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We present a new scheme for investigating the usefulness of non-maximally entangled states for multi-party quantum state shar-
ing in a simple and elegant manner. In our scheme, the sender, Alice shares n various probabilistic channels composed of 
non-maximally entangled states with n agents in a network. Our protocol involves only Bell-basis measurements, single qubit 
measurements, and a two-qubit unitary transformation operated by free optional agents. Our scheme is a more convenient realiza-
tion because no other multipartite joint measurements are needed. Furthermore, in our scheme various probabilistic channels 
lessen the requirement for quantum channels, which makes it more practical for physical implementation.  
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Quantum secret sharing (QSS) is a method for creating a 
private key and dividing it between parties. It has potential 
applications ranging from quantum secure communication, 
quantum key distribution, and joint sharing of quantum 
money [1–6]. This research area covers classical secret 
sharing and quantum information sharing among multiple 
participants. The latter case was named “quantum state 
sharing” (QSTS) by Lance et al. [7]. The basic idea of 
QSTS in the multi-party case is that some information in a 
secret quantum state of a multi-qubit possessed by one person 
is distributed between that person, whom we call “Alice”, 
and multiple remote recipients. This is done in such a way 
that it can be jointly reconstructed and shared only if all 
participants collaborate. In some sense, QSTS is equivalent 
to quantum-controlled teleportation. However, during the 
process of quantum teleportation, an unknown quantum 
state is transferred to a distant location without revealing 
any information about the state in the course of the trans-

formation. For a general QSTS protocol, that information is 
not so restricted. The shared quantum states can be known 
or unknown in advance to the initial holder. In most QSTS 
protocols [8–19], entanglement is the main phenomenon 
used to share quantum information. So far, various entan-
gled states have been extensively used in QSTS protocols, 
such as Bell states [7–11], GHZ states [12–15], W states 
[16,17], cluster states [18–20], and Brown states [21–23]. 
Recently, Gao et al. [24] presented a scheme for quantum 
state sharing between a multi-party and a multi-party with 
three conjugate bases. In recent techniques, Einstein-Podolsky- 
Rosen (EPR) pairs are ideally entangled resources for 
quantum state sharing [13,14]. For example, Wang et al. [15] 
and Shi et al. [11,25,26] have presented several multi-party 
QSTS schemes for sharing an arbitrary two-qubit state using 
Bell states as quantum resources. Very recently, several 
asymmetric schemes for five-party and multi-party quantum 
state sharing with maximally entangled states of two parti-
cles and three particles have been proposed [27–30].  

When applied to a real communication scenario, due to 
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inevitable environmental effects, any initially maximally 
entangled states may easily evolve into non-maximally en-
tangled states or mixed states. There have been some results 
related to the probabilistic teleportation of two-particle and 
multi-particle states [31–37] with non-maximally entangled 
states as the teleportation channels. A similar circumstance 
occurs for quantum state sharing in a network. To imple-
ment state sharing via probabilistic channels, it is often 
necessary to perform a high-dimensional operation, which is 
difficult to implement using current quantum information 
processing technology. It is not realistic that each terminal 
node in the quantum network be equipped with powerful 
information processing capabilities and precious auxiliary 
qubit resources [38,39]. Such potential obstacles stimulated 
the search for alternative schemes which would eliminate 
the need for high-dimensional operations. In this paper, we 
developed a systematic approach that used only two qubit 
gates to address the above problems. 

1  Multi-party quantum state sharing of one 
qubit state in a multi-qubit system via probabil-
istic channels 

Without loss of generality, we assume that the unknown 
state to be teleported in Alice’s position can be expressed in 
the following form: 
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To share the above state, Alice first prepares n non-maxi-     
mally entangled states as the quantum channel with n agents 
in a network: 

  00 11 ,
i i i i i i

i iA B A B A B
a b    (2) 

where Ai and Bi are the two particles in the state 
i iA B

 , and 

ai and bi are complex numbers that satisfy the normalized 
condition: 

  2 2
1 .i i i ia b a b    (3) 

Each agent Bobi (i=1, 2,…n) possesses one particle Ai 
(i=1, 2,…n) and Alice possesses particles Bi (i=1, 2,…n) as 
shown in Figure 1. The state of the whole system can be 
described, without being normalized, as 
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Figure 1  The principle of multi-party QSTS of an arbitrary one-qubit state in a multi-qubit system. M(M′) denotes the single-particle measurement based 

on { 0 , 1 }( { , }x x  ).  



 Jiang M, et al.   Chin Sci Bull   April (2012) Vol.57 No.10 1091 

which can be rewritten in the following form: 
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where if ki=ai, then {xi} represents sequence “00”. Other-
wise, ki=bi, and {xi} represents sequence “11”.  

Then, Alice can transfer her unknown state to the qubits 
controlled by all the agents. To be precise, Alice should 
send particles Tn and Ai (i=1, 2,…n) through CNOT gates, 
where particle Tn is the control particle and particle Ai is the 
target particle. The state of the whole system can be de-
scribed as (without being normalized) 
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Subsequently, Alice first performs a Hadamard transfor-
mation onto particle Tn. Hence, the state of the whole sys-
tem can be represented as (without being normalized) 
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   (6) 

The first term remains the same as it was in eq. (5). In the 

second term, 
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if ki=ai, then { }ix  represents “10”. Otherwise, ki=bi, and {xi} 

represents “01”. Thus, it can be regrouped in the following 
form: 
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where if pi=0, then ,  
i ip i p ik a k b  . Otherwise ,

ip ik b  

ip ik a .  

Next, Alice performs a single-particle measurement M on 
her particles Tn and Ai (i=1, 2,…n) with the basis { 0 , 1 }. 

If the outcome obtained by Alice is 
1 2

1 20
n n
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p p p


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or 
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n n
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 , the collapsed state of the subsys-

tem composed of the retained particles Tn and Bi (i=1, 2,…n) 
can be written as (without being normalized) 
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Depending on the measurement outcome of Alice, 
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forms the following unitary operation: 
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collapsed state of the subsystem composed of the retaining 
particles can be written as (without being normalized) 
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From eq. (13) we can see that the quantum information of 
the unknown state 
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 has been transferred into the 

subsystem composed of the n particles Bi (i=1, 2,…n) which 
are privately kept by Bobi (i=1, 2,…n), and they can coop-
erate to extract the original information with a certain 
probability.  

Then, if some agent Bobj wishes to initiate the two-qubit 
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under which the state of the collapsed system becomes 
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Subsequently, Bobj measures the state of auxiliary parti-
cle Q under the basis { 0 , 1 }. If the measurement result is 

0
Q

, the resulting state will be of the following form: 
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Finally, if all Bobi agree to help Bobn obtain the original 
state, each Bobi (i=1, 2,…n1) must perform a single parti-

cle measurement on his particle Bi with the basis ({1 2  

( 0 1 ),1 2 ( 0 1 )})  . They then must inform Bobn of 

the measurement outcomes via the classical channel. Bobn 
can recover the original unknown state 
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
 by ap-

plying a local unitary operation U2 on his particle Bn ac-
cording to the measurement results of Alice and all Bobi. 
That is, if the number of x  in all of Bobi’s measure-

ment outcomes are odd (even), Bobn should perform the 
( )z x   gate onto his particle Bn. The final state composed 

of particle Ti (i=1, 2,…n1) and Bn is 
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According to eqs. (1) and (17), the particle Tn held by the 
receiver Bobn dominates the same position as the particle 
held by the sender which means that now Alice and Bobn 
jointly share the original initial state 
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


. 

As a consequence, the unknown quantum state of multi-
ple particles can be shared one by one with a certain proba-
bility of accuracy when the non-maximally entangled chan-
nels are set between involved agents.  

The probability to obtain the state (13) is 
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The total probability then can be calculated as 
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In fact, if all 1 2i ia b  , the success probability 

approaches 1 and the auxiliary particle is not needed, which 
is consistent with the existing scheme [25]. This analysis is 
consistent with the scheme proposed in [25] where the 
sender Alice first shares n EPR pairs in Bell states with n 
agents to implement multi-party quantum state sharing of an 
arbitrary two-qubit state. Our scheme can further analyze 
and interpret the correctness of their scheme. In their work 
[25], an arbitrary two-qubit state composed of particle x and 
y is written as 

  00 01 10 11 .
xy xy

a b c d      (19) 

It can be rewritten as the following two forms: 

    0 1 0 0 1 1 ,
xy y yx x

a c b d      (20) 

or 

    0 1 0 0 1 1 .
xy x xy y

a b c d      (21) 

In this way, one Bell pair can implement the state trans-
fer of particle x(y) between the sender and some designated 
receiver. The remaining Bell pairs play the role of control-
ling the channels. 

Another point to be noted here is that because a high di-
mensional unitary operation is usually difficult to imple-
ment, it is impractical to equip each terminal node with high 
dimensional operation capability. Therefore, in our scheme, 
limited by the capability of each node, we can freely choose 
which Bobj can implement two-qubit gates among all the 
involved nodes to adjust the probabilistic channel. That will 
greatly reduce the implementation complexity of other 
agents in a network and bring more convenience to the 
physical realization of our scheme.  

2  Discussion and summary 

In previous schemes [11–24,30,31], the shared quantum 
state via different maximally entangled states can, in princi-
ple, be recovered if all participants agree to collaborate. 
Similar to most existing QSTS schemes, our scheme also 
presents a control and probabilistic teleportation protocol. 
As discussed in references [1–9], the security of this QSTS 
scheme still depends on the process of setting up quantum 
channels. However, in the case of other schemes, due to 
inevitable environmental effects, an initially maximally 
entangled channel shared between the agents involved may 

easily evolve into various non-maximally entangled chan-
nels. For this reason, our scheme utilizes various probabilis-
tic channels composed of non-maximal entangled states 
instead of standard Bell pair or GHZ states, bringing it 
closer to a practical communication scenario. Finally, the 
probability for successful state sharing is calculated.  

It should be noted again that when the sender shares dif-
ferent channels with involving agents, any agent who is 
equipped with the capability of a two qubit operation can 
help the receiver adopt an appropriate unitary-reduction 
strategy [27–31] to restore the initial state. Therefore, ter-
minal users will not need to worry about the availability of 
auxiliary qubits, multi qubit gates or other issues, bypassing 
the high-dimensional operation problem, which facilitates 
better physical realization.  

In summary, we investigated the usefulness of non- 
maximally entangled states for simpler and more elegant 
multi-party quantum state sharing. No multipartite joint meas-     
urements are required in our scheme, making it a much 
more reasonable and acceptable physical design of a quan-
tum teleportation network. We hope that our presented 
scheme can open up a new road to investigating quantum 
state sharing in real communication scenarios composed of 
non-maximally entangled Bell states.  
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