the Aqua satellite by the 
National Aeronautics and Space Administration (NASA) in 
May 2002 and has many advantages compared with former 
passive radiometers, such as Scanning Multichannel Mi-
crowave Radiometer (SMMR) [6] and Special Sensor Mi-
crowave Imager (SSM/I) [7]. These advantages include:  
(1) higher spatial resolution at low frequencies, for example, 
the spatial resolution is ~60 km at a 6.9 GHz channel; (2) 
dual polarization (both vertical and horizontal polarization) 
and multichannel (6.9, 10.65, 18.7, 36.5 and 89 GHz) ob-
servation; and (3) essentially real time data acquisition [8]. 
Researchers have developed several algorithms and re-
trieved many variables, including the surface soil moisture, 
from the brightness temperature observed by AMSR-E. 

NASA, Vrije Universiteit in Amsterdam (VUA) and the 
Japan Aerospace Exploration Agency (JAXA) operationally 
release global soil moisture retrievals from AMSR-E. Be-
sides these three institutes, some agencies have also devel-
oped AMSR-E soil moisture products, such as the single 
channel retrieving products by the United States Depart-
ment of Agriculture [9], and the regression products by the 
Institute of Applied Physics of the Italian National Research 
Council [10]. These products were focused on specific case 
studies and not operationally updated, therefore only the 
NASA, JAXA and VUA soil moisture products were used 
in this study.  

(i) The VUA AMSR-E soil moisture product.  In this 
product, as the first step, soil temperature was derived from 
the brightness temperature of the 36.5 GHz channel using 
an empirical regression function. Following this, the Land 
Surface Parameter Model (LSPM) [11] was adopted to cal-
culate a Microwave Polarization Difference Index (MPDI, 
see eq. (1)). Using a nonlinear iteration method, the soil 
moisture and vegetation water content were optimized to 
minimize the difference between the simulated MPDI by the 
LSPM and that calculated from the satellite observations. 
The VUA algorithm uses the dual polarized channels of 
either 6.9 or 10.65 GHz. The product is maintained by VUA 
and NASA, and downloadable from the website of Goddard 
Earth Sciences Data and Information Services Center 
(http:// disc.sci.gsfc.nasa.gov/). 

 
   
   

MPDI=
TB V TB H

TB V TB H




, (1) 

where TB(V) and TB(H) are the brightness temperatures of 
the vertical and horizontal polarization channels, respec-
tively.  

(ii) The JAXA AMSR-E soil moisture product.  Bright- 
ness temperature at four channels, i.e. from dual polarized 
channels at 6.9 and 18.7 GHz, were used in the JAXA algo-
rithm [12]. First, a brightness temperature database was 
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built based on the simulation of a radiative transfer model 
[13], in which various combinations of soil moisture, sur-
face temperature and vegetation water content were input. 
And then MPDI and the Index of Soil Wetness (ISW, see eq. 
(2)) were derived from the database. A reference table was 
then generated to relate the MPDI and ISW to the soil 
moisture and vegetation water content. Finally, the soil 
moisture and vegetation water content were estimated sim-
ultaneously from the reversed reference table using the sat-
ellite observations as inputs. 

 
   
   
18.7 6.9

ISW
18.7 6.9

TB H TB H

TB H TB H





, (2) 

where TB (18.7H) and TB (6.9H) represent the brightness 
temperature at the horizontal polarization channels of 18.7 
and 6.9 GHz, respectively. 

(iii) NASA AMSR-E soil moisture product.  This prod-
uct is based on the algorithm proposed by Njoku et al. 
[14,15] where a regression method was used to derive soil 
moisture from the MPDI at 10.7 and 18.7 GHz. It is availa-
ble from the National Snow and Ice Data Center [16]. Due 
to the limitation of the global regression method, the prod-
uct contains some big uncertainties in regions outside the 
United States [17].  

These three products have two spatial resolutions: 0.5° 
and 0.25°. Soil moisture is available in swath type, daily 
average and monthly average. Because this research focuses 
on the regional soil moisture distribution and long term 
trends, the monthly averaged soil moisture at 0.25° resolu-
tion was selected. The VUA product covers the period from 
2003 to 2009 and the JAXA and NASA products cover the 
period from 2003 to 2010. 

1.2  Monthly averaged precipitation from GPCP 

The soil moisture variation is closely related to precipitation 
activities. In this study, the precipitation trend in China was 
derived from GPCP [18] data for the period 2003–2010. By 
comparing the precipitation trend with the soil moisture 
trend, the impacts of precipitation changes on the soil wet-
ness variation can be identified. GPCP version 2.2 was used 
in this research, downloaded from the National Oceanic and 
Atmospheric Administration (http://www.esrl.noaa.gov/psd/). 
The original 1° resolution data was then downscaled to 
0.25° with a bilinear interpolation method.  

1.3  Land surface temperature from MODIS MYD11C3 

Heat and moisture are two fundamental factors in estimating 
agricultural productivity and evaluating the ecological en-
vironment. In this study, the trends of land surface temper-
ature were combined with those of soil moisture, to identify 
their impacts on agriculture and ecological systems in China 
during the study period. The land surface temperature was 

the MYD11C3 product derived from the Aqua/MODIS ob-
servation, downloaded from the United States Geological 
Survey (http://lpdaac.usgs.gov). The spatial resolution of 
original data is 0.05°. A boxing average method was adopt-
ed to convert it into a 0.25° land surface data set.  

1.4  Standardization and ensemble analysis 

As shown by Wang et al. [19] a multimodel ensemble ap-
proach is able to reduce the bias uncertainty of a single 
model. This study developed a multiproduct ensemble 
method to combine the JAXA, NASA and VUA AMSR-E 
products and the new ensemble data set was used to analyze 
the temporal and spatial characteristics of surface soil 
moisture in China. 

All three soil moisture products share the same basis, i.e. 
they are derived from the brightness temperature observa-
tions provided by AMSR-E, but due to differences in the 
radiative transfer models, observation channels, ancillary 
data sets and retrieving techniques, there are obvious gaps 
among the three products.  

Table 1 lists the statistic values for the three products 
during the research period. Their ranges, means and stand-
ard deviations differ from each other. Consequently, the 
three products cannot be directly combined; otherwise, the 
information of one or two products would be overwhelmed 
by the product with the largest values. To overcome this, the 
ensemble approach proposed in the present study consists of 
two steps. Step one is to standardize the three soil moisture 
products according to eq. (3), as 

 NASA

mean( )
mean(NASA),

A

A A
A 


     (3) 

where A represents the soil moisture of the JAXA or VUA-
product, mean() is the statistical mean, σ is the standard 
deviation and A′ is the new soil moisture value after the 
standard processing. Step two is to calculate the average 
values of the standardized products as the ensemble data. In 
this study, through standardization, the JAXA and VUA 
products were re-projected into the statistic space of NASA. 
This standardization method is commonly used in compar-
ing soil moisture data from different sources [17].  

Figure 1 gives an example of the soil moisture before and 
after standardization. The soil moisture is averaged for the 
Northeast China region (121°–125°E, 45–49°N). As shown 
in Figure 1(a), VUA (green line) has the largest values, 
NASA (blue line) has the smallest ranges, and JAXA (black  

Table 1  Statistic values of the three soil moisture products (%) 

 
Maximum Minimum Mean Standard deviation 

VUA 50.00 1.60 23.63 12.13 

JAXA 59.63 2.28 9.27 8.54 

NASA 19.73 6.65 11.84 3.10 
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Figure 1  Comparison of soil moisture time series in Northeast China. (a) Original data; (b) tandardized data. 

line) has the smallest minimums. If the three products were 
combined using the original values, much of the infor-
mation that was born in the JAXA and NASA products 
would be lost. As shown in Figure 1(b), after standardiza-
tion, the three products have comparable ranges, peak val-
ues and trough values, but do not lose their temporal char-
acteristics. The purple line represents the ensemble data, 
which was intermediate within the range of the individual 
products. Comparedwith single products, the systemic bias-
es were reduced by the ensemble approach. For example, 
the phase bias of NASA was eliminated in the ensemble 
data, and the missing values of NASA were replaced by the 
average of the JAXA and VUA products. Additionally, 
from the results showing in next section, the advantages of 
the ensemble data are also evident in the spatial distribution. 

1.5  Linear trend analysis 

The linear trends of soil moisture were calculated with a 
linear regression model [20] in which the surface soil mois-
ture was represented as a linear equation: 

 SLOPE yearsm b   , (4) 
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, (5)	

where sm is the soil moisture in percentage (v/v), b is the 
intercept, and a is the slope, defined as the tendency value, 
n is the number of years (equal to 8 here); Ti is the ith year 
beginning at 2003; smi is soil moisture at the ith year. The 
values of slope represent the trend. If the slope is larger than 
zero, the soil moisture has wetting trends and if the slope is 
less than zero it implies a drying trend. 

2  Results  

2.1  Spatial distribution characteristics of soil moisture  

Figure 2 shows the spatial patterns of standardized soil 
moisture from three retrieval products for the period 
2003–2010. All three products present the same general 
distribution pattern at the country level: dry in the northwest 
and wet in the southeast and the northeast plain. However, 
there are obvious disparities between the different products 
in that VUA has the largest wet area, while JAXA has the 
largest dry area.  

The distribution pattern shown in the VUA product is 
more realistic than the other two, considering the climate 
zone changes from humid to semiarid to arid from southeast 
to northwest China. However, the VUA product shows a 
wet region in the southeast of the Tibetan Plateau, which is 
a high altitude and cold area. This error may be attributed to 
the empirical regression function for deriving soil tempera-
ture from 36.5 GHz brightness temperature, which would  
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Figure 2  Comparison of averaged spatial patterns of standardized soil moisture (%; v/v) of VUA (a), JAXA (b) and NASA (c) for the period 2003–2010, 
and the correlation coefficients between VUA and JAXA (d), JAXA and NASA (e) and VUA and NASA (f). 

fail in regions with strong surface heating processes and 
complicated soil profiles. 

The JAXA product shows a drybias over the whole 
country, but fails to discriminate between the desert and its 
surrounding in the northwest. The wet areas shown in the 
JAXA product are mainly located in Sichuan, the middle 
and lower reaches of Yangtze River and the coastal zones. 
The transition area from the humid to the arid zone is too 
narrow to identify. The JAXA product does not show the 
difference between the arid and semiarid zones. These 

problems may be due to the use of the reference table from 
which only the soil moisture value that was used to 
pre-generate the database can be retrieved. 

The dry areas shown in the NASA product are mainly 
located in the northwest. It also shows the two driest centers 
in the Tarim desert and the west Inner Mongolia Gobi desert. 
The NASA product represents the eastern part of the north-
east and the southeast part of the Tibetan Plateau as the wet 
area. The errors in the northeast may be due to the influ-
ences of forest, and those in Tibet may be attributed to the 
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complex terrain. The surface roughness effects and vegeta-
tion water content are represented by the same parameter in 
the NASA algorithm [14]. This simplification may cause 
incorrect soil moisture estimation under the complex geo-
logical and/or vegetation conditions. Another large bias of 
the NASA product is located in the middle and lower 
reaches of the Yangtze River, where it is represented as a 
dry area by NASA. This error may be due to the use of the 
global regression method [17], since its coefficients are 
mainly trained in United States and may be inadequate in 
China. 

The between product correlation coefficients are also 
shown in Figure 2. Blue indicates two products with similar 
trends and red represents two products with opposite trends. 
The area with similar trends is generally larger for all three 
pairs: 61% pixels show positive correlation between JAXA 
and NASA products; 68% for JAXA and VUA, and 71% 
for VUA and NASA.  

Figure 3 shows the areas where all three pairs have a 
positive correlation, including most of the Northeast Plain, 
the east of Inner Mongolia, the North China Plain, the north 
part of the Tibetan Plateau, the middle of Gansu and Ning-
xia, north Xinjiang, most of Jiangsu, and north Anhui. The 
total area is around 39.3% of the whole country. 

From Figures 2 and 3, it can be concluded that the three 
products are generally consistent in relative variation but 
have obvious differences in absolute soil moisture values. 
Based on the consistency shown in Figures 2 and 3, our 
ensemble approach is able to combine three products into a 
new data set, which can provide more realistic soil moisture 
information for China. 

Figure 4 shows the mean annual soil moisture calculated 
from the ensemble data set. The spatial distribution pattern 
of soil moisture can be clearly identified. Soil moisture 
changes from dry to wet from northwest to southeast and 
northeast. Around 35°N, there is a transition area. All of 
these patterns are in agreement with the climate patterns in  

 

 

Figure 3  The distribution of mean coefficients where all of three pairs 
have positive correlations. 

 

Figure 4  Spatial patterns of averaged annual soil moisture (%; v/v) of 
multi-product ensemble data for the period 2003–2010. 

China. The ensemble data also corrected the mistakes of the 
NASA and VUA products in the southeast of Tibet and 
overcame the limitations of the NASA products in the 
Yangtze River. The new data set also inherited the merits of 
individual products, for example, it also showed the two 
driest centers in the northwest as the NASA product did and 
showed the wet areas in the Yangtze River, the Northeast 
Plain and the coastal regions as the VUA and JAXA prod-
ucts did. The ensemble data set also showed some charac-
teristics that are not clear in the individual products. For 
instance, it represented the wet areas around the Qinghai 
Lake and the drier area in the Khorchin Desert at the border 
of Inner Mongolia, Liaoning and Jilin. The spatial patterns 
of surface soil moisture which were identified from ensem-
ble data set were generally consistent with the results of 
previous studies in China [3,21].  

2.2  Trend analysis 

By using the linear trend analysis method introduced in sec-
tion 1.5, the slopes for three retrieval products and ensemble 
data were calculated, for annual and seasonal soil moisture.  

Figure 5(a) shows the annual soil moisture variation 
trends calculated from the ensemble data for the period 
2003–2010. The overall spatial patterns of soil moisture 
trends were characterized by increases in the northwest and 
coastal regions in the southeast and decreases in Central 
China. From a climate zone view, wetting trends were 
dominant in arid regions which include the north of Inner 
Mongolia, most of Xinjiang and Qinghai, and west Tibet, 
while a drying trend appeared in the center of the Tarim 
Basin. Drying trends prevailed in the semiarid regions 
which include the Khorchin desert, North China Plain, mid-
dle of the Yellow River Basin, and the eastern Tibetan 
Plateau. The wetting trends in Qinghai and drying trends in 
East Tibet were consistent with the variation trends of lake 
surface elevation in Qinghai and Tibet [22]. Parts of humid  
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Figure 5  Spatial patterns of annual ensemble soil moisture variation linear trends (a) and those <10% significance level for the period 2003–2010 (b). 

regions, including Southwest China and most of the Yang-
tze River Basin, were characterized by drying trends. The 
soil moisture in the humid regions of South China, i.e. the 
coastal regions of Guangdong and Fujian, and parts of 
Jiangxi had an increasing trend. The trends featured in the 
arid and semiarid regions are generally in agreement previ-
ous studies [3–5]. The drying trend shown in the northeast 
part of Inner Mongolia is closely related to the expansion of 
desertification in this region [23]. 

In this study, the mainland of China consists of 16052 
pixels. Among them 8209 pixels (51.1%) showed drying 
trends and 7792 pixels (48.5%) showed wetting trends. For 
the whole study domain, drying trends were dominant. 
Thirty-three percent of the total pixels had significant trends 
(at the 10% level) with 20% of pixels significantly drying 

and 13% of pixels significantly wetting. As shown in Figure 
5(b), the significant drying trends were mainly in the 
Khorchin Desert, North China Plain, Henan Province, 
Jianghuai Region, Hanjing Plain, Dongting Lake Plain, and 
east Tibet. The significant wetting trends were in the 
northwest of Qinghai, northeast of Xinjiang, and the coastal 
regions of Guangdong and Fujian. 

Annual and seasonal linear trends of the three retrieval 
products were also calculated. Figure 6 shows the ratios of 
pixels with drying and wetting trends in annual and seasonal 
regression during 2003–2010. Only the VUA product 
showed a dominant wetting trendfor annual linear regres-
sion, while the JAXA, NASA and ensemble data sets 
showed a dominant drying trend. For the NASA product, 
the drying pixels were always more than the wetting pixels  

 
 

 

Figure 6  The ratio of pixels with drying trends (brown) and wetting trends (blue) for VUA (a), JAXA (b), NASA (c) and ensemble data (d).
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in all four seasons (Figure 6(c)). In the VUA product, the 
wetting trend was dominant for all seasons except summer, 
where a drying trend was dominant (Figure 6(a)). In the 
JAXA product (Figure 6(b)), the number of pixels with 
drying and wetting trendswere almost the same for spring 
and fall, while the drying pixels were much more than the 
wetting pixels in the summer. As shown in Figure 6(d), the 
ensemble data set showed dominant wetting trends in spring 
and fall and dominant drying trends in summer and winter. 
From Figure 6, it is clear that the three retrieval products 
generally had different variation trends in both annual and 
seasonal regressions. However, all of them showed domi-
nant drying trends in summer. This finding implies that the 
soil moisture was decreasing during the growing season in 
China between 2003 and 2010. 

Figure 7 shows the spatial patterns of soil moisture trends 
where VUA, JAXA and NASA had the same summer trends. 
There wasa total of 5418 pixels (33.8% of total) in which 
the three products had the same trends. Among them, soil 
moisture increased in 1359 pixels (8.5% of total) and de-
creased in 4059 pixels (25.3% of total). As indicated in 
Figure 7, all the remote sensing products showed drying 
trends in the major agriculture regions including the North 
China Plain, Hetao Plain, Jianghuai Region, Hanjiang Plain 
and Dongting Lake Plain. This demonstrates that the surface 
soil moisture in China was generally decreasing in the 
summer between 2003 and 2010, especially in the major 
grain production regions. 

2.3  Comparison between precipitation trends and sur-
face moisture trends 

Figure 8 shows the correlation coefficients between the 
monthly GPCP precipitation and the monthly ensemble soil 
moisture data. There were 10990 pixels (68% of total) with 
significant positive correlations (<5% significance), and 
1225 pixels (10% of total) with significant negative correla-
tions. The regions with significant positive correlations  
 

 
Figure 7  The spatial patterns of soil moisture variation trends where 
VUA, JAXA and NASA had identical drying (red) or wetting (blue) trends. 

 
Figure 8  The correlation coefficients of <5% significance level between 
GPCP precipitation and ensemble soil moisture between 2003 and 2010. 

were mainly in the Tibetan Plateau, Northeast China, North 
China Plain, and the Jianghuai Region. This demonstrates 
that soil moisture variation trends are significantly related to 
the precipitation variation in these regions. As shown by the 
red regions in Figure 8, the trends of soil moisture are op-
posite to those of precipitation in regions such as the west of 
Yunnan and the border regions of Xinjiang, Inner Mongolia 
and Gansu. 

Figure 9(a) and (b) illustrates the linear trends of precip-
itation in China from annual mean and summer mean re-
gressions. According to the linear trends, precipitation in-
creased in the humid zones of South China and Southwest 
regions, and also increased in the arid zones of Qinghai and 
east Xinjiang. Precipitation decreased in most semiarid 
zones. Figure 9(c) and (d) shows the distribution character-
istics of the pixels in which both precipitation and ensemble 
soil moisture showed the same trends. Red represents de-
creasing trends and blue represents the increasing trends. It 
is clear that surface soil moisture and precipitation was de-
creasing in the semiarid regions between 2003 and 2010. 
The increasing precipitation in Qinghai was accompanied 
with an increase in soil moisture. It suggests that changes in 
precipitation were possible causes for surface soil moisture 
variation in these regions. On the contrary, in regions such 
as Yunnan and Guizhou, surface soil moisture decreased 
while GPCP precipitation increased and in the boundary 
areas of Inner Mongolia, Gansu and Xinjiang, surface soil 
moisture increased while GPCP precipitation decreased. 
This suggests that although the surface soil moisture varia-
tion is largely controlled by precipitation, it is also closely 
related to radiation, wind speed and air temperature vari-
ance, and by human activities resulting in land cover and 
use changes.  

2.4  Combining analysis of soil moisture trends and 
land surface temperature trends 

The linear trends of surface temperature were derived  
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Figure 9  Linear trends of GPCP precipitation between 2003 and 2010 for annual mean regression (a) and summer regression (b). The pattern of variation 
trends where both GPCP and ensemble soil moisture showed the same trends for annual regression (c) and summer regression (d). 

from the monthly land surface temperature product of 
MODIS between 2003 and 2010. By combing soil moisture 
trends and land surface temperature trends, the whole re-
search domain was divided into four categories. Figure 10 
illustrates the distribution patterns of the four categories for 
summer regression. The first category has wetting and 
warming trends (blue); the second category has wetting and 
cooling trends, (green); the third category has drying and 
warming trends (yellow); and the forth category has drying 
and cooling trends (red).  

The third and forth categories are unfavorable to agricul-
tural development and ecological systems. The warming 
effects accelerate evapotranspiration and the drying effects 
would exacerbate the water shortage and result in agricul-
tural drought. The third category is largely in the south of 
the Northeast Plain, most of North China, the middle of the 
Yellow River Basin, the west of the Sichuan Basin, and the 
east of the Tibetan Plateau. The total area of the third cate-
gory is 3.18×106 km2, 33.2% of China. The fourth category 
is largely located in the north of the Northeast Plain and 
most of South China. Its area is 2.623×106 km2, 27.4% of 
China. The total area of the third and fourth category covers 
more than 60% of China, and are mainly located in the  

 

Figure 10  Distribution patterns of the four categories divided according 
to the combination of soil moisture and land surface temperature trends for 
the summer between 2003 and 2010. 

major grain producing areas. The regions belonging to the 
first category are favorable to agriculture but are generally 
non. arable areas including the north of Inner Mongolia, 
east of Xinjiang, north of Gansu, and northwest of Tibet. 
The total area of the first category is 2.021×106 km2, 21.1% 
of China.  
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3  Summary and discussions 

Three sets of soil moisture products retrieved from 
AMSR-E were used in this study, to analyze the temporal 
and spatial variations in China between 2003 and 2010. An 
ensemble approach was proposed to eliminate the differ-
ences between the products and to combine the merits of 
individual products into a new data set. With the recon-
structed ensemble soil moisture data, the spatial patterns 
and temporal variation trends were analyzed. The linear 
trends of soil moisture were then compared with those of 
GPCP precipitation and MODIS land surface temperature. 
The major conclusions were: 

(1) Multiproduct ensemble soil moisture data is able to 
provide more realistic spatial patterns than individual prod-
ucts. 

(2) The areas with drying trends (51.1% of total) were 
larger than those with wetting trends (48.5% of total) be-
tween 2003 and 2010. In general, the semiarid regions be-
came drier and arid regions became wetter, consistent with 
the results from numerical simulations [3–5].  

(3) The dominant trends of individual products differ 
with each other for both annual and seasonal regressions. In 
summer, the drying trend was dominant for all data sets. 
Most of the drying regions were in the major agricultural 
areas of China. 

(4) There was a significant correlation between the en-
semble soil moisture and GPCP precipitation during the 
study period. Sixty-eight percent of total pixels had signifi-
cant positive correlation coefficients. The comparison be-
tween precipitation trends and soil moisture trends suggest-
ed that climate change was one possible cause for the drying 
in semiarid regions and the wetting in arid regions.  

(5) Through the combination of land surface temperature 
trends and soil moisture trends, the study domain was di-
vided into four categories. Regions with drying and warm-
ing trendscovera 33.2% area, the regions with drying and 
cooling trendscover 27.4%, regions with wetting and 
warming trend cover 21.1% and regions with wetting and 
cooling trends cover 18.1%. The first two categories were 
largely in the major grainproducing areas, while the third 
category was largely located in nonarable regions such as 
the Northwest and Tibet. This implies that the moisture and 
heat variation trend in China is unfavorable to sustainable 
development and ecology conservation. 

As illustrated in Table 1 and Figure 2, there were big 
gaps between the three retrieval products. The individual 
products had some obvious systemic biases in some regions. 
It suggests that the global soil moisture products retrieved 
from passive microwave remote sensing are not the actual 
soil moisture values but some relative surface wetness indi-
ces [17,24]. Both the soil moisture retrieving algorithms and 
the product generation needs further study. 

The soil moisture products used in this study were re-
trieved from AMSR-E, which cannot provide land surface 

observations in dense vegetation due to its limited wave-
length. Consequently, in forest regions, such as the Da 
Hinggan Mountains and Xiao Hinggan Mountains in 
Northeast China, and the Hengduan Mountains in west 
Yunnan, the soil moisture retrievals were not reliable. These 
forest regions were only small portions of the whole study 
domain, and were not agricultural regions, which were the 
emphasisof this study. These regions cannot affect the over-
all temporal and spatial characteristics. As the launch of the 
Soil Moisture and Ocean Salinity Mission [25] by the Eu-
ropean Space Agency and the oncoming Soil Moisture Ac-
tive and Passive Mission [26] by NASA, L band microwave 
observation which has a longer wavelength will be available 
and the shadowing effects of vegetation could be gradually 
alleviated. 

The data used in this study covers the period from 2003 
to 2010. The soil moisture spatiotemporal variation charac-
teristics derived from this research are therefore just from a 
short period of eight years. By integrating the remote sens-
ing observations made by SMMR, SSM/I, Tropical Rainfall 
Measuring Mission Microwave Imager [27], AMSR-E and 
oncoming Global Change Observation Mission-Water [28] 
with the proposed ensemble method, a longterm soil mois-
ture time series beginning in 1978 can be reconstructed. 
Such a long-term remote sensing data set has high potential 
in the assessment of global change impacts on water re-
sources, agriculture, and ecology. All the data used in this 
research was obtained from remote sensing, which makes 
the results independent from meteorological observations 
and numerical simulations. The ensemble data set and the 
results presented in this study could provide complementary 
information to the traditional climatic analyses.  

Authors would like to thank Dr. Fujii at JAXA and Prof. Koike at the Uni-
versity of Tokyo for providing JAXA soil moisture products and Dr. De Jeu 
for providing VUA soil moisture products. The VUA data used in this effort 
were acquired as part of the activities of NASA’s Science Mission Direc-
torate, and are archived and distributed by the Goddard Earth Sciences 
(GES) Data and Information Services Center (DISC). This work was sup-
ported by the National Natural Science Foundation of China (51109111 
and 40930530) and Tsinghua University Initiative Research Program 
(2011081132). 

1 Qin D H. Climate Change: Regional Reasctions and Diseaster 
Mitigation: The Impacts of Extrem Events and the Coreesponding 
Solutions Under the Climate Change Background (in Chinese). 
Beijing: Science Press, 2009 

2 Zou X K, Zhang Q, Wang W M, et al. Drought indices and 
operational drought monitoring in the USA and China (in Chinese). 
Meteorol Mon, 2005, 31: 6–9 

3 Li M X, Ma Z G, Niu G Y. Modeling spatial and temporal variations 
in soil moisture in China. Chin Sci Bull, 2011, 56: 1809–1820 

4 Wang A H, Lettenmaier D P, Sheffield J. Soil moisture drought in 
China, 1950–2006. J Clim, 2011, 24: 3257–3271 

5 Ma Z G, Fu C B.Some evidence of drying trend over north China 
from1951 to 2004. Chin Sci Bull, 2006, 51: 2913–2925 

6 Gloersen P, Barath F T. Scanning multichannel microwave radio- 
meter for Nimbus-G and Seasat-A. IEEE J Oceanic Eng, 1977, 2: 
172–178 



2834 Lu H, et al.   Chin Sci Bull   August (2012) Vol.57 No.22 

7 Hollinger J P, Peirce J L, Poe G A. SSM/I instrument evaluation. 
IEEE Trans Geosci Remote, 1990, 28: 781–790 

8 Kawanishi T, Sezai T, Ito Y, et al. The advanced microwave scanning 
radiometer for the Earth observing system (AMSR-E), NASDA’s 
contribution to the EOS for global energy and water cycle studies. 
IEEE Trans Geosci Remote, 2003, 41: 184–194 

9 Jackson T J. Measuring surface soil moisture ssing passive micro- 
wave remote sensing. Hydrol Process, 1993, 7: 139–152 

10 Paloscia S, Macelloni G, Santi E. Soil moisture estimates from 
AMSR-E brightness temperatures by using a dual-frequency algorithm. 
IEEE Trans Geosci Remote, 2006, 44: 3135–3144 

11 Owe M, De Jeu R, Holmes T. Multisensor historical climatology of 
satellite-derived global land surface moisture. J Geophys Res, 2008, 
113: F01002 

12 Koike T, Nakamura Y, Kaihotsu I, et al. Development of an advanced 
microwave scanning radiometer (AMSR-E) algorithm of soil mois- 
ture and vegetation water content. Ann J Hydra Eng JSCE, 2004, 48: 
217–223 

13 Lu H, Koike T, Fujii H, et al. Development of a physically-based soil 
moisture retrieval algorithm for spaceborne passive microwave 
radiometers and its application to AMSR-E. J Remote Sens Soc Jpn, 
2009, 29: 253–262 

14 Njoku E G, Chan S K. Vegetation and surface roughness effects on 
AMSR-E land observations. Remote Sens Environ, 2006, 100: 190– 
199 

15 Njoku E G, Jackson T J, Lakshmi V, et al. Soil moisture retrieval 
from AMSR-E. IEEE Trans Geosci Remote, 2003, 41: 215–229 

16 Njoku E G. AMSR-E/Aqua daily L3 surface soil moisture, inter- 
pretive parameters & QC EASE-Grids V002, 2011. Boulder, Colorado 
USA: National Snow and Ice Data Center. Digital Media. 2004 

17 Draper S C, Wakler J P, Steinle P J, et al. An evaluation of AMSR-E 

derived soil moisture over Australia. Remote Sens Environ, 2009, 
113: 703–710 

18 Aberson S D, Sampson C R. On the predictability of tropical cyclone 
tracks in the Northwest Pacific Basin. Mon Weather Rev, 2003, 131: 
1491–1497 

19 Wang A H, Bohn T J, Mahanama S P, et al. Multimodel ensemble 
reconstruction of drought over the continental United States. J Clim, 
2009, 22: 2694–2712 

20 Wei F Y. Statistic Dignostic and Forecast Technologies in 
Climatology (in Chinese). Beijing: China Meteorological Press, 2007 

21 Zhang W J, Zhou T J, Yu R C. Spatial distribution and temporal 
variation of soil moisture over China. Part I: Multi-data inter- 
comparison (in Chinese). Chin J Atm Sci, 2008, 32: 581–596 

22 Niu Z G, Zhang H Y, Wang X W, et al. Mapping wetlands changes in 
China between 1978–2008. Chin Sci Bull, 2012, 57: 2813–2823 

23 Liu S, Gong P. Change of surface cover greenness in China between 
2000 and 2010. Chin Sci Bull, 2012, 57: 2835–2845 

24 Liu Y Y, Parinussa R M, Dorigo W A, et al. Developing an improved 
soil moisture dataset by blending passive and active microwave 
satellite-based retrievals. Hydrol Earth Syst Sci, 2011, 15: 425–436 

25 Kerr Y H, Waldteufel P, Wigneron J P, et al. Soil moisture retrieval 
from space: The Soil Moisture and Ocean Salinity (SMOS) mission. 
IEEE Trans Geosci Remote, 2001, 39: 1729–1735 

26 Entekhabi D, Njoku E G, O’Neill P E, et al. The Soil Moisture Active 
Passive (SMAP) mission. P IEEE, 2010, 98: 704–716 

27 Jackson T J, Hsu A Y. Soil moisture and TRMM microwave imager 
relationships in the Southern Great Plains 1999 (SGP99) experiment. 
IEEE Trans Geosci Remote, 2001, 39: 1632–1642 

28 Imaoka K, Shibata A, Kachi M, et al. Status of the GCOM-W and 
onboard AMSR follow-on instrument. P Soc Photo-Opt Ins, 2006, 
6361: U33–U40 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 


