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This work reports on numerical simulations of Brownian motion in the non-dissipative limit. The objective was to prove the ex-
istence of path probability and to compute probability values for some sample paths. By simulating a large number of particles 
moving from point to point under Gaussian noise and conservative forces, we numerically determine that the path probability 
decreases exponentially with increasing Lagrangian action of the paths. 
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Brownian motion is an idealized approximation to actual 
random dynamics that has been extensively investigated 
over a long period time [1–3] but possibly still not thor-
oughly understood. Recently, Brownian and random motion 
have been extended into the field of fractional Brownian 
motion [4,5], stochastic noise [6,7], and quantum random 
walks [8,9]. One of the least studied aspects is the probabil-
ity distribution of paths or trajectories. To be more precise, 
a Brownian particle can go from one configuration point to 
another along different trajectories, an important character-
istic of random dynamics [10]. With that viewpoint, several 
questions arise. First, does a probability distribution for 
each configuration path exist? i.e., can a Brownian particle 
repeat the same path (or a bundle of paths with nonzero 
thickness)? Second, if a probability exists, what are the 
mechanical variables of the distribution? In other words, 
which quantities determine the frequency of repetition for 
the motion along the same bundle of paths? 

The objective of the present work is to investigate by 
numerical simulation the path probability of random motion 
in the non or weak dissipative limit to find answers to both 

questions. The method is simple. In answering the first 
question, one should choose several bundles of paths and 
observe whether Brownian particles retrace any of these. If 
paths are retraced, one must count the number of particles 
traversing each bundle of paths, and calculate mechanical 
quantities such as velocity, kinetic and potential energy, 
actions or some function of these quantities to find possible 
correlations between them and the path count. 

A crucial issue about these quantities for Brownian mo-
tion is whether the time derivative of position exists, or 
whether the trajectories are time differentiable. According 
to a widely accepted point of view [11,12], trajectories cor-
responding to Brownian motion are not differentiable. 
Hence no velocity can exist. However, according to the 
Ornstein-Uhlenbeck model [13], the configuration trajecto-
ries are differentiable so an instantaneous velocity exists. It 
is worth mentioning a recent experiment [14] that recorded 
the one-dimensional individual trajectories of a 3-m diam-
eter silicon bead undergoing Brownian motion in air under 
low pressures and ambient temperatures. The conclusion of 
the work is that, if the time step of the position measure-
ment is much smaller than the relaxation time of the motion, 
the trajectories corresponding to Brownian motion loose 
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progressively their diffusive (self-similar) property and be-
come smooth, ballistic, and differentiable, for which the 
definition v=∆x/∆t does make sense if ∆t is sufficiently 
small.  

To avoid these conceptual issues based on the mathe-
matical models of motion, we suppose here that the consid-
ered motion is suitably smooth and that the velocity defined 
with coarse graining in configuration space with sufficiently 
small time scale can be a good approximation of the instan-
taneous motion. Hence we can define an instantaneous ki-
netic energy K, a potential energy V, the Lagrangian L=  
KV, Hamiltonian H=K+V, as well as the following two 
associated actions for any considered path [a, b], 

 L d
b

a

A K V t   and  H d
b

a

A K V t  . With this back-

ground, we describe below first the technical details of the 
numerical computation and second we present the numeri-
cally observed probability distributions of paths for a free 
particle, and particles subject to different forces. The main 
result is that the path probability decreases exponentially 
with increasing Lagrangian action but has no correlation 
with the Hamiltonian action. 

1  Numerical simulation 

We consider a large number (~109) of particles of mass m 
undertaking one-dimensional stochastic motion in a con-
servative force field. From an initial point xa, the particles 
can go anywhere along the x-axis. We are interested in the 
N particles that arrive at a given point xb after n steps. Be-
cause the motion is stochastic, these can take different paths 
from xa to xb. A path is defined by a sequence of random 
positions  1 2 1, , ,a n bx x x x x , where xi is the position at 

time ti with xa=x0 and xb=xn. We chose n=10 in the present 
work with an equal unit time increment at each step, i.e. 

1 1i i it t t      for every step i. 

Our model of the motion is constructed based on the free 
particle solution of the diffusion equation of Fokker-Planck 
given by 
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Hence, for free particles, the sequence  1 2 1, , ,a n bx x x x x  

can be generated by a Gaussian noise in the following way: 

 1 ,i i ix x      (2) 

where λ is a parameter adjusting the magnitude of the ran-
dom displacement 1i ix x  , χi is a Gaussian-distributed 

noise generated by the computer at each step i.  
For particles in conservative force fields, there is no gen-

eral solution of the diffusion equation, and the forced mo-
tion should be introduced directly into the displacements of 

each step. Our model consists in separating the motion into 
two parts: a random part given by eq. (2) and a part de-
scribed by a motion equation yi = f(ti) derived from the 
Newtonian equation of motion under a conservative force. 
The total displacement of each step is then given by 
 1 ( ).i i i ix x f t       (3) 

Figure 1 illustrates some sample paths generated by eq. 
(3) with constant force (for example weight). These samples 
are chosen among a large number of paths in such a way 
that these include the least action path and those paths 
around the least action for which the values actions are suf-
ficiently close but no too much different from one. Each 
sample path is given a small thickness  (for example 
=0.06 for a total variation in x of about 1 or 2) to form a 
bundle or a tube of paths. From here on, we will call this 
bundle a path. Obviously, the larger  is for a path, the more 
particles there are moving along the path from a to b. 

The numerical simulation mainly consists in observing 
the total number of particles N moving from a to b through 
whichever path and the number of particles Nk moving 
along a given sample path k from a to b. The probability 
that the path k is taken is determined by /k kP N N  (with 

large N).  
For each sample path, we calculate the Lagrangian and 

Hamiltonian actions. For this purpose, the velocity at time 

step i is defined as 1

1
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then given by 21
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The magnitudes of the displacements and forces are chosen  

 

 

Figure 1  Example of paths (bundle) from point a to point b for particles 
in a constant force field such as weight. The time duration of the motion is 
n=10 steps with the same unit time increment for each step. Each path is a 

sequence of positions  1 2 1, , ,a n bx x x x x . 
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such that the kinetic and potential energies are of the same 
order of magnitude to distinguish the maximum of the two 
actions along the same path.  

Simulations were performed with several one-dimen- 
sional potential energies. We considered free particles with 
V(x)=0, particles under a constant force with V(x)=mgx, 

under a harmonic force with 2 21
( )

2
V x mw x , and other 

more complicated force potentials with 32
( )V x x


  and 

2 41
( ) (1 )

2
V x x    ( 0 ) to check the generality of the 

results. The results of the simulations are presented below.  

2  Determination of path probability  
distributions 

To find any correlation between the path probability and the 
Lagrangian and Hamiltonian actions, the probability is 
plotted against both. In each figure, the action is place along 
the abscissa for ease in comparing the probability depend-
ence. We did not introduce the time scale or the diffusion 
constant of real Brownian motion, because the value of the 
time increment of each step does not have any physical 
sense and is taken as unity. We tried values different from 
unity but that of course did not alter the results. In this case, 
the scale of the displacements is also arbitrary and the ac-
tions do not have unity. The important aspect here is to find, 
under the assumption of the existence of instantaneous ve-
locity and kinetic energy, the dependence of the path proba-
bility on the Lagrangian or Hamiltonian action. The exact 
numerical relationship is not of interest in this work. 

2.1  Free particles 

For free particles, the potential energy is zero; there is no 
difference between the Lagrangian and Hamiltonian actions. 
From Figure 2, it is obvious that the probability for a path k 
to occur is given by 

 ,
1

( ) e
k

k
A

p A
Z


   (4) 

where Ak is either the Lagrangian or Hamiltonian action of a 
path k between the a and b. The slope is found to be around 
γ=80. The normalization function Z in eq. (4) can be deter-
mined analytically with the normalization by the path inte-
gral [13] 

 3 11 2 d dd d
... ( ) 1n

k k

x xx x
p A

   
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

   

      (5) 

with fixed xa and xb, or numerically by the value of lnp(A=0) 
which can be found with the distribution curves in the fol-
lowing figures. 

 

Figure 2  Path probability distribution against the Lagrangian (equiva-
lently Hamiltonian) action for a free particle with V(x)=0. The straight line 
is a best fit of the points; the slope is about γ=80.  

2.2  Particles under constant force 

To understand the dependence of the path probability on 
Lagrangian and Hamiltonian actions, it is necessary to study 
Brownian particles under the action of conservative forces. 
The first force we studied is the constant force obtained 
from potential V(x)=gx, and giving displacement 

21
( ) .

2
x t gt   The value of parameter g is chosen to be 

g=0.02 so that, within 10 time steps, the final point b is not 
too far from a. The results are shown in Figure 3. Eq.(4) 
still holds with the slope γ=71. It is obvious from the figure 
that with increasing Lagrangian action the path probability 
decreases exponentially. However, there is no apparent cor-
relation between path probability and Hamiltonian action. 
The least value for the Lagrangian action is around 0.14. 

2.3  Particles under harmonic force 

The potential of the harmonic force is 2 21
( )

2
V x x  giving 

 

 

Figure 3  Path probability distribution against the Lagrangian (circles) 
and Hamiltonian (stars) actions for particles under constant force with 
potential V(x)=mgx. The path probability decreases exponentially with 
increasing Lagrangian action. There is no correlation between the path 
probability and Hamiltonian action. 
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( ) sin( )x t A t , A=1 and 3π 2n  . Figure 4 shows the 

path probability distribution against both actions which for 
the Lagrangian action yields a slope of γ=113. As for con-
stant force, the path probability distribution decreases ex-
ponentially with increasing Lagrangian action with no cor-
relation with the Hamiltonian action. 

2.4  Particles in other conservative potentials 

One might ask from the results presented above whether 
under the two special forces (weight and elastic) the straight 
lines are exceptions. Hence, it would be interesting to 
demonstrate that the exponential of Lagrangian action 
yields a universal path probability at least in these numeri-
cal experiments using Gaussian noise. Lacking general 
mathematical proof, we were content in simulations to use 
higher-order polynomial potential functions such as 

32
( )V x x


  where 

2
( )

(1 )
x t

t


 


( 1.2  ) and 

2 41
( ) (1 )

2
V x x    where ( )

1

t
x t

t







 ( 1  ). The 

path probability distributions against the two actions are 
shown in the Figures 5 and 6. From these figures, eq. (4) 
always holds for the Lagrangian action with exponent with 
γ=24 for the cubic potential, and γ=59 for the quartic.  

3  Discussion 

Looking at the above figures, we can suggest an exponential 
correlation of the Lagrangian action with the path probabil-
ity. A more convincing argument can be given by consider-
ing the following correlation function between the actions 
A  (AL or AH) and –lnP(A) given by 

 

 

Figure 4  Path probability distribution against Lagrangian (circles) and 
Hamiltonian action (stars) for particles in a harmonic potential ( )V x  

2 21

2
x . 

 

Figure 5  Path probability distribution against Lagrangian (circles) and 

Hamiltonian actions (stars) for particles in potential 32
( )V x x


 . 

 

Figure 6  Path probability distribution against Lagrangian (circles) and 

Hamiltonian action (stars) for particles in potential 2 41
( ) (1 )

2
V x x   . 
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  (6) 

where <A> is the mean of action A, and <lnP(Ai)> the mean 
of –lnP(A). c(A, lnP(A))≈1 (or c(A, lnP(A))≈0) would 
indicate that A and –lnP(A) are linearly correlated (uncorre-
lated); the calculation results are shown in Table 1.  

Table 1  Correlation function c(A) for different potentials 

Potentials 
Correlation 

c (AL) c (AH) 

( ) 0V x   0.9928 0.9928 

( )V x gx  0.9487 0.4137 

2 21
( )

2
V x x  0.9907 0.2161 

32
( )V x x  0.8466 0.0118 

2 41
( ) (1 )

2
V x x    0.8629 0.0415 
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It can be concluded from Table 1 that –lnP(A) is more 
strongly correlated linearly with the Lagrangian action than 
the Hamiltonian action. 

The result would be more precise and convincing if we 
could use more particles and longer simulation times. 
However, it is difficult because of limited computer speeds. 
Another possible improvement is to simulate real Brownian 
motion using particles in a gas or liquid instead of using 
Gaussian noise. It is also an appealing idea to investigate 
the path probability distribution when the position distribu-
tion is not Gaussian. This work is in progress. 

4  Conclusion 

We numerically simulated Brownian motion in the limit of 
non-dissipative case. We observed a large number of parti-
cles (up to 109) moving from one point to another along 
different paths within a given number of time steps (up to 
10) and computed for each path (bundle) the path probabil-
ity distribution using the Lagrangian and Hamiltonian ac-
tions. We found that the path probability depends exponen-
tially on the Lagrangian action rather than the Hamiltonian 
action as believed by some. The least action path is just the 
most probable one.  

Finally, we would like to stress that, although in this 
work we did not use the space-time scales of true Brownian 
diffusion, the exponential dependence of the path probabil-
ity based on the Lagrangian action seems not to be acci-
dental. Added support is given by a theoretical prediction 
obtained by a stochastic least action principle in our previ-
ous work [15–18]. It is also possible to develop a theoretical 
framework for random mechanical motion on the basis of 
this action principle [19]. Within this framework, an inter-
pretation of the second law of thermodynamics (time arrow) 
has been formulated on the basis of a modified Liouville 
theorem concerning the conservation of the phase space 
distribution [10,19]. 

This work was supported by the Region des Pays de la Loire in France

(2007-6088 and 2009-09333). 
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