

© The Author(s) 2012. This article is published with open access at Springerlink.com csb.scichina.com www.springer.com/scp

*Corresponding authors (email: xwwang@home.ipe.ac.cn; lmwang@home.ipe.ac.cn)

Invited Article

SPECIAL TOPICS:

Computer Science & Technology March 2012 Vol.57 No.7: 707715

 doi: 10.1007/s11434-011-4908-y

Efficient parallel implementation of the lattice Boltzmann method on
large clusters of graphic processing units

XIONG QinGang1,2, LI Bo1,2, XU Ji1,2, FANG XiaoJian1,2, WANG XiaoWei1*,
WANG LiMin1*, HE XianFeng1 & GE Wei1

1
 State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;

2
 Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received May 23, 2011; accepted October 19, 2011

Many-core processors, such as graphic processing units (GPUs), are promising platforms for intrinsic parallel algorithms such as
the lattice Boltzmann method (LBM). Although tremendous speedup has been obtained on a single GPU compared with main-
stream CPUs, the performance of the LBM for multiple GPUs has not been studied extensively and systematically. In this article,
we carry out LBM simulation on a GPU cluster with many nodes, each having multiple Fermi GPUs. Asynchronous execution
with CUDA stream functions, OpenMP and non-blocking MPI communication are incorporated to improve efficiency. The algo-
rithm is tested for two-dimensional Couette flow and the results are in good agreement with the analytical solution. For both the
one- and two-dimensional decomposition of space, the algorithm performs well as most of the communication time is hidden.
Direct numerical simulation of a two-dimensional gas-solid suspension containing more than one million solid particles and one
billion gas lattice cells demonstrates the potential of this algorithm in large-scale engineering applications. The algorithm can be
directly extended to the three-dimensional decomposition of space and other modeling methods including explicit grid-based
methods.

asynchronous execution, compute unified device architecture, graphic processing unit, lattice Boltzmann method,
non-blocking message passing interface, OpenMP

Citation: Xiong Q G, Li B, Xu J, et al. Efficient parallel implementation of the lattice Boltzmann method on large clusters of graphic processing units. Chin Sci
Bull, 2012, 57: 707715, doi: 10.1007/s11434-011-4908-y

High-performance computing (HPC) on general-purpose
graphical processing units (GPGPUs) has emerged as a
competitive approach to make demanding computations
such as those of computational fluid dynamics (CFD) [1,2]
and discrete particle simulations [3–5]. This is, on one hand,
due to the computational capacity of graphical processing
units (GPUs), which is almost one order of magnitude high-
er than that of mainstream central processing units (CPUs)
in terms of both peak performance and memory bandwidth,
and on the other hand, due to the introduction of effective
and convenient programming interfaces such as Compute
Unified Device Architecture (CUDA).

The lattice Boltzmann method (LBM) [6] is a numerical
method suitable for GPGPUs owing to its explicit numerical
scheme, localized communication mode and inherent addi-
tivity of its numerical operations. Hence, it is a powerful
alternative to CFD methods such as finite difference and
finite volume methods. Implementations of LBM on a sin-
gle GPU have been reported [7–10] with speedup ratios
ranging from tens to above 100 relative to a single CPU
core. In the case of multi-GPU implementations, Li et al.
[11] performed LBM simulation of lid-driven cavity flow
on an HPC system comprising both Nvidia and AMD GPUs,
using CUDA and Brook+, respectively, and combining via
the Message Passing Interface (MPI). Myre et al. [12] im-
plemented single-phase, multi-phase and multi-component

708 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7

LBMs on GPU clusters using Open Multi-Processing
(OpenMP). In these implementations, data communication
between GPUs is trivial or the GPUs are installed at the
same node, so the real performances of these implementa-
tions were almost unaffected by communication. However,
this is not typical in engineering practice. In fact, the data in
GPUs cannot be accessed by the network directly and has to
be copied, from the GPU to CPU before sending and from
the CPU to GPU after receiving, through a PCIe bus with
bandwidth of about 10 GB/s currently (Gen 2), which is
much lower than that of the GPU global memory. Therefore,
communication between the CPU and GPU can be a bottle-
neck in some applications.

In this article, we integrate asynchronous computing–
communication via the CUDA v3.1 framework [13], shared-
memory parallelization using OpenMP and inter-node par-
allelization using non-blocking MPI to improve the perfor-
mance of multi-GPU LBM simulations. Performances for
both one- and two-dimensional decompositions are ana-
lyzed and it is found that our implementation is very effi-
cient. The consistency of our implementation on HPC sys-
tems with multiple GPUs at one node is emphasized.

1 The lattice Boltzmann method

The lattice BGK model [14] is one of the most frequently
used schemes for the LBM. Depending on the dimensional-
ity (D) and number of discrete lattice velocities (Q), there
are different variations, such as D2Q9, D3Q13, and D3Q19.
The formulation of the lattice BGK model is

 eq1
(1, 1) (,) ((,) (,))

 i i i if t f t f t f tx x x x , (1)

where fi(x,t) is the density function of the ith direction at
position x and time t. τ is the relaxation time related to fluid
molecular dynamic viscosity μ. The term eq (,)if tx is ap-

proximated to second order as

2

2 2

()
(,) (1 3 4.5 1.5)

 eq

i if t w
c c c

i ie u e u u u
x , (2)

where

 , i i
i i

f fiu e . (3)

The D2Q9 scheme is illustrated in Figure 1 and further
details were given by Qian et al. [14].

To reduce the compressing effect in the original lattice
BGK model, He et al. [15] proposed revisions to the DdQq
schemes and named them iDdQq. The evolutional rules are
the same but with different equilibrium density propaga-
tions:

0

2

2 2

(,)

()
(1 3 4.5 1.5),

eq
i i

i

f t p

w
c c c

i i

x

e u e u u u
(4)

Figure 1 D2Q9 model with wi = 4/9 when i = 0, wi = 1/9 when i = 1, 2, 3
and 4, and wi = 1/36 when i = 5, 6, 7 and 8.

where 0
0 2 2

1
3 , 3 , 0

 i

i

w w
i

c c
. ρ0 is the referenced

fluid density for the initial state, pressure p and velocity u
are expressed as

2

0 2
0 00

(1.5) ,
3(1)

 i i
i i

c
p f w f

w c i

u u
u e . (5)

The iDdQq schemes introduce no further computational
cost, and for GPU implementation, the zeroth direction can
be omitted, which makes the schemes faster than the corre-
sponding DdQq schemes. However, for iDdQq schemes, the
hiding of data communications is more important since the
communication-to-computation ratio is higher than DdQq
for the size of data to be transfered among GPUs is same.

2 Multi-GPU implementation of the iD2Q9
scheme

The implementation of the LBM for a single GPU has been
discussed extensively in [7,16]. We emphasis one point here.
As the GPU is suitable for data-independent computa-
tion-intensive tasks, the memory access mode is critical to
the performance. For this reason, the storage of LBM grid
data must be aligned and accessed in a coalescent manner to
make full use of the memory bandwidth. As long as global
memory access is optimized, the performance of different
implementations on the same single GPU varies little.
However, for multi-GPU implementation, GPU–CPU data
transfer and CPU–CPU communication may require a large
portion of the wall time, and they have to be optimized also.

In CUDA 3.1, the launch of a GPU kernel is asynchro-
nous, which means that when a kernel is launched, the sys-
tem returns to its initial state before the kernel completes its
computing. This feature enables the host CPU to perform

 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7 709

Figure 2 Schematic map of the overlapping of GPU computation and data communications. ☆ indicates a boundary cell and □ an inner cell; ☆ and □
cells make up the entire grid executed in stream [1].

other jobs while waiting for the GPU kernel to finish; e.g.,
copying data between a GPU and CPU and carrying out
inter-CPU communication and arithmetic operations. For
LBM simulations, this implies that collision and propaga-
tion of the density functions can be run in parallel by copy-
ing boundary grid information to a CPU and then transfer-
ring the information to neighboring CPUs. As shown in
Figure 2, this is realized using the stream function and
portable pinned memory in CUDA 3.1, OpenMP and
non-blocking communications provided by MPI. The
flowchart of parallel implementation of LBM on GPU clus-
ter is given in Figure 3.

At the beginning of each iteration, the collision operation
on boundary cells is launched asynchronously by the kernel
Boundary_Collision in stream[0]. In this kernel, the bound-
ary grids are only subject to collision and not to propagation,
and post-collision boundary information is written to send-
ing buffers in the GPU global memory. The collision and
propagation on the entire grid are launched by the kernel
Collision_Propagation in stream[1] as soon as Bounda-
ry_Collision returns. The host can return before these asyn-
chronous kernels completion, but kernels in the same stream
are carried out in series. Therefore, we launch the copy be-
tween GPU and CPU cudaMemcpyAsync in stream[0] to
ensure that the copy operation starts after the completion of
Boundary_Collision. Although the operations in stream[0]
are in series, these operations can be done while Colli-
sion_Propagation is in execution. To use the asynchronous

cudaMemcpyAsync, the buffers in the host must be allo-
cated as pinned memory. After the GPU–CPU copy opera-
tion, the communications between CPUs are ready to be
carried out. To confirm the finish of GPU–CPU data copy
in host memory, cudaStreamSynchronize (stream[0]) is
performed to ensure that all boundary information is copied
to sending buffers in host memory. Non-blocking
MPI_Isend and MPI_Irecv are then launched if the neigh-
boring processors do not belong to the same node. These
two MPI functions are non-blocked so that other CPU oper-
ations can proceed while data are being sent or received.
MPI_Wait is needed to wait until data have been received.
If neighboring processors are located on the same node,
data can be transfered with the portable pinned memory
in CUDA.

This design results in the reduction of the amount of data
in MPI and achieves a higher data transfer speed. Such an
idea is realized using OpenMP for data communications
within a node [17]. OpenMP threads control GPU devices
and make portable pinned memory visible to all GPU de-
vices at the same node. Furthermore, a new technology,
GPUDirect [18] for Tesla or Fermi GPUs, is adopted to
improve communication performance. The improvement is
achieved by removing the step of copying data from
GPU-dedicated host memory to host memory available to
InfiniBand devices to execute the RDMA communications.
After the data communications, received data are still cop-
ied to the GPU with cudaMemcpyAsync. Finally, the

710 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7

Figure 3 Flowchart of the hybrid implementation of the LBM on multi-GPUs [20].

boundary information is updated by the data from receiving
buffers in GPU global memory.

3 Results and discussion

In the following, the algorithm is validated and its perfor-
mance tested for our GPU cluster Mole-8.5 (cf. http://www.
top500.org/list/2011/11/100), which consists of 362 nodes
connected with Quad Data Rate InfiniBand. Most of the
computing nodes are equipped with two quad-core CPUs
and six Nvidia Tesla C2050 GPUs; therefore, the whole
system is configured with more than 2000 GPUs, resulting
in peak performance of 2 petaflops in single precision.

3.1 Validation

Numerical validation is important in GPU computing, alt-

hough many authors [7,19] have declared that the results are
insensitive to single precision. We consider the analytical
solution for the classical case of two-dimensional Couette
flow to evaluate the accuracy of our GPU implementation.
The domain size is 2048 × 2048 and the Reynolds number
Re is 400. The simulation is run in parallel on four
GPUs. The simulation results and the analytical solution
are illustrated in Figure 4. We find that the computational
results of our GPU implementation agree very well with
the analytical solution with a maximum error of about
1.5%.

3.2 Performance

Five cases of Couette flow are simulated with the grid sizes
for each GPU ranging from 512 × 512 (A), to 512 × 1024
(B), 1024 × 1024 (C), 1024 × 2048 (D) and 2048 × 2048 (E).
The whole computation domain is partitioned in either one

 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7 711

Figure 4 Velocity profiles at steady state for a two-dimensional Couette
flow simulation with grid size 2048 × 2048 (Reynolds number Re = UH/υ
= 400).

or two dimensions. All cases were run 10 times with 10000
iteration steps for each and the wall times were recorded
after arithmetical averaging. In the following, unless other-
wise specified, each node runs six GPUs concurrently.

Time costs of GPU computation, data transfer between

the GPU and CPU and communication between neighboring
CPUs in cases using 12 GPUs for one- and two-dimensional
decomposition with synchronous execution and blocking
MPI are plotted in Figures 5 and 6 respectively. We find
that the time portions of GPU–CPU data transfer and com-
munication between CPUs increase with reduction of the
domain size for each GPU. In addition, as expected, the
time percentage of GPU–CPU and CPU–CPU data transfer
in two-dimensional decomposition is higher than that for
one-dimensional decomposition and sometimes the time
consumption even exceeds the time for GPU computing,
which means there is more room to improve the efficiency
by hiding data transfer between the GPU and CPU and
communications between CPUs.

Simulations deploying the proposed computation–
communication overlapping algorithm in both one-and two-
dimensional decomposition were carried out. The time costs
for all cases are illustrated in Figures 7 and 8. The figures
show that most of the time for data copy and communica-
tion is successfully hidden through overlapping with GPU
computation, leading to an obvious reduction in the total
time. In two-dimensional decomposition, the performance
improvement is even greater than that in one- dimensional

Figure 5 (a) Time component of each part of the algorithm with synchronous execution and blocking MPI but without OpenMP in one-dimensional de-
composition; (b) time percentages of GPU–CPU data transfer and CPU–CPU communication.

Figure 6 (a) Time component of each part of the algorithm with synchronous execution and blocking MPI in two-dimensional decomposition; (b) time
percentages of GPU–CPU data transfer and CPU–CPU communication.

712 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7

decomposition since more time for data transfer between a
GPU and CPU and communication is hidden. To describe
the performance improvement clearly, we take case E in
one-dimensional decomposition using 12 GPUs as an ex-
ample to compare time components of 5 algorithms: (a)
synchronous execution and blocking MPI without OpenMP;
(b) synchronous execution and blocking MPI with OpenMP;
(c) asynchronous execution and blocking MPI with
OpenMP; (d) synchronous execution and non-blocking
MPI with OpenMP; (e) asynchronous execution and non-
blocking MPI with OpenMP. The time results are listed in

Table 1. Because of the non-serial characteristic of asyn-
chronous execution and non-blocking MPI, the time re-
quired for asynchronous GPU execution and non-blocking
MPI is difficult to separate. Therefore, the GPU computa-
tion time was assumed to be the same for the asynchronous
cases. Table 1 shows that the time required for data delivery
between the GPU and CPU is reduced by about 60%–70%
and the time required for inter-CPU communication is re-
duced by 70%–80%, which gives performance of 1192 mil-
lion lattice updates per second for each GPU card in
multi-node and multiple GPU implementation.

Table 1 Comparison of time components for five algorithms in case E

Algorithm GPU computation (s) GPU–CPU data transfer (s) CPU–CPU communication (s) Total (s)

(a) 33.90231 1.89775 2.65466 38.45473

(b) 33.91365 1.88922 1.13562 36.93849

(c) 33.90231 0.63391 1.1479 35.68412

(d) 33.89173 1.90276 0.6431 36.43759

(e) 33.90231 0.63391 0.6431 35.17932

Figure 7 (a) Time component for the algorithm with asynchronous execution, OpenMP and non-blocking MPI in one-dimensional decomposition; (b) time
percentage of GPU–CPU copy and CPU–CPU communication.

Figure 8 (a) Time component for the algorithm with asynchronous execution, OpenMP and non-blocking MPI in two-dimensional decomposition; (b) time
percentage of GPU–CPU copy and CPU–CPU communication.

 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7 713

To investigate the scalability of the implementation fur-
ther, we change the number of GPUs in case E, ranging
from 12 to 1728. The corresponding time costs for commu-
nication are shown in Figure 9. We see that the computa-
tion–communication overlapping algorithm still performs
better than original algorithms with blocking MPI as the
number of GPUs increases. This shows that the optimiza-
tion can be applied to hundreds or thousands of GPUs with
good scalability.

3.3 Performance balance for multi-GPUs nodes

In addition to the above performance discussions, we also
run our GPU implementation using 12 GPUs for case E but
with a varying number (one, two, three, four or six) of
GPUs at each node to test the balance of performance and
economy for computing nodes integrating multiple GPUs.
As it is known that the bandwidth of the PCI-E bus is usu-
ally a bottleneck owing to data transfer between the GPU
and CPU during computation compared with the GPU
computing, the performance deteriorates when multiple
GPUs at one node are engaged in a parallel computation
because of the PCI-E bandwidth conflict. Owing to the use
of CUDA portable pinned memory and OpenMP, the com-
munication load of the processes within a node is theoreti-
cally equal, irrespective of how many GPUs are employed
concurrently at a node. Therefore, we can ensure that there
are negligible differences in the CPU–CPU communication
time for the five configuration settings. The performance of
our implementation is summarized in Table 2. We find that
although the number of GPUs used at each node increases
from one to six, the increase in the total computation time is
almost negligible as most of the time for communication
and data transfer is hidden owing to the asynchronous exe-
cution. The time difference is mainly due to the GPU–CPU
data transfer as more data are transfered through the PCI-E
bus in the case that more GPUs are running on the same

Figure 9 Comparison of communication time between blocking and
non-blocking MPI in large-scale LBM simulations.

node. Therefore, we believe that nodes integrating more
GPUs like Mole-8.5 achieve a good balance between per-
formance and economy for some applications with an effi-
cient algorithm considering the hardware cost and space
occupation.

3.4 Application

Because of CUDA’s interoperability with OpenGL, we
couple the efficient GPU implementation of the LBM with a
visualization framework developed by our group [20] to
realize large-scale simulations. In this section, we conduct a
direct numerical simulation of gas up-flowing through
1166400 suspended solid particles under a two-dimensional
doubly periodical boundary condition. The simulation do-
main is 11.5 cm× 46 cm, which is discretized by about one
billion lattice cells. We simulate the gas-solid flow using
576 GPUs at 96 nodes by two-dimensional domain decom-
position. In Figure 10, distinct regions of particle aggrega-
tion, which are called clusters in the chemical community,
are reproduced. This large-scale simulation confirms that
the efficient multi-GPU parallel LBM simulation with a
powerful GPU cluster is a promising tool for scientific or
industrial modeling.

4 Conclusions and prospects

A hybrid parallel GPU implementation for LBM simulation
was proposed. Asynchronous GPU execution technology
was applied to confirm overlapping between GPU–CPU
data transfer and GPU computation, indicating that a large
portion of the time for GPU–CPU copy can be hidden. Data
transfer between CPUs is realized with MPI. To hide this
inter-CPU communication cost, non-blocking MPI was used
to enable concurrent executions of GPU computing and
MPI sending and receiving. A shared memory model such
as OpenMP was applied to improve the performance of
nodes integrated with multiple GPUs. In our test cases, the
time required for GPU–CPU data transfer and inter-CPU
communication was reduced by up to about 70% for
one-dimensional decomposition and 80% for two-
dimensional decomposition. These results show that the
hybrid multi-GPU LBM implementation is a feasible way to
improve efficiency. Large-scale direct numerical simulation
of an 11.5 cm× 46 cm two-dimensional doubly periodical
gas-solid suspension was demonstrated by coupling the im-
plementation with a visualization framework. The hybrid
mode was easy to implement and can be extended to
three-dimensional decomposition. Although our implemen-
tations were based on the LBM, other CFD methods such as
the finite difference and finite volume methods can be in-
corporated into this hybrid mode and we believe that they
will also perform well.

714 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7

Table 2 Time costs for GPU–CPU data transfer and CPU–CPU communication with a varying number of GPUs at each node in case E

Number of GPUs in a node GPU computation (s) GPU–CPU data transfer (s) CPU–CPU communication (s) Total (s)

1 33.90231 0.4678 0.6431 35.01321

2 33.90231 0.5307 0.6431 35.07611

3 33.90231 0.5735 0.6431 35.11891

4 33.90231 0.61142 0.6431 35.15683

6 33.90231 0.63391 0.6431 35.17932

Figure 10 Large-scale direct numerical simulation of a two-dimensional gas-solid suspension containing more than one million particles [20].

This work was supported by the National Natural Science Foundation of
China (20221603 and 20906091). We are grateful to Prof. Aibing Yu of
University of New South Wales for illuminative discussions. Two anony-
mous reviewers who gave valuable comments and suggestions that helped
improve the quality of this article are gratefully acknowledged. Support
from Nvidia through the CUDA Center of Excellence Program is also
appreciated.

1 Kampolis I C, Trompoukis X S, Asouti V G, et al. CFD-based analy-
sis and two-level aerodynamic optimization on graphics processing
units. Comput Method Appl M, 2010, 199: 712–722

2 Wang J, Xu M, Ge W, et al. GPU accelerated direct numerical simu-
lation with SIMPLE arithmetic for single-phase flow. Chin Sci Bull,
2010, 55: 1979–1986

3 Anderson J A, Lorenz C D, Travesset A. General purpose molecular
dynamics simulations fully implemented on graphics processing unit.
J Comput Phys, 2008, 227: 5342–5359

4 Chen F, Ge W, Li J. Molecular dynamics simulation of complex mul-

tiphase flow on a computer cluster with GPUs. Sci China Ser B:
Chem, 2009, 52: 372–380

5 Xiong Q, Li B, Chen F, et al. Direct numerical simulation of sub-grid
structures in gas-solid flow—GPU implementation of macro-scale
pseudo-particle modeling. Chem Eng Sci, 2010, 65: 5356–5365

6 McNamara G R, Zanetti G. Use of the Boltzmann equation to simu-
late lattice-gas automata. Phys Rev Lett, 1988, 61: 2332–2335

7 Tolke J, Krafczyk M. TeraFLOP computing on a desktop PC with
GPUs for 3D CFD. Int J Comput Fluid D, 2008, 22: 443–456

8 Ge W, Chen F, Meng F, et al. Multi-scale Discrete Simulation Paral-
lel Computing Based on GPU (in Chinese). Beijing: Science Press,
2009

9 Bernaschi M, Fatica M, Melchionna S, et al. A flexible high-
performance lattice Boltzmann GPU code for the simulations of fluid
flows in complex geometries. Concurr Comp-Pract E, 2010, 22: 1–14

10 Kuznik F, Obrecht C, Rusaouen G, et al. LBM based flow simulation
using GPU computing processor. Comput Math Appl, 2010, 59:
2380–2392

11 Li B, Li X, Zhang Y, et al. Lattice Boltzmann simulation on Nvidia

 Xiong Q G, et al. Chin Sci Bull March (2012) Vol.57 No.7 715

and AMD GPUs (in Chinese). Chin Sci Bull (Chin Ver), 2009, 54:
3177–3184

12 Myre J, Walsh S, Lilja D, et al. Performance analysis of single-phase,
multiphase, and multicomponent lattice-Boltzmann fluid flow simu-
lations on GPU clusters. Concurr Comp-Pract E, 2010, 23: 332–350

13 NVIDIA. NVIDIA CUDA compute unified device architecture Pro-
gramming Guide Version 3.1, 2010

14 Qian Y, Humieres D, Lallemand P. Lattice BGK for Navier-Stokes
equation. Europhys Lett, 1992, 17: 479–484

15 He N, Wang N, Shi B. A unified incompressible lattice BGK model
and its application to three-dimensional lid-driven cavity flow. Chin
Phys, 2004, 13: 40–46

16 Obrecht C, Kuznik F, Tourancheau B, et al. A new approach to the

lattice Boltzmann method for graphics processing units. Comput
Math Appl, 2011, 61: 3628–3638

17 Yang C, Huang C, Lin C. Hybrid CUDA, OpenMP, and MPI parallel
programming on multicore GPU clusters. Comput Phys Commun,
2011, 182: 266–269

18 Mellanox. NVIDIA GPUDirect™ Technology——Accelerating
GPU-based Systems. 2010

19 Komatitsch D, Erlebacher G, Goddeke D, et al. High-order fi-
nite-element seismic wave propagation modeling with MPI on a large
GPU cluster. J Comput Phys, 2010, 229: 7692–7714

20 Ge W, Wang W, Yang N, et al. Meso-scale oriented simulation to-
wards virtual process engineering (VPE)—The EMMS paradigm.
Chem Eng Sci, 2011, 66: 4426–4458

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction

in any medium, provided the original author(s) and source are credited.

