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Four dunite xenoliths from the Tietonggou intrusion of western Shandong, China, were subjected to SHRIMP zircon U-Pb dating 
to constrain timing of the North China Craton (NCC) destruction, a topic of much controversy. Cathodoluminescence images 
revealed that 15 of the 18 zircon grains from the xenoliths display striped absorption. The rest showed oscillatory growth zoni-
ation. All the zircons had variable contents of Th (49–3569 ppm; average, 885 ppm) and U (184–5398 ppm; average, 1277 ppm), 
and variable Th/U ratios (0.15–2.04). These zircon characteristics indicate a magmatic origin. The zircon age data can be divided 
into five groups: 131–145, 151–164, 261–280, 434–452, and 500–516 Ma. Group I (131–145 Ma) is consistent with timing of 
formation of the Tietonggou high-Mg diorites. Group II (151–164 Ma) is similar in age to Middle-Late Jurassic magmatism in the 
eastern NCC, which included both mantle-derived and intensive crust-derived magmatism. Group III (261–280 Ma) is similar in 
age to the Emeishan large igneous province, and Group IV (434–452 Ma) is similar in age to Paleozoic high-silica magmatism in 
the eastern NCC. Group V (500–516 Ma) may correspond to the global Pan-African event. Results indicate repeated modification 
of lithospheric mantle in the eastern NCC, and suggest that the most intensive modification occurred in the late Mesozoic 
(131–164 Ma). 
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The Archean North China Craton (NCC) is an ideal setting 
in which to investigate the destruction of a stable craton. 
The lithospheric mantle beneath the NCC underwent a dra-
matic change from an ancient, cold, and >200-km-thick 
lithospheric mantle in the Early Paleozoic to a young, hot, 
and 60–80-km-thick lithospheric mantle in the Cenozoic 
[1–11]. This change in thickness has been referred to as 
lithospheric thinning or craton destruction. However, there 
are uncertainties and controversy regarding the timing of 
this lithospheric thinning, the geodynamic context of this 
event, and the mechanism of the thinning. Previous studies 

have proposed that NCC destruction occurred during the 
Mesozoic [7,12–14], the Late Mesozoic [15–18], or the 
Mesozoic and Cenozoic [19], based mainly on analyses of 
Mesozoic and Cenozoic magmatism in the eastern NCC and 
in the Dabie-Sulu orogenic belt. However, few geochrono-
logical data have been reported for the modified lithospheric 
mantle in this region. 

Early Cretaceous high-Mg diorites in western Shandong 
contain harzburgite xenoliths with Archean Re-depletion 
model ages and abundant dunite xenoliths [20–24]. Trace 
element data of minerals and whole-rock Sr-Nd-Os isotopic 
data of the Tietonggou peridotite xenoliths (from Early 
Cretaceous high-Mg diorites) reveal that the harzburgites 
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represent the residue of ancient lithospheric mantle; where-
as, the dunites formed via a reaction between mantle peri-
dotite and melt derived from delaminated lower continental 
crust [24,25]. In this case, zircons in the xenoliths are likely 
to have formed during modification of the lithospheric man-
tle by a silicate-rich melt. 

The present study aims to constrain timing of the NCC 
destruction, based on detailed petrographic studies of four 
dunite xenoliths entrained by Early Cretaceous high-Mg 
diorites in western Shandong, as well as SHRIMP zircon 
U-Pb age data. The data constrain the timing of modifica-
tion of lithospheric mantle beneath the eastern NCC. 

1  Geological background and sample  
descriptions 

The NCC – surrounded by the Central Asian Orogenic Belt 
(CAOB), the Qinling-Dabie-Sulu orogenic belt, and the 
Yangtze Craton (YC) (Figure 1(a)) – is subdivided into the 
Eastern Block, Western Block, and intervening Trans-North 
China Orogen (TNCO)/Central Orogenic Belt based on the 
age and lithological associations of metamorphic rocks, 
tectonic evolution, and the P-T-t path of metamorphism 
[26]. 

Western Shandong, located in the Eastern Block of the 
NCC (Figure 1(a)), is dominated by the Archean Taishan 
Group, Cambrian and Lower-Middle Ordovician series, and 
Carboniferous-Permian sequences. Mesozoic strata are dom-
inant and consist mainly of sedimentary rocks in grabens, 
while Cenozoic strata consist mainly of alluvial and lacus-
trine sediments [27]. In addition to Precambrian igneous 
rocks, voluminous Mesozoic intrusive rocks are widespread 
throughout western Shandong. The Tietonggou intrusion, 
which is exposed over an area of approximately 5 km2 

(Figure 1(b)), is located near Yanzhuang town in Laiwu city 
(117°52′E, 36°05′N), and consists mainly of early norite- 
gabbro and later pyroxene-diorite. Results of laser ablation- 
inductively coupled plasma-mass spectrometry (LA-ICP- 
MS) zircon U-Pb dating and biotite Ar-Ar dating indicate 
that the Tietonggou pyroxene-diorite formed in the Early 
Cretaceous (131–135 Ma) [28,29]. 

Peridotite xenoliths are abundant in the Tietonggou in-
trusion, and are generally ellipsoidal, ranging in size from  
3 cm × 2 cm × 1 cm to 8 cm × 6 cm × 4 cm (Figure 2(a)). 
Based on their contents of olivine, orthopyroxene, and cli-
nopyroxene, the xenoliths can be classified into chromite- 
bearing dunite, spinel-bearing harzburgite, and chromite- 
bearing wehrlite. The dunite is dominant [24]. This study is 
focused exclusively on chromite-bearing dunites from the 
Tietonggou intrusion. 

The chromite-bearing dunites are green in color and are 
equigranular and/or porphyroclastic, or massive, and consist 
of olivine (~93%), chromite (~3%), orthopyroxene (~3%), 
and phlogopite (~1%) (Figure 2(b)–(d)). Olivines can be 
subdivided into two groups, based on their size. Group I 
consists of porphyroclastic olivines with kink bands, rang-
ing in size from 1.0 to 4.0 mm; Group II consists of un-
strained recrystallized olivines ranging in size from 0.3 to 
0.6 mm. The dunites are cut by veins of orthopyroxene ± 
phlogopite. Secondary clinopyroxenes occur locally around 
chromite within the dunites. The mineralogy and petrogra-
phy of the dunites have been described previously [24]. 

2  Methods 

To avoid contamination of dunite xenoliths by the host rocks, 
a detailed petrographic study was performed initially. The 
weathered surfaces of the xenoliths and reaction rims between  

 

Figure 1  Geological sketch map of the western Shandong (modified after [29]). 1, Quaternary system; 2, Paleogene-Neogene system; 3, Mesozoic Erathem; 4, 
Paleozoic Erathem; 5, Archean Eonothem; 6, Mesozoic volcanic rocks; 7, gabbro; 8, diorite; 9, fault; 10, sampling location. 
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Figure 2  Photographs showing field occurrence and textures of dunite 
xenoliths from the western Shandong. 

the xenoliths and host rocks were removed using a diamond 
saw. The remaining rock was manually crushed to 100–120 
mesh and washed with ethanol. After magnetic separation, 
zircons were concentrated using heavy liquid, and finally 
hand-picked under a binocular microscope. Except for the 
magnetic separation device, new tools were used to avoid 
contamination of the samples during the separation of zir-
con. Zircon grains were mounted in epoxy, polished, and 
coated with gold. The grains were examined under trans-

mitted and reflected light using an optical microscope, and 
cathodoluminescence (CL) images were obtained using a 
JEOL scanning electron microscope housed at the Beijing 
Ion-probe Center, Chinese Academy of Geological Sciences, 
Beijing, China, to reveal their internal structures and to se-
lect suitable sites for SHRIMP analyses. The zircons were 
analyzed using a SHRIMP II at the Beijing Ion-probe Center, 
Chinese Academy of Geological Sciences, Beijing, China. 
Details of the experimental conditions and procedures have 
been described previously [30–32]. Ages were calibrated 
against a reference zircon (TEM) with an age of 417 Ma 
[33]. U, Th, and Pb concentrations were measured using the 
reference zircon SL13 (age of 572 Ma; U content of 238 
ppm). Data were calculated using SQUID 1.0 and 
ISOPLOT 3.0 programs [34]. Common Pb was corrected 
based on the measured 208Pb. Ablation pits were generally 
about 25 m × 30 m in area. 

3  Results 

We obtained 7 zircon grains from ~300 g of sample LW8- 
42A, 5 grains from ~280 g of sample LW8-42B, 5 from 
~250 g of sample LW8-45, and 2 from ~270 g of sample 
LW10-2. Analytical results for the samples are given in 
Table 1. 

Zircons from sample LW8-42A were transparent and  

Table 1  SHRIMP zircon U-Pb dating results for the dunite xenolithes a) 

Spot No. 
206Pbc 
(%) 

U 
(ppm) 

Th 
(ppm) 

Th 
/U 

206Pb* 
(ppm) 

206Pb/238U 
age (Ma) 

207Pb* 
/206Pb* 

±% 
207Pb* 
/235U 

±% 
206Pb* 
/238U ±% Err. 

corr. 

Sample LW8-42A            

1 0.20 315 292 0.96 11.2 261.0±11 0.0570 3.3 0.324 4.8 0.0413 3.5 0.721 

2 2.68 335 49 0.15 7.46 151.3±6.1 0.0533 9.5 0.175 10 0.0238 3.5 0.347 

3 0.29 388 191 0.51 24.5 452.0±17 0.0553 2.8 0.554 4.5 0.0727 3.4 0.771 

4 0.90 1368 1366 1.03 24.2 130.6±5.4 0.0539 2.2 0.152 4.1 0.0205 3.5 0.843 

5 2.23 1161 1549 1.38 23.9 145.3±7.0 0.0484 4.4 0.152 5.6 0.0228 3.5 0.621 

6 0.58 3587 1299 0.37 68.6 141.4±5.0 0.0501 2.9 0.153 4.4 0.0222 3.4 0.762 

7 2.50 699 330 0.49 14.0 143.6±5.7 0.0513 7.2 0.160 8.0 0.0225 3.5 0.437 

Sample LW8-42B            

1 3.52 951 234 0.25 22.7 158.2±6.8 0.0518 15 0.178 15 0.0249 3.5 0.236 

2 0.49 5398 1301 0.25 103 140.6±4.8 0.0512 1.7 0.156 3.7 0.0221 3.3 0.891 

3 1.63 2102 1398 0.69 48.3 164.3±6.5 0.0524 5.1 0.187 6.1 0.0258 3.4 0.558 

4 0.46 1460 812 0.57 27.5 139.1±5.1 0.0531 2.3 0.160 4.1 0.0218 3.4 0.825 

Sample LW8-45            

1 0.86 1980 2925 1.53 41.0 152.1±6.9 0.0691 4.2 0.227 5.4 0.0239 3.4 0.630 

2 0.74 1804 3569 2.04 33.2 139.0±7.6 0.0760 3.2 0.228 4.9 0.0218 3.7 0.752 

3 0.86 824 359 0.45 60.2 514.0±18.0 0.0588 2.7 0.673 4.3 0.0830 3.4 0.782 

4 3.14 237 212 0.92 11.6 322.0±18.0 0.0700 21 0.490 22 0.0512 4.2 0.192 

5 1.60 234 88 0.39 9.59 280.0±12.0 0.0544 6.5 0.333 7.5 0.0445 3.6 0.486 

Sample LW10-2            

1 0.78 228 240 1.09 16.2 500.3±9.9 0.0657 10 0.731 10 0.0807 1.5 0.149 

2 0.35 1011 427 0.44 72.5 515.8±3.8 0.0612 1.2 0.703 1.4 0.0833 0.72 0.500 

3 1.99 184 166 0.93 11.2 433.6±6.9 0.0620 5.6 0.595 5.8 0.0696 1.3 0.229 

a) Errors in 1; Pbc and Pb* indicate the common and radiogenic portions, respectively. Error in Standard calibration was 1.78%; common Pb corrected 
using measured 208Pb. 
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possessed elliptical or irregular shapes. The grains were 35– 
110 m in length and had length/width ratios of 1.1–2.0 
(Figure 3(a)). The 206Pb/238U ages obtained for 4 of 7 ana-
lytical spots from sample LW8-42A ranged from 131 to  
145 Ma. These zircons displayed striped absorption in CL 
images (Figure 3(a)), similar to those reported for mafic 
igneous rocks and the host diorite [29]. The Th and U con-
tents of the zircons varied from 330 to 1549 ppm and from 
699 to 3587 ppm, respectively, and their Th/U ratios ranged 
from 0.37 to 1.38 (Figure 4). The spot 2 zircon, which 
yielded an age of 151 Ma, showed typical magmatic oscil-
latory growth zonation. The spot 1 and 3 zircons, which had 
striped absorption and Th/U ratios of 0.95 and 0.51, yielded 
206Pb/238U ages of 261±11 and 452±17 Ma, respectively 
(Figure 5(a)). 

Zircons from sample LW8-42B, which were colorless/ 
transparent and prismatic to elliptical in shape, were 40– 
100 m long and had length/width ratios of 1.5–2.5 (Figure 
3(b)). Two of the 4 analyzed spots in this sample yield 
206Pb/238U ages of 139±5 (spot 4) and 141±5 Ma (spot 2) 
(Figure 5(b)), consistent with the youngest ages of zircons 
from sample LW8-42A. These two zircons showed striped 
absorption in CL images (Figure 3(b)) and had high U contents 
(1460 and 5398 ppm) and high Th/U ratios (0.57 and 0.25) 
(Figure 4), indicating a magmatic origin. The other two zir-
cons yielded 206Pb/238U ages of 158±7 and 164±7 Ma, showed 
weakly striped absorption in CL images, had high contents of 
Th (234 and 1398 ppm) and U (951 and 2102 ppm), and high 
Th/U ratios (0.25 and 0.69) (Figure 4). 

Zircons from sample LW8-45 were colorless/transparent 
and stubby to acicular or irregular in shape. The grains were  

 

Figure 3  Cathodoluminescence (CL) images of zircons for dunite xeno-
liths. Ellipses indicate analysis sites. Numbers indicate analytical spot 
number and 206Pb/238U age. 

 

Figure 4  Plots of zircon Th/U ratios vs. their U-Pb ages for dunite xenoliths. 

40–70 m long and had length/width ratios of 1.3–2.0 (Fig-
ure 3(c)). All 5 of the analyzed spots plotted on or near a 
concordia curve (Figure 5(c)). Two of the grains yielded 
206Pb/238U ages of 139±8 and 152±7 Ma, showed striped 
absorption in CL images (Figure 3(c)), had high contents of 
Th (3569 and 2925 ppm) and U (1804 and 1980 ppm), and 
high Th/U ratios (2.04 and 1.53) (Figure 4), indicating a 
magmatic origin. The other three spots (Spots 3–5) yielded 
206Pb/238U ages of 514±18, 322±18, and 280±12 Ma, re-
spectively (Figure 5(c)). These zircons were characterized 
by relatively low contents of Th (88–359 ppm) and U (234– 
824 ppm), and low Th/U ratios (0.39–0.92) (Figure 4). 

Zircons selected from sample LW10-2 were 70–150 m 
in length, colorless/transparent, and prismatic or irregular in 
shape (Figure 3(d)). Three spots were analyzed on two zir-
con grains from the sample. The core and rim of one grain 
yielded 206Pb/238U ages of 500±10 and 434±7 Ma, respec-
tively (Figure 5(d)). The zircon showed striped absorption 
in CL images (Figure 3(d)) and yielded Th/U ratios for the 
core and rim of 1.09 and 0.93, respectively (Figure 4). The 
other zircon grain (spot 2) from the sample is structureless 
in a CL image, had a high U content (1011 ppm) and a high 
Th/U ratio (0.44), and yielded a 206Pb/238U age of 516±4 Ma. 

4  Discussion 

4.1  Origin of zircon in dunite xenoliths 

Zircon (ZrSiO4) grows under SiO2-oversaturated conditions. 
Primary zircon does not readily form in mantle peridotite 
because of the extremely low Zr and Si contents of this rock 
type. However, zircon has been reported from ultrahigh- 
pressure garnet peridotites and mantle-derived peridotite 
xenoliths [35–41]. The growth of zircons in such xenoliths 
may be related to late-stage modification of mantle perido-
tite by silica-rich melts [35,36]. Thus it is relevant whether 
dunite xenoliths from the Tietonggou high-Mg diorites were 
modified by silica-rich melt. In the case of the Tietonggou 
peridotite xenoliths, evidence of such modification may be 
obtained from petrographic studies, in situ mineral trace  
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Figure 5  U-Pb Concordia diagrams (a)–(e), and relative probability diagram (f) of the SHRIMP zircon U-Pb for dunite xenoliths. 

element data, and whole-rock Sr-Nd-Os isotopic data. In 
these dunite xenoliths, metasomatized orthopyroxene and 
orthopyroxene + phlogopite occur as veins or zoning around 
chromite, suggesting that the xenoliths were indeed modi-
fied by silica-rich melt [22,24]. In addition, the orthopy-
roxene that occurred in veins and around chromite had 
higher contents of trace earth elements than primary ortho-
pyroxene from the harzburgite xenoliths. Secondary clino-
pyroxene in wehrlite xenoliths was strongly enriched in 
light rare earth elements and depleted in heavy rare earth 
elements [24]. Finally, the dunite xenoliths were character-
ized by high initial 87Sr/86Sr ratios (0.7058–0.7212), low 

Nd(t) values (19.59 to +0.18), and clear Re addition. These 
lines of evidence suggest that the dunite xenoliths were 
modified by silica-rich melt [24,25]. 

Combined with the existence of harzburgite xenoliths 
with Archean Re-depletion model ages in the same intrusion, 
and trace element abundances of olivines from the dunite 
xenoliths [22,24], we conclude that the dunite xenoliths 
originated in the lithospheric mantle, but were strongly 
modified by melt derived from the delaminated continental 
crust [24]. Zircons in the dunite xenoliths could be attribut-
ed to modification by such a silica-rich melt. In other words, 
the different groups of zircon ages may represent events in 
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which silica-rich melts modified the lithospheric mantle. 

4.2  Origin of zircons in dunite xenoliths 

The SHRIMP zircon U-Pb age data from the four dunite 
xenoliths, except for spot 4 in sample LW8-45-4 (322±   
18 Ma), which yielded a large error, can be subdivided into 
five groups: 131–145 Ma (n = 7), 151–164 Ma (n = 4), 261– 
280 Ma (n = 2), 434–452 Ma (n = 2), and 500–516 Ma (n = 3) 
(Figure 5(e), (f)). Group 1 (131–164 Ma) was dominant in 
dunite xenoliths and was similar in age to the intrusive age of 
the host rocks (Tietonggou intrusion; 131–134 Ma) [28,29], 
which may indicate strong interaction between melt derived 
from the delaminated lower continental crust and mantle 
peridotite. 

Previous studies have reported that delamination of the 
lower continental crust beneath the NCC was possibly re-
lated to collision between the NCC and Yangtze blocks 
during the Triassic (220–240 Ma) [14,24,42], and that in-
teraction between silica-rich melt and mantle peridotite oc-
curred after this time. In this case, the question would re-
main regarding the origin of zircons in the dunites xenoliths 
that yielded ages of 261–280, 434–452, and 500–516 Ma. 
There are two possible zircon origins of these ages: (1) they 
originated from the delaminated lower continental crust of 
the NCC and/or the subducted slab of the YC; or (2) they 
were derived from repeated modification of the lithospheric 
mantle by silica-rich melts. In the first case, we would have 
expected to find zircons with ages of 2500 Ma, 1850 Ma 
(typical of the NCC) and/or 700–900 Ma (typical of the YC). 
However, zircons with these ages were not found in the 
dunite xenoliths. Thus, we conclude that these zircons rec-
ord repeated modification of lithospheric mantle. This in-
terpretation gives rise to the question of whether coeval 
magmatism, similar to the ages of zircons in the dunite xen-
oliths, existed in the eastern NCC. 

Magmatic zircons are generally distinguished from meta-
morphic zircons based on cathodoluminescence (CL) imag-
es and Th and U contents of zircon, as well as their Th/U 
ratios [43]. Typically, magmatic zircons show oscillatory 
growth zonation (for felsic igneous rocks) or striped absorp-
tion (for mafic igneous rocks) in CL images, and have high 
Th and U contents, and high Th/U ratios (>0.4). Conversely, 
metamorphic zircons are structureless or show pudding tex-
ture on CL images and have low Th and U contents, as well 
as low Th/U ratios (<0.1) [43–47]. 

In the present study, zircons with ages of 131–145 Ma in 
dunite xenoliths were subhedral or anhedral, showing clear 
striped absorption in CL images. They also had high Th/U 
ratios (0.25–2.04), indicating a magmatic origin. The weighted 
mean 206Pb/238U age of 139±4 Ma (MSWD = 0.75) for seven 
spots is consistent with timing of formation of the Tietonggou 
high-Mg diorites (131–135 Ma) [28,29] within error, sug-
gesting that the zircons formed during a period of intensive 
interaction between delaminated lower continental crust- 

derived melt and mantle peridotite. These ages also are con-
sistent with the timing of large-scale mantle- and crust-  
derived magmatism in the eastern NCC during the Early 
Cretaceous, such as the Jinling, Yi’nan (Shangyu), and 
Ji’nan intrusions in western Shandong (127–134 Ma) [29, 
48–50]; the Liguo, Jiagou, Banjing, Fengshan, and Caishan 
intrusions in Xuzhou-Huaibei (127–132 Ma) [51,52]; and 
granitoids in eastern Shandong and eastern Liaodong (120– 
130 Ma) [53–55]. 

The group of zircons from dunite xenoliths with ages of 
151–164 Ma yielded a weighted mean 206Pb/238U age of 
156±7 Ma (MSWD = 0.78, n = 4). These zircons showed 
striped absorption and oscillatory growth zonation in CL 
images, and had Th/U ratios of 0.15 to 1.53, suggesting a 
magmatic origin. Although spot 2 in sample LW8-42A had 
a low Th/U ratio (0.15), it showed typical oscillatory growth 
zonation, again indicating a magmatic origin. Based on the-
se findings, we conclude that the zircons with ages of 151– 
164 Ma are of magmatic origin. These ages (151–164 Ma) 
are consistent with the SHRIMP zircon U-Pb age of the 
Huaziyu mafic lamprophyre in eastern Liaoning province 
(155±4 Ma) [56], and with zircon U-Pb ages of the Jingshan 
granitoids in the Bengbu area, the Duogushan and Wendeng 
granitoids in the northern section of the Sulu ultrahigh- 
pressure metamorphic belt (155–160 Ma) [54,57], the Linglong 
and Luanjiahe granitoids in eastern Shandong (155–160 Ma) 
[53], and Late Jurassic granitoids in eastern Liaoning [58]. 
Late Jurassic magmatism in the eastern NCC was generally 
characterized by intensive felsic magmatic events, whereas 
little mafic magmatism occurred at this time (e.g. the 
Huaziyu lamprophyre in the eastern Liaoning).  

The zircons with ages of 261–280 Ma were subhedral or 
anhedral, showed striped absorption in CL images, and had 
high Th/U ratios (0.39–0.96), suggesting a magmatic origin. 
The age group of 261–280 Ma was similar to the age of the 
Emeishan large igneous province (259–262 Ma) [59,60] and 
corresponds with timing of the mass extinction event at the 
end of the Permian [61]. Permian igneous rocks have not 
been reported from the eastern NCC, except for a small 
quantity of detrital zircons (ages of 273–282 Ma) extracted 
from Jurassic sandstones in the Mengyin and Zhoucun ba-
sins [62]. SHRIMP and LA-ICP-MS zircon U-Pb age data 
for felsic intrusive rocks, volcanic tuff, and mafic-ultra-     
mafic rocks indicate magmatism at 254–285 Ma along the 
northern margin of the NCC [63–66]. These results suggest 
that the global Permian event affected not only the northern 
margin of the NCC, but also the lithospheric mantle beneath 
the eastern NCC. 

Zircons of the present study with ages of 434–452 Ma 
showed striped absorption in CL images and had high Th/U 
ratios (0.51–0.93), suggesting a magmatic origin. These 
ages are consistent with the LA-ICP-MS U-Pb ages of cap-
tured zircons from the Xiachangzhuang magnetite–amphibolite 
intrusive rock (450–484 Ma) [67], SIMS U-Pb ages of cap-
tured magmatic zircons with oscillatory growth zonation 
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from Cenozoic basalt in eastern Liaoning (419–487 Ma) 
[68], and the U-Pb age of perovskites from the Mengyin 
kimberlite in western Shandong Province (456±8 Ma) [69], 
as well as phlogopite Rb-Sr and Ar-Ar ages obtained for the 
Fuxian kimberlite in the Liaoning region (463–466 Ma) 
[70,71]. These results point to the occurrence of Paleozoic 
magmatic events in the eastern NCC. The ultramafic nature 
of kimberlites hampers the formation of zircon. However, 
the presence of zircons that grew within kimberlitic magma 
in western Shandong and eastern Liaodong indicates the 
occurrence of a silica-rich magmatic event in the eastern 
NCC, in addition to early Paleozoic silica-poor ultramafic 
magmatism. Early Paleozoic zircons from dunite xenoliths, 
as analyzed in the present study, may have resulted from 
metasomatism of a silica-rich melt. 

As mentioned above, zircons with ages of 500–516 Ma 
were of magmatic origin. These ages were similar to those 
of the Pan-African tectono-thermal events, indicating that 
the lithospheric mantle underneath the eastern NCC was 
affected by this event. Until now, this period of magmatism 
had only been reported in captured zircons from the Xia-
changzhuang magnetite–amphibolite intrusion (505±10 Ma) 
[67] and in detrital zircons from Cretaceous sedimentary 
rocks (497±13 Ma) in the Pingyi Basin of western Shan-
dong [62]. 

4.3  Repeated modification of the lithospheric mantle in 
the eastern NCC 

Results of SHRIMP zircon U-Pb dating of the Tietonggou 
dunite xenoliths indicate that lithospheric mantle in western 
Shandong records multiple episodes of mantle magmatism 
ranging in age from the early Paleozoic to the late Mesozoic 
(131–516 Ma). This observation indicates that the litho-
spheric mantle was subjected to various degrees of melt- 
related modification, and that the most intensive modifica-
tion occurred in the late Mesozoic (131–164 Ma). 

Recent studies of peridotite xenoliths from Paleozoic 
diamond-bearing kimberlites and Cenozoic basalts have 
revealed that the lithospheric mantle in the NCC has expe-
rienced a complex evolutionary process [72–75]. For exam-
ple, Li, Sr, and Nd isotopic data for peridotite xenoliths 
from the Hannuoba, Fanshi, and Hebi Cenozoic basalts 
within the NCC suggest that lithospheric mantle in the NCC 
experienced multiple interactions between melt/fluid and 
peridotite [72]. The repeated modification of lithospheric 
mantle in the NCC is indicated by zircon U-Pb dating, trace 
element data, and Hf isotopic data for garnet/spinel pyroxe-
nite veins that formed via reactions between a silica-rich 
melt and peridotite in the Cenozoic Hannuoba basalts [73], 
and by in situ Re-Os isotopic data on sulfides from perido-
tite xenoliths in these basalts [74]. Petrographic and mineral 
chemical data for pyroxenes from garnet peridotite xeno-
liths in the Mengyin kimberlites revealed that the ancient 
lithospheric mantle in the eastern NCC has been repeatedly 

overprinted [75]. 
Results reported herein suggest that the lithospheric 

mantle in the eastern NCC has been repeatedly modified 
and that the most intensive modification occurred in the late 
Mesozoic (131–164 Ma). 

5  Conclusions 

(1) Zircons from dunite xenoliths in the Tietonggou intru-
sion of western Shandong formed during repeated modifica-
tion of the lithospheric mantle by silica-rich melt. 

(2) SHRIMP zircon U-Pb age data indicate that all the 
zircons are of magmatic origin, and yield ages that define 
five groupings: 131–145, 151–164, 261–280, 434–452, and 
500–516 Ma, consistent with the occurrence of multiple 
magmatic-thermal events in the eastern NCC. 

(3) The lithospheric mantle in the eastern NCC was sub-
jected to repeated modification, with the most intensive 
modification occurring in the late Mesozoic (131–164 Ma). 
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