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Since Gibbs synthesized a general equilibrium statistical ensemble theory, generalizing the Gibbsian theory to non-equilibrium 
phenomena has been a dream for some theorists. However, the status of the theory for the non-equilibrium ensemble formalism is 
not as well established as the Gibbsian ensemble theory. In this work, we explore the formalism behind the non-equilibrium statis-
tical ensemble theory based on the sub-dynamic kinetic equation originating from the Brussels-Austin school and developed fur-
ther by others. The key is establishing a similarity transformation between Gibbsian ensembles and the sub-dynamic ensemble. 
Using this way, we study a spin-Boson model with strong coupling. A reduced density operator for the canonical ensemble can be 
easily obtained and the relevant decoherence-free property is revealed. 

subdynamics, statistical ensemble, non-equilibrium statistical physics 

 

Citation:  Bi Q, Liu J. Exploring non-equilibrium statistical ensembles. Chinese Sci Bull, 2011, 56: 36543660, doi: 10.1007/s11434-011-4804-5  
 

 
 
From the time Gibbs established the equilibrium statistical 
ensemble theory, many scholars have attempted to general-
ize the Gibbsian theory to non-equilibrium phenomena do-
main. However, non-equilibrium statistical ensemble theory 
cannot be said to be as well established, although important 
results have been obtained by numerous researchers [1–18]. 
The literature in this line of research is too numerous to cite 
here. Instead we just mention three significant develop-
ments: the relevant ensembles theory presented by Zubarev 
et al. [19], the Jaynes’ predictive statistical mechanics ap-
proach [20], and the generalized Gibbsian ensemble theory 
based on the Boltzmann kinetic equation presented by Eu 
[21]. So far the obtained non-equilibrium statistical density 
distribution formulas for the ensembles do not satisfy the 
original Liouville equation. Some researchers, for that rea-
son, believe that the Liouville equation needs to have an 
extra term which satisfies a set of conditions assuring its 
irreversibility and existence of conservation laws if the 
Gibbs ensemble theory is to be generalized to non-equilib-      
rium phenomena based on a Liouville-type equation. Since 
the 1980s, Xing also proposed a quite interesting non-equi-      

librium Liouville equation for classical system and revealed 
the important role of entropy evolution in non-equilibrium 
processes [13]. However, finding the extra term for the Li-
ouville equation, which itself possesses universal irreversi-
ble characteristic satisfying numerous requirements from 
numerous models, is still a very difficult open problem. 
This means that the efforts in establishing a universal en-
semble theory covering non-equilibrium phenomena com-
parable to the Gibbsian ensemble theory is presently still a 
great challenge. 

In this regard, here we present a formalism for non-equi-     
librium statistical ensemble based on a subdynamic kinetic 
equation (SKE). SKE evolved from the Brussels-Austin 
school [22–24] and developed further by others [25,26]. The 
advantage of the scheme is that SKE intertwines with the 
original Liouville equation by a similarity transformation 
without introducing any extra terms in the Liouville equa-
tion. If the similarity transformation is non-unitary, the SKE 
can describe irreversible processes; otherwise, it describes 
reversible processes as an equivalent equation of the origi-
nal Liouville equation. Using the established formalism, we 
discuss the quantum spin-boson model with strong coupling. 
The reduced density operator for the quantum canonical 
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system can be obtained at the level of the master equation 
approach or beyond. Although there have been several dif-
ferent approaches to construct SKE, which can be found in 
some publications [22–26], here we try to start from an up-
dated introduction. 

1  Schrödinger type of SKE 

Consider a quantum system (or specifically, some network) 
S be coupled to a thermal reservoir B, and let HS, HB, and 
Hint denote the Hamiltonians of the system S, the thermal 
reservoir B, and the interaction between S and B, respec-
tively. The total Hamiltonian H of the system plus the res-
ervoir can be expressed as 

int ,S B S BH I I H H     

and the corresponding quantum Schrödinger equation and 
Liouville equation are 

 ,
f

i Hf
t





 (1) 

and 

  , ,i H
t

 



 (2) 

where f is the wave function and  the density operator for 
the total system. Then one can introduce a basis, ( , ),kj kj   

where j is an index denoting S system and k is an index de-
noting the thermal reservoir B. Usually the basis, ( , )kj kj   

is chosen as a complete set of eigenvectors of the free Ham-

iltonian, ;S B S BH I I H   here, in general, the ( ,kj  

)kj can be chosen as any suitable complete basis in the 

Hilbert space spanned by the eigenvectors of S BH I   

S BI H . Hence the orthonormal projector, kj kj kjP    

(or   kj kj kjQ ) can be introduced using the basis, with 

1 , kj kjQ P  so that the total Hamiltonian H=HS + HB + Hint 

can be expressed as 

 ,   kj kj kj kj kj kj kj kjH P HP P HQ Q HP Q HQ  (3) 

giving the eigenvalue problem for the projected matrix of 

the total Hamiltonian, 
kj kj kj kj

kj kj kj kj

P HP P HQ

Q HP Q HQ

 
  
 

, described as 

 ,kj kj kj kj kj kj kj kjP HP P HQ E     (4) 

 ,kj kj kj kj kj kj kj kjQ HP Q HQ E     (5) 

which allows one to solve kj  and kj  respectively by 

   1
,kj kj kj kj kj kj kj kj kjE Q HQ Q HP C  


    (6) 

   1
,kj kj kj kj kj kj kj kj kjE P HP P HQ C  


    (7) 

Substituting eq. (6) into eq. (4) and eq. (7) into eq. (5) re-
spectively gives 

   ,kj kj kj kj kj kj kj kj kjP HP P HC E       (8) 

   ,kj kj kj kj kj kj kj kj kjQ HC Q HQ E        (9) 

where introducing a creation (annihilation) correlation op-
erator (as a type of resolvent) as 

   1
,kj kj kj kj kj kj kj kj kjC Q C P E Q HQ Q HP


    (10) 

   1
.kj kj kj kj kj kj kj kj kjC P C Q E P HP P HQ


     (11) 

This shows that the ( , )kj kj   is an eigenvector of the 

( , ) kj kj , and Ekj is a joint eigenvalue of ( , , )kj kj H  . 

This allows one to presume that the eigenvector of H is 
given by fkj with the same eigenvalue Ekj by 

 ,kj kj kj kj kj kj kj kj kj kjP f C C Q f C f        (12) 

 .kj kj kj kj kj kj kj kj kj kjQ f C C P f C f      (13) 

Hence the eigenvectors of H are related to the eigenvectors 
of   by eq. (12) plus eq. (13) and considering 2

kjP  kjP ,  

 ( ) . kj kj kj kjf P C  (14) 

Using eq. (13), by introducing kj kj kjf f  as an eigen-       

projector of H, one can construct a Schrödinger-type of 

SKE for each projected state kj kjP  as kj kji P
t


 


 

( ) ,kj kj kj kjP H P C    where, for more generality, kj  

can be understood as 
kj kjf f  in which kjf   (dense 

subspace) and kjf  (generalized dual subspace of ) 

are defined in a Rigged Hilbert space,   H . 
Therefore, a Schrödinger-type of SKE can be generally es-
tablished as 

 ,proj proji
t
 

 


 (15) 

 proj proj , 
 


 i

t
 (16) 

with 

   ,kj kj kj
kj

P H P C    (17) 

where proj  and proj  are defined as 
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 ,proj kj kj
kj

P    (18) 

 proj ,   
kj kj

kj

P  (19) 

and   or   is a solution of the original Schrödinger 

equation in the Rigged Hilbert space. We would like to 
emphasize the above established Schrödinger-type of SKE 
(SSKE) is different from the old Liouville-type of SKE 
(LSKE) developed by the Brussels school many years ago. 
SSKE is important because it is a bridge to the building of 
non-equilibrium statistical ensemble theory. However, from 
the times of the Brussels school, researchers always worked 
on the LSKE and forgot about finding an SSKE. Therefore, 
it has been difficult to establish a non-equilibrium statistical 
ensemble theory since that theory needs the eigenvalues of 
the   operator which intertwine with the Hamiltonian but 
not with Liouvillian. Of course, based on the SSKE, by re-

placing proj and proj with proj proj proj ,    LSKE can also 

easily be derived.  
The construction of the SSKE (LSKE) in a subspace can 

be related to the original Schrödinger (Liouville) equation 
with the same spectral structure between   operator and 
Hamiltonian (Liouvillian) [22,25]. For instance, using the 
relation (14) one has the spectral representation of H related 
to   as 

1, H  where ( ).   kj kjkj
P C  The cre-

ation operator, 
1


v v v

v v

C Q HP
Z Q HQ

, creates the Qv-part 

of v  from the Pv-part. While 0 1  H H C  is called 

collision operator [25]. The second-order approximation of 
  with respect to  corresponds to the master equation [24] 
derived by the Zwanzig projection technique, and the 
Boltzmann, Pauli, and Fokker-Planck equations of kinetic 
theory, and Brownian motion can also be derived by some 
approximation of   [27]. The author would like to clarify 
that although using the Zwanzig projection technique, the 
(differential integral) master equation for the relevant part 
of the density operator in Liouvillian space can also be de-
rived [26,28], but the Schrödinger type of differential equa-
tion (15) in the subspace cannot be derived by the Zwanzig 
projection technique [29]. Sub-dynamics is more general. 
Moreover, the formalism can introduce a kind of infor-
mation holography between the original Schrödinger (Liou-
ville) equation and SKE, which means for every basic dy-
namical equation one can construct its SKE by a projection 
procedure, and both are intertwined by similarity transfor-
mation (this is also true for the Schwinger-Tomonaga equa-
tion and the Einstein equation [26]). Therefore, we make a 
bold statement here that the universe is holographic through 
these basic equations, which may be described with the fol-
lowing picture, in which the first index means 1-order of the 
SKE, the second index means 2-order of the SKE, and so on 

up to the n-order: 

11

1 12

21

2 22

1

2

SKE

SKE SKE

SKE

SKE SKE

Schrodinger (Liouville) eqs. 

SKE

SKE SKE
n

n n

 
 


 

 
 






   
 
 






















 

Fortunately, this holographic formalism can be used to 
solve the eigenvalue problem for the Schrödinger (Liouville) 

equation quite generally as follows: if kj kj kjP    is an 

eigenprojector of H0, then from the SKE one has the eigen-

vector of H given by  kj kj kj kjf P C  , and its eigen-

value given by  

0

int int

1
, 

kj kj kj

q q
kj kj kj kj kj kjq

kj kj kj

E H

H Q Q H
E E

 

   






 

where introducing kj kjQ HQ  and supposing the spectral de-

composition of 
1

kj qE H
 is given, the eigenvalue 

q
kjE  can 

be obtained by the SKE again. Continuing this procedure 
until finally one has ' ' ' ' 

kj kjQ HQ  only containing one pro-

jector, then one can get its eigenvectors and eigenvalues. 
Replacing the final result into the previous current formal-
ism, one can eventually obtain the eigenvector correspond-
ing to the eigenvalue of H. 

2  Subdynamic statistical ensembles 

One notable observation is that the SSKE (or LSKE) seems 
to have a general property to approach various kinetic equa-
tions or master equations that is beyond the original Liou-
ville equation. Furthermore, the LSKE can intertwine with 
the original Liouville equation using a similarity operator. If 
this operator is unitary, then, as an equivalent unitary repre-
sentation of Liouville equation, the Liouville type of SKE is 
reversible; if the operator is non-unitary, the Liouville type 
of SKE is irreversible and the corresponding evolution is 
not time symmetric. This means that the LSKE can be an 
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appropriate kinetic equation to describe the irreversible 
process, in which the evolution operator is non-unitarily 
realized on generalized functional space which is beyond 
the traditional Liouville space. This provides motivation to 
propose using the   operator to construct a non-equilib-      
rium statistical ensemble theory. The construction may be 
quite simple using the similarity transformation between the 
Gibbsian ensemble formalism based on the Liouville equa-
tion and the non-equilibrium ensemble formalism based on 
the LSKE (and SSKE): if given the expectation value of the 
Hamiltonian, then the corresponding expectation of the   
operator should be 

 ( ) ( ) .      Tr H H Tr P  (20) 

This allows one to present (by extension) a new canoni-
cal ensemble distribution  ( k) which is the “vacuum” as-
sociated with the “dynamic part” of the original  (E k), as 
expressed in Balescu’s textbook [30]: 

 
       

   
1

1
proj proj proj proj

, , exp

, , exp ,

    

  





  

 

k k k

k

E Z V N E

Z V N  (21)
 

with the partition functions as 

 
     

 

, , exp , ,

exp ,

proj proj proj

proj

k
k

k
k

Z V N E Z V N  

 

  

 



  (22)
 

     11
,proj projB Bk T k T 


    (23) 

where k  is an eigenvalue of  , proj  is extended as a 

function of position and time. In fact, suppose the density 
distribution in quantum canonical system given by 

    
 

exp
,

exp

kj

kj

kjkj

E
E

E










 (24) 

which gives the density operator  as  

   

 
 

1
exp

exp

exp
.

exp

 





 







 kj kj
kj

H f f
Tr H

H

Tr H

 

Thus, using the similarity transformation  one can obtain a 
projected density operator proj as 

  
 

 
 

1

1
expexp

.
exp exp

proj

proj

proj

H

Tr H Tr

 


 





  

 
   

  
 (25)

 

This gives a precise formula of the quantum canonical 
ensemble for a projected density operator proj. We consider 

this as generalizing the equilibrium quantum canonical en-
sembles formula to the non-equilibrium quantum canonical 
ensembles formula in the following sense: (i) if the similar-
ity operator is unitary, then the new relations is just an ef-
fective representation of the old equilibrium quantum ca-
nonical ensembles relations because   or H has the same 
spectral structure; (ii) if the similarity operator is non-uni-    
tary, then the new relations is an extension of the old rela-
tions that represents kind of non-equilibrium quantum ca-
nonical ensembles relations and reflects irreversibility of the 
system. The spectrum of   may appear to have complex 
spectral structure that is impossible to get from the original 
self-adjoint operator H in the Hilbert space; and (iii) if the 
similarity operator can be deduced by some approximation, 
such as the Markovian/non-Markovian approximations, then 
the new relations can expose some non-equilibrium charac-
teristics, which cannot be gained from the equilibrium 
quantum ensemble relations. 

Thus it is obvious that the preceding construction of the 
density operator ( k) can be extended to the classical sta-
tistical canonical ensemble by 

      1 , , exp projk kZ V N       (26) 

with 

    , , exp .proj d    Z N V  (27) 

In the same way, the sub-dynamic grand canonical en-
semble distribution can also be constructed by 

    1 , , exp ,proj proj proj projk kZ V N             (28) 

where the partition function is given by 

  proj proj proj proj, , exp .         k
k

Z V N  (29) 

Furthermore, the general canonical ensembles distribu-
tion can be written by 

 1 exp ,proj proj proj            
k k k

k

Z N  (30) 

where the thermodynamic meanings of the parameters k 
and k can be fixed by the thermodynamic correspondence. 
Again, the physical meaning of , proj, proj and projN   

1
kN   are also the “vacuum” of “dynamic part” of the 

corresponding parameters, which can be functionals of the 
coordinates of the system; when the kth system in the en-
semble tends to equilibrium, they tend to equilibrium Hk, , 
 and Nk, respectively. We emphasize again that in 
Balescue’s book [30], the “dynamic part” means essence 
part of the (irreversible) evolution of the density distribution, 
and the “vacuum” means without correlation. His work and 
the Brussels-Austin school’s later work seem to show that 
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proj plays an influential role in the (irreversible) evolution 
of the system by extending it to rigged Hilbert space or 
rigged Liouville space [31,32]. Using this means, the ques-
tion is: can one build a corresponding relation between the 
equilibrium statistical ensemble formalism and non-equi-     
librium statistical ensemble formalism? The affirmation 
confirms that the original Hamiltonian of the system is re-
lated to the collision operator by the similarity transfor-
mation. Thus, the dynamic variables Y are usually obtained 
by integrating over the non-equilibrium statistical distribu-
tion  ( k) which is given by the proposed non-equilibrium 
statistical ensemble relations (21) or (28) or from the solu-
tion of the SKE (26), ( ( )).  kY Tr Y  If the second or-

der approximation of   corresponds to the master equation, 
the Boltzmann equation, the Pauli equation, or the Fokker- 
Planck equation, then ( ( )) kTr Y  should deliver the ex-

pectation of corresponding physical value in the non-equi-      
librium ensembles. Eq. (25) can be a starting point to get 
non-equilibrium statistical ensembles formulations for irre-
versibility, as demonstration of application below. 

3  Kinetic equations and ensemble formulation 

For strong coupling, the kinetic equation is 

 2
int int ,


   


n

n s n n Q n

P
i P H P P H G H P

t
 (31) 

where GQ is a resolvent introduced as 

 
1

.QG
QHQ




 (32) 

Consider the eigenvalue problem and the Born expansion 
series, one gets 

 
 

2
int int int

0 2 0 0
int int int int1

n s n n n n Q n

n Q Q Q n

H P P H P P H G H P

P H G H G H G H P

 

  

   

     

 int 0
int

1
,

1





n n

Q

P H P
G H

 (33) 

where GQ is 

 
1

.



Q

s

G
QH Q

 (34) 

Since >>1, this may give 0
int 1QG H   in the strong in-

teraction; therefore, one obtains 

   int 0
int

1
,n s n n

Q

H P H P
G H




  


 (35) 

which gives 

 
   0 1

int int

1
int int .

n n n n n n s n n

n n n n s n n

E P P H Q H Q H P

P P H Q H Q H P

 







   

    (36)
 

Hence the eigenvalues are given by 

 
 0 1

int int

0 0 1
int int

1
)

2

1
.

2

n n n n s n n

n n n n n n
n

E H Q H Q H

E E H H

  

   




  



 

   
 

  (37)
 

Therefore, the density operator for this system can be 
described by a spectral decomposition as 

 

 
 

exp

exp

1
,

proj

e
e

n

n
n n

nn

Tr









 


 


 

 
 (38)

 

and an expectation for any observer A in the quantum open 
system can be calculated by 

 

 

   1
exp ,

exp n n n
nnn

A Tr A

A



  




 
 

 (39)
 

where the interaction part, correlation part or dissipative 
part is 

 
0 1

int int2
1

,e
e

n n n n nn

n

E H H

n n
nn

    

  


  





 (40) 

and the partition function is 

 
1

.
e 

 n

n

Z  (41) 

4  An application for the spin-Boson model 

The spin-boson model is an important model to deal with 
quantum system interactions with the environment [33] for 
which it is assumed that the environment consists of a set of 
harmonic oscillators. The spin-boson model can be far from 
equilibrium. For strong interaction, suppose a Hamiltonian 
for the spin-boson model is given by 

 ( ) ,z j j j j j
j j

H b b n         (42) 

where 
1 0

,
0 1


 

   
z  and 

0 1
,

1 0x
 

  
 

 j j jn b b  with 

j jb b  is a creation (annihilation) operator for the bosons 

(such as phonons or photons) within the environment, and 
λ<<1. The eigenvectors of the free Hamiltonian are 

 1 2

1 0
, , ,

0 1 kn        
   

 (43) 
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thus the expansion of H with respect to the basis 

( , )j k k jn n    is 

 

2
1

1

2

, 1 , 1
1

(( 1) )

1 ,
k k k k

j
k k j k k j

j k

k k n n k n n j k k j
j k

H n n n

n n n n

  

     
 





  


    

    




where j=j′ and k=k′ are not present. The off-diagonal ele-
ments of the matrix for the Hamiltonian is 

 

( )

1, 1,

, 1.

for 

      for  

k j k k k j k
k

k k k k k

k k k k k

n b b n

n n n

n n n

   






 





  

    
 






 (44)
 

We introduce an eigen-projector as 

 ,   jk j k k jP n n  (45) 

and 

 1 .jk jkQ P   (46) 

For strong interactions, i.e. ~ ,   or >>1: then, the 

SKE becomes 

  0 int ,proj
proj proji H H C

t


  


   


 (47) 

which gives the above eigenvector Pj for the H0 to satisfy 

 2
0 int int ,jk

jk jk jk jk Q jk

P
i P H P P H G H P

t



   


 (48) 

where GQ is defined as 

 
1

.
Q

jk jk

G
Z Q HQ

 (49) 

Using the above equation and considering the eigenvalue 
problem of Θ and the Born expansion of GQ, one obtains 

 

 
 

0

0 2 0 0
int int int int

int 0
int

1

1
,

1

jk jk

jk Q Q Q jk

jk jk
Q

H P

P H G H G H G H P

P H P
G H

  




 

    




 (50)

 

since ~ , or >>1, we can get  

  0 int 0
int

1
,jk jk jk jk

Q

H P P H P
G H




  


 (51) 

and 

 
    1

0 int 0 int

1
int 0 int .









    

  

jk jk jk jk jk jk jk

jk jk jk jk jk jk

H P P H Q H Q H P

P P H Q H Q H P  (52)
 

Then jk can be derived by 

 
 

     

0 1
int 0 int

1
int int

2

2

1 1

2 2 , 1, 1,
2

for

jk k j jk jk j k

jk

k k k k k j j k k j j kk j

k k k k

k k

k k k k

E n H Q H Q H n

n n n H n n H n

n n
n

n n n n

 


     

 





      

 

 

  


      


   
  

    



 (53)

 

which shows that jk becomes independent of Hint in the strong interaction approximation. This allows one to get a reduced 
density operator for the canonical system 

 

 
 

     

     

,

2

1

exp

exp

1 1

2 2exp
2

.
1 1

2 2exp
2

B
B B jk jk jk

j k

k k k k

k k

jj k

k k k k

k k

j k

Tr
Tr Tr P

Tr

n n
n

P

n n
n


   



 




 




 

 



  
  

  
    

     
 
  
    

     
 
  



 

 

 (54)
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If j=1, we select the “+” sign; if j=2, we select the “” 
sign.  

Hence, the construction of the above system in the SKE 
subspace is quantum decoherence-free, which is useful for 
quantum computing. In fact, from eq. (54) one can see that 
the reduced density operator for the canonical system, TrB, 
is indeed independent of Hint after the final approximation. 
jk is only related to a part of the matrix of H0, which means 
that the environment has no influence on the system S and 
the system is decoherence-free in this case. 

5  Conclusions 

In conclusions, we have proposed subdynamic ensemble 
formalism based on the SSKE. The constructed procedure is 
to use a similarity transformation between the Gibbsian en-
semble formalism based on the Liouville equation and the 
subdynamic ensemble formalism based on the SKE. Using 
this formalism, we study the spin-boson system with strong 
coupling, and obtain the reduced density operators for the 
canonical ensembles. We found that the reduced density 
operator is no longer related to  in the approximation, and 
show it possesses a kind of decoherence-free property. 
Moreover, a holographic concept for the universe through 
the SKE has also been proposed.  

This work was supported by the National Natural Science Foundation of 
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