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The neural-based approaches inspired by biological neural mechanisms of locomotion are becoming increasingly popular in robot 
control. This paper investigates a systematic method to formulate a Central Pattern Generator (CPG) based control model for mul-
timodal swimming of a multi-articulated robotic fish with flexible pectoral fins. A CPG network is created to yield diverse swim-
ming in three dimensions by coupling a set of nonlinear neural oscillators using nearest-neighbor interactions. In particular, a 
sensitivity analysis of characteristic parameters and a stability proof of the CPG network are given. Through the coordinated con-
trol of the joint CPG, caudal fin CPG, and pectoral fin CPG, a diversity of swimming modes are defined and successfully imple-
mented. The latest results obtained demonstrate the effectiveness of the proposed method. It is also confirmed that the CPG-based 
swimming control exhibits better dynamic invariability in preserving rhythm than the conventional body wave method. 
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Robotic fish, inspired by fish in nature, have received in-
creasing attention in recent years because of potential 
aquatic-related applications such as exploration, surveil-
lance, transportation, and mobile sensing [1–7]. Many sci-
entists and engineers have carried out studies on robotic fish, 
focusing not only on the hydrodynamics mechanism and 
bio-inspired practice of fishlike swimming, but also on mo-
tion planning, control, and optimization of the fishlike ro-
bots [2]. The current swimming control methods, from the 
perspective of cybernetics, tend to fall into two primary 
categories: bio-inspired and non-bio-inspired (conventional). 
The former is nourished by an abundance of biological 
knowledge of fish or other animals, while the latter relates 
to deriving control laws from a combined analysis of mul-
ti-body dynamics and kinematics. 

To achieve flexible swimming control, conventional lo-

comotion control usually seeks to calculate propulsive forc-
es and to determine the accompanying movements. Once 
the dynamic equation attached to each propulsive compo-
nent has been identified via synthesizing all involved dy-
namic equations, the control laws can be obtained in terms 
of the resultant forces and kinematic parameters of the 
moving joints. As a rule, oscillatory frequency, amplitude, 
as well as phase difference between adjacent joints are usu-
ally extracted as the locomotion-related characteristics sig-
nificantly affecting swimming performance. Many robotic 
fishes are controlled in such a manner, for example, the 
well-known Robotuna [8], the pectoral-fin-driven robotic 
Blackbass [9], and the lifelike Mitsubishi robotic fish [10]. 
However, two issues arise in determining appropriate 
swimming parameters: (1) the difficulty in accurately mod-
eling the hydrodynamic interaction between the oscillating 
fish body and its surrounding fluid, and (2) an infinity of 
possible solutions in the hyper-redundant planar kinematic 
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chain [10]. Some researchers have therefore, resorted to 
alternative control methods, such as bio-inspired control. 
Inspired by the lamprey whose undulatory motions are gov-
erned by central pattern generators (CPGs), more recent 
studies employ CPGs to generate fishlike swimming in the 
context of neural-based control [11]. 

The CPGs are networks of nonlinear oscillating neurons 
able to produce rhythmic patterns without control inputs 
from high levels and also to be automatically synchronized 
[12]. There have been many research studies on replicating 
fishlike swimming [12,13] and snake-like serpentine mo-
tions [14–16] via artificial CPGs in past decades. For in-
stance, Cohen et al. [17] presented a simplified mathemati-
cal model to explain the intersegmental coordination of 
neural networks in the isolated spinal cord of the lamprey, 
while Crespi et al. [18] extended a lamprey-like CPG-based 
model to control the locomotion of a fish robot on land and 
in water. Zhao et al. [19] and Zhang et al. [20] utilized a 
chain of nonlinear oscillators to construct a CPG for steady 
planar swimming. Besides rhythmic motion, CPGs have 
been extended to cover non-rhythmic (discrete) motion [21]. 
However, only a few studies have been conducted on the 
systematic design and control of rhythmic and discrete 
swimming, i.e., multimodal swimming, under a framework 
of CPG control. 

The objective of this paper is to generate and control 
bio-inspired multimodal swimming via a well-formulated 
CPG network model. Compared with our previous work on 
rhythmic swimming excited by nonlinear oscillators [19, 
22], we include three major improvements. (1) The param-
eter sensitivity analysis and stability proof of the CPG net-
work are given. (2) The multimodal swimming gaits are 
successfully realized by coordinated movements of the 
caudal fin (CF), body-caudal fin (BCF), and pectoral fins 
(PF). (3) A comparison with the conventional body wave 
method is presented, thus demonstrating good applicability 
of CPG-based control in a dynamically changing environ-
ment. 

1  Overview of robotic fish prototype 

To approximate a given smooth, spatial- and time-varying 
body wave observed in real fish, as described by Yu et al.  
[3,22], the relative link lengths are optimized and further 
applied to calculate discrete swimming data. Figure 1 de-
picts an improved, radio-controlled, four-link, self-propelled 
robotic fish prototype. Mechanically the robot consists of a 
head and anterior body, a multi-articulated posterior body, a 
caudal fin, as well as a pair of pectoral fins. The shell of the 
head and anterior body is made of fiber reinforced plastic, 
offering a hollow and watertight space housing electronics, 
sensors, control components, batteries, and balancing 
weight. The posterior part comprises four servomotors con-
nected in series with metal links, whose outside is wrapped  

 
Figure 1  The multimodal swimming-oriented robotic prototype. 

by a compliant, crinkled rubber tube functioning as the fish 
skin. With regard to the accessory fins, a crescent-shaped 
caudal fin is connected to the last link, while a pair of wing- 
like pectoral fins is symmetrically placed at the rear lower 
position of the head. Notice that each pectoral fin, capable 
of 0−360° rotation via a set of custom-built gears, can be 
controlled independently or synchronously. The fish robot is 
600 mm in length and weighs 3.22 kg. Both pectoral fins 
have the same dimensions, that is, 120 mm in length, 80 
mm in width, and 5 mm in height. 

Our robotic fish is propelled by the flexible posterior 
body and oscillating tail and/or by the artificial pectoral fins. 
With three infrared sensors detecting obstacles at the front, 
left and right sides of the fish head and one pressure sensor 
detecting the depth, the robot is able to swim autonomously. 
Available swimming modes based on trial and error involve 
forward/backward swimming, turning, pitching, and com-
bined maneuvers. Specifically, for instance, the robotic fish 
can perform forward swimming via BCF mode, via PF 
mode, via CF mode, or via a combination of these. Table 1 
summarizes the relation between swimming modes and the 
control surfaces involved. 

2  Bio-inspired CPG network 

In this section, we mainly present the formulation of the 
CPG network, describing its stability proof, coupling 
scheme, as well as generation of multimodal swimming. 

2.1  Analysis of neural oscillator model 

At present, there are three popular types of neural oscillators  

Table 1  Relation between swimming modes and control surfaces 

Swimming modes Control surfaces involved 

Forward swimming BCF PF CF BCF+PF, CF+PF 

Backward swimming  PF  BCF+PF 

Turning BCF PF  BCF+PF 

Pitching  PF  BCF+PF 
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for multi-articulated movement in robotics: the Matsuoka 
(recurrent) neural oscillator, the phase oscillator, and the 
Van der Pol neural oscillator [23]. In particular, the phase 
oscillator model is usually utilized in fishlike swimming. 
For example, Cohen et al. [17] proposed a relatively simple 
limit cycle model with only a single dependent variable, the 
phase ( )t . To model the CPG of a multilink robotic fish, 

a novel nonlinear neural oscillator model with explicit con-
trol variables is created as follows: 
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where state variables p and q denote the membrane potential 
and adjustment potential of the CPG oscillator, respectively; 
ω is a positive parameter influencing the oscillatory fre-
quency and amplitude of the system; and μ is a coefficient 
that relates merely to the oscillatory amplitude. The com-
bined regulation of the oscillatory frequency and amplitude 
accords with actual fish swimming, thereby adequately fa-
cilitating the engineering realization of swimming control. 

Mathematically, it can be proved that, when ω > 0 and 
μ > 0, the system in eq. (1) has an asymptotic stable limit 

cycle whose asymptotic amplitude is /   and angular 

frequency is ω. Let p = rcos and q = rsin ; then, for any 
initial value 0 0( , )r  , the solution of eq. (1) can be derived 

as 

 
1

1 2 2 2
0 0, / (1 (1 )e , ( ) )       

   
     
 

t
t r r t . (2) 

For the purpose of analyzing the impact of parameters ω 
and μ on state variables p and q, the amplitude relative error 
er is defined as 
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Since the initial value r0 has some bearing on r(t), for 
simplicity, let r0 = 1. Thus, there are two variables ω and μ 
in eq. (3), where μ is assumed to be a positive constant. For 
μ = 0.1, the impact of parameter ω is plotted in Figure 2. As 
can be seen, the relative error er converges to zero more 
rapidly with an increasing ω. At the same time, the influ-
ence of parameter μ is plotted in Figure 3, where ω = 10. 
Similar to the trend displayed in Figure 2, the relative error 
er converges to zero more rapidly with an increasing μ. Spe-
cially, when μ = ω = 10, er = 0. In this situation, the oscilla-
tory amplitude lim ( ) 1

t
r t


 . Considering that lim ( ) 1

t
r t


  

is too small for robotic fish control, μ should deliberately be 
chosen at a value less than ω, that is, μ<10. 

2.2  Analysis of CPG network model 

By coupling a set of neural oscillators defined by eq. (1), a  

 

Figure 2  Impact of ω on the output quantity qi. 

 

Figure 3  Impact of μi on the output quantity qi. 

CPG network model can mathematically be formulated as: 

 
2 2

1

2 2

( ) ,

( )

( )

( ) ,

n

i i i i i i i ij j
j

i i i i i i i

p p q p p q a q

q p q q p q

 

 



    


    




  (4) 

where i = 1, …, n, and n represents the total number of CPG 
units in the network. The coupling relationship of the i-th 
CPG with other CPG units in the network is expressed as 

1

n

ij jj
a q

 . Note that 
1

0
n

ij jj
a q


  is defined so that the 

effects from other CPG units will excite the activity of the 

i-th one; whereas 
1

0
n

ij jj
a q


  is defined so that other 

CPG units will inhibit the activity of the i-th one. 
Theorem 1: The system defined by eq. (4) has a unique 

solution for any initial condition (pi0, qi0). 
Proof: The existence and uniqueness of a solution can be 

guaranteed if the system defined by eq. (4) is of the Lip-
schitz type. 

Assume that t t   , 1i ip p   , 2i iq q   , 

where σ, σ1, and σ2 are positive constants. Then, we rewrite 
the differential equations in eq. (4) in the form: 
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Then, it follows that 

 ( , ) ( , )  | ( ) ( )i i i i i ig t q g t q p p q q          

 2 2 2 2[ ( ) ( )] | .i i i i i i iq p q q p q        (6) 

To further obtain the condition satisfying the Lipschitz-type 
function, the differential mean value theorem is employed. 
According to the mean value theorem,  : ,f a b R  is a 

continuous function on the closed interval [a,b] and differ-
entiable on the open interval (a,b), where a < b. Then, there 
exists some  ,c a b  matching f(b)–f(a)= ( ) ( )b a f c  . 
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q3, obviously, function h(q) meets the requirements of the 
mean value theorem in [ , ]q q . Then there exists some 
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From eqs. (9) and (11), it can be ensured that the system 
in eq. (5) matches the condition of a Lipschitz-type function, 

i.e.,    , ,f t X f t X L X X    , where L = max(L1, 

L2). Hence, there exists a unique solution for the system in 
eq. (4) with any initial value (pi0, qi0).  

To make the CPG network model (4) more appropriate 
for engineering applications, the CPG network model is 
simplified using nearest-neighbor connections as eq. (12). 
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where i (i = 1, …, n, n+1) indicates the i-th joint, n repre-
sents the joint number of the flexible posterior body, and i = 
n+1 denotes the caudal fin. Let the left pectoral fin be the 
n+2-th propulsion component in the robotic fish, and the 
right pectoral fin be the n+3-th propulsion component. In 
accordance with the coupling between the two pectoral fins 
and the first body joint, as illustrated in Figure 4, these CPG 
units constitute an integrated CPG network topology. 

2.3  CPG coupling and multimodal swimming 

Generally, finding suitable connection weights (i.e., cou-
pling coefficients) between CPG units is of great signifi-
cance to efficient and stable swimming. On one hand, for 
identical propulsion components in the robotic fish, the 
phase-lag of each joint can be derived in terms of the trav-
eling body wave exhibited in steady fish swimming. The 
coupling coefficients for the multi-joint posterior body are 
then determined in sequence. Refer to our previous paper 
[24] for more details on the parameter estimation for CPG 
coupling. As for flexible pectoral fins, the coupling coeffi-
cients between them can employ peer-to-peer relationships. 
That is, the coupling coefficient an+2,n+3 denoting the impact 
parameter on the left pectoral fin from the right one is as-
sumed to equal an+3,n+2 indicating the impact parameter on 
the right pectoral fin from the left one. 

On the other hand, for different types of propulsion 
components, such as diffusive couplings between pectoral 
fins and body joints, the connection weights are difficult to 
determine. To guarantee in-phase movements, the coupling 
coefficient is simply chosen as an+2,1 = an+3,1 = ω1max/ω2max, 
where ω1max is the maximum frequency of the driving motor 
for pectoral fins, and ω2max corresponds to the maximum  

(11) 
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Figure 4  Topology of the formulated CPG network. 

frequency of the driving motor for the first joint in the 
moving posterior body. Thus, all the characteristic parame-
ters connecting the adopted CPGs in eq. (4) can be deter-
mined. Table 2 lists the CPG parameters applied to the ro-
botic fish. 

With the above CPG parameters, a hybrid amplitude- 
frequency based approach is applied to CPG-based swim-
ming control. As for the CPG network expressed by eq. (4), 
it has an intrinsic limit cycle solution, which is a sinusoidal 

value with an amplitude of / i   and a period of 2π/ω. 

Hence, changing parameters μi and ω will alter the oscilla-
tory frequency f simultaneously with the oscillatory ampli-
tude. It should be noted that varying parameter ω will affect 
the oscillatory amplitude only very slightly, whereas it will 
change the oscillatory frequency dramatically. 

For our robotic fish, forward swimming can be achieved 
by rhythmic BCF movements and/or by coordinated PF 
movements, similar to a real fish. In essence, the pectoral 
fins help control the direction and the movement of a fish. 
To generate a propulsive force opposite to that of forward 
motion, an intuitive way is to use the artificial pectoral fins. 
Compared to swimming forward using the pectoral fins, a 
pitch bias angle of π is superposed on the output signals in  

Table 2  CPG parameter values applied to the robotic fish 

Parameters Value 

aij (j=i–1, i+1) ai,i–1 = a1 = –19.6, ai,i+1 = a2 = –19 (body, i = 1,…,4) 

an+2,n+3, an+3,n+2 an+2,n+3=an+3,n+2=2 (pectoral-pectoral) 

an+2,1, an+3,1 an+2,1 = an+3,1 = 2.33 (pectoral-body) 

μi μ1 = 0.111, μ2 = 0.049, μ3 = 0.028, μ4 = 0.111 (body) 

μ5 = μ6 = 0.111 (pectoral) 

qib qib = 0 (forward BCF) 

(0,π)ibq  (diving, i = 5,6) 

( π,0) ibq  (ascending, i = 5,6) 

eq. (4), leading to backward propulsion. That is, qib = π (i = 
5,6), where qib indicates the bias associated with the i-th 
joint. This anti-phase driving also conforms well to the 
neural control of backward swimming in lamprey [11]. 
Furthermore, diving motion under a zero speed condition 
can be attained by setting qib  (0,π) (i = 5,6). More inter-
estingly, as the robot is independently driven by the pectoral 
fins, it will dive backward into the water with qib  (π/2, π), 
whereas it will dive forward into the water with qib  (0, 
π/2). Furthermore, the robot enters the ascending mode 
when ( π,0)ibq   . 

Besides rhythmic swimming, discrete turning motions 
can be generated in several ways. For example, the robot 
can dynamically change its heading by adding deflections to 
the moving joints. Another steering method is to generate 
asymmetrical undulating amplitude in one undulation period. 
A robotic fish with artificial pectoral fins can perform vari-
ous lateral turns through asymmetric drive. Actually, the 
incorporation of a sensory feedback term into the CPG net-
work model in eq. (12) will also trigger turning motions, by 
forcing some CPG units to stop oscillating. A sensory feed-
back coupled system can be created as 
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where si (i =1, …, n+3) is the feedback signal related to the 
i-th CPG unit. A simple example of a feedback signal trig-
gered turn is shown in Figure 5, where ω = 6.28 rad/s. Spe-
cifically, an obstacle signal measured by infrared sensors 
activates the turning mode within the 3–6.2 s interval, ac-
companied by a feedback term s1 = 100 input into eq. (13). 
This causes the first body joint to become saturated and then 
to stop oscillating, which eventually makes the robot execute 
a turning motion. After the obstacle information is removed,  
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Figure 5  CPG output signals for joints in a switch case between swim-
ming straight and turning movement. Note that qi is the i-th CPG unit out-
put signal fed into the motor. 

the CPGs will regenerate rhythmic forward swimming. Note 
that the magnitude of the induced turning relies heavily on 
the value of s1, which is empirically decided by experiments 
or by fuzzy logic rules. This example also shows that smooth 
switching between different modes triggered by the sensory 
feedback might be feasible. This interesting topic will be ad-
dressed in another paper in the near future. 

3  Experiments and results 

To evaluate the proposed CPG-based swimming control 
method, extensive experiments have been carried out in a 
lake and swimming tank. The swimming performance of the 
robotic fish is evaluated by an additional vision measuring 
system, mainly involving color-based adaptive segmenta-
tion and a closure operation [25]. As illustrated in Figure 6, 
the robotic fish can perform multiple swimming modes 
successfully. 

3.1  Experiments 

The first experiment set out to explore the effects of chang-
ing μi in the CPG network model according to the velocity. 
In Figure 7, three parameter sets in the BCF mode are com-
pared, where parameter 1 = {μ1=0.25, μ2=0.125, μ3=0.067, 
μ4=0.05}, parameter 2 = {μ1=0.125, μ2=0.063, μ3=0.033, 
μ4=0.025}, and parameter 3 = {μ1=0.063, μ2=0.031, μ3= 
0.017, μ4=0.013}. It is clear that the final propulsive veloci-
ty increases with a decreasing μi, but with an increasing f. 
Recalling that the amplitude of the limit cycle solution at-

tached to eq. (4) is / i  , we can easily deduce that a 

greater swimming amplitude will result in higher speed, 
agreeing well with biological observations. 

In the second experiment, taking into account the 
smoothness of the CPG governed swimming, we altered the 
number of joints participating in the fishlike motion. Figure 8 

 
Figure 6  Snapshots of multimodal swimming involving: (a) forward 
swimming, (b) backward swimming, (c) ascending, (d) diving, (e) coordi-
nated turning, and (f) a field cruise in the lake. Notice that the solid arrow 
in the figures denotes the propulsion direction of the robotic fish, while the 
dotted arrow indicates the oscillation direction of the pectoral fins. 

 
Figure 7  Velocities of BCF-type swimming with varying μi and f. 

 
Figure 8  Velocity comparison of four propulsion cases with different 
joint numbers. 
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shows four propulsion cases, in which the value of μi corre-
sponds to parameter 1. As can be observed, the resulting 
velocity increases with an increasing number of joints, re-
vealing the power of coordinated propulsion among multi-
ple control surfaces. These two experiments verify the sen-
sitivity of the extracted characteristic parameters, μi and ω 
(=2πf), facilitating practical application. 

Finally, the proposed CPG network model (termed the 
CPG-based method) was further evaluated against the sine- 
based body wave fitting method (termed the fish body wave 
method) in [3]. During BCF-type straight swimming, the 
acquired yaw, pitch, and roll angles (in a world reference 
frame) from the fish body wave method were compared 
with those acquired from the CPG-based method as shown 
in Figure 9. Here three angle values were measured by Mi-
croStrain’s gyro enhanced product, 3DM-GX1. To examine 
the swimming stability, the amplitude of the robotic fish 
was abruptly increased at 7 s by changing ω, whereas the 
amplitude rose continuously after 12 s. Notice that the same 
parameter variation was applied to the comparative experi-
ments. As can be seen, the CPG-based method achieved a 
relatively better performance compared to the fish body 
wave method, particularly with lower pitch and roll angles 
even in parameter-varying cases. This comparison verifies 
that the CPG-based method exhibits better dynamic invaria-
bility to preserve rhythm because of the limit-cycle charac-
teristics of the CPGs. 

3.2  Discussion 

As a class of bio-inspired neural networks, CPGs are capa-
ble of autonomous, stable, self-modulatory control, consti-
tuting an ideal candidate for practical engineering solutions. 
Although the set of nearest-neighbor-coupled neural oscil-
lators has successfully generated outputs for various swim-
ming modes of a multi-articulated robotic fish in this paper, 
the underlying CPG coordination mechanisms have not yet 
been fully unraveled and understood. It is not clear to what  

 

 

Figure 9  Comparison of the fish body wave method and the CPG-based 
method for BCF swimming. 

extent such CPG coupling and coordination will benefit the 
high efficiency and striking maneuverability of the fish. 
Thus, investigating CPG coupling (unidirectional or bidi-
rectional, excitatory or inhibitory) and coordination control 
thoroughly in the context of bio-inspired robotics is of 
paramount importance. Additionally, we remark that the 
limitations of vision-based experimental fields and the lack 
of sufficient onboard sensors in our demonstration experi- 
ents have, to some extent, weakened the attainable swim-
ming performance of the developed robot. 

4  Conclusion and future work 

A CPG network model created by coupling a set of nonlin-
ear neural oscillators has been presented with nearest- 
neighbor-coupled connections, which can output rhythmic, 
multimodal swimming. A parameter sensitivity analysis and 
stability proof for the CPG network has been conducted 
theoretically. Both numerical analysis and aquatic experi-
ments have primarily verified the effectiveness of the for-
mulated model in generating multimodal swimming. In 
contrast to the conventional body wave method, the CPG- 
based method has an enhanced ability to cope with transient 
transitions and perturbations. 

Our future work will focus on thoroughly investigating 
CPG coupling and the coordination control of CPGs using 
the fish-inspired robotic testbed. Improving our mechanical 
design and adding more sensors to endow the robotic fish 
with more flexibility and adaptability is another ongoing 
endeavor. Hopefully, designing sensory feedback circuits or 
further integrating the CPG-based controller into one chip 
will greatly reduce the system operating time and improve 
the overall performance. 
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