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Motivated by the need to include the different characteristics of individuals and the damping effect in predictions of epidemic 
spreading, we build a model with variant coefficients and white Gaussian noise based on the traditional SIR model. The analytic 
and simulation results predicted by the model are presented and discussed. The simulations show that using the variant coeffi-
cients results in a higher percentage of susceptible individuals and a lower percentage of removed individuals. When the noise is 
included in the model, the percentage of infected individuals has a wider peak and more fluctuations than that predicted using the 
traditional SIR model. 

epidemic process, SIR model, white noise, variant coefficients 

 

Citation:  Gu J, Gao Z M, Li W. Modeling the epidemic spreading with white Gaussian noise. Chinese Sci Bull, 2011, 56: 36833688, doi: 10.1007/s11434- 
011-4753-z 

 

 
The history of Homo sapiens is always closely interrelated 
with the study of diseases. Whether it be the Black Death in 
Europe in the fourteenth century or the superbug that re-
cently spread across the globe like wildfire [1,2], scientists 
have always looked at diseases with great interest [3–10]. In 
the well-known theoretical SIS model, the population is 
divided into two disjoint classes, susceptible individuals and 
infected individuals, for which the percentages at time t are 
denoted by s(t) and i(t), respectively [11–14]. However, this 
model is not suitable for describing diseases like flu or ma-
laria. The subsequent Kermack-McKendrick SIR model 
[15–20] has a third class with percentages denoted by r(t). 
They are the recovered individuals who are immune to the 
infection. This is a simple model commonly used for many 
infectious diseases like measles, mumps and rubella. In 
these two models, the spread of an infectious disease in a 
population depends mainly on the character of the disease. 
The most suitable model can be chosen according to the 
particular case. However, these models do not work well for 
some special cases. For example, in the spreading of SARS, 
although an individual cannot develop lasting immunity, 

there is only a very tiny chance of being infected again. 
By mean field theory, the course of an epidemic spread-

ing is determined by the contact rates among susceptible, 
infected and removed individuals, which are assumed to be 
proportional to the number of encounters among susceptible, 
infected and removed individuals. Each individual is treated 
in the same way, even at different times. A more realistic 
and interesting model of infectious diseases should take into 
account a change in the environment and the variety of 
characteristics of individuals [21]. Along with the spreading 
process, the preventive effect should become stronger be-
cause people could find useful methods such as taking pills 
and avoiding close contacts with infected individuals to 
prevent the disease from spreading [22,23]. Moreover, how 
easy or difficult it is for an individual to be infected by oth-
ers depends on their own characteristic, such as age, nutri-
tional status, sex and so on. Therefore, each individual 
should be distinguished by different transmission coeffi-
cients and recovery coefficients. Furthermore, the part of 
the model that measures the coefficient of infection during 
the whole epidemic process should decrease as the process 
decreases. From this point of view, probabilistic or stochas-
tic models are necessary for dealing with populations in 
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which individuals have different characteristics. Our re-
search is mainly motivated by those observations. In this 
paper, we study certain classes of equations which can be 
interpreted as stochastic models of epidemic processes.  

1  Our model 

Several approaches have been used to find a mathematical 
description for the spreading of a disease through a popula-
tion. In many disease models, for simplicity, the population 
at time t is divided into three disjoint subpopulations [24]: 

s(t), the percentage of susceptible individuals; 
i(t), the percentage of infected individuals; 
r(t), the percentage of removed individuals who are im-

mune to the infection. 
In the traditional SIR model, the mathematical descrip-

tion can be written as 
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In eq. (1), β and γ are constant ratios called the transmission 
and recovery coefficients, respectively. From the definition 
of s(t), i(t) and r(t), we have 
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Therefore, 
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In this model, it appears that the characteristics for dif-
ferent individuals are lost. In a real system, individuals may 
have different infection rates so the transmission and recov-
ery coefficients should contain stochastic parts to describe 
the characteristics for different individuals. Furthermore, the 
transmission coefficient should contain a factor incarnating 
the subdued infected effect (enhanced defensive effect). 
Usually, the factor should be a damping function that is 
dependent on the evolutionary time t. Hence in our new 
model, the transmission coefficient β and recovery coeffi-
cient γ are as follows: 

 0 1( ) ( ),    s t t  (4) 

and 

 0 2 ( ),    t  (5) 

where s(t) represents the damping factor. s(t) is a decreasing 
function of time because susceptible individuals can change 
into infected ones, while others cannot normally change into 
susceptible ones. β and γ are positive constants. ζ1(t) and ζ2(t) 
are independent Gaussian white noises which reflect the 
fluctuations of transmission and recovery, respectively, for 
individuals. The white noise is caused by different body 

constitutions or by other factors. Indeed, different distribu-
tions can be chosen to describe the noises here. In the pre-
sent paper, we have chosen to use the simple Gaussian dis-
tribution. 

2  Analytic results 

First, we analyzed the equations without Gaussian noise. In 
this case, the parameters can be written as 

 0( ) ( ), t s t  (6) 

and 

 0( ) . t  (7) 

Because the parameters β and γ are positive constants, we 
denote their ratio β/γ as a positive constant α. The parame-
ters in eqs. (6) and (7) were put into eq. (1) using the condi-
tions in eqs. (2) and (3). Integrating the differential equation 

for s(t), i(t) and r(t) with initial condition s(0)  1 and r(0) 

 1 (assuming i(0)  0, a very small initial group of in-

fected individuals), the analytic solutions for s(t) and i(t) 
were obtained as functions of r(t): 
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The function r(t), which represents the recovery per-
centage, monotonically increases because infected individu-
als have a certain probability of recovery but no individual 
can switch from the removed class to other classes. There-
fore, the function s(t) is a decreasing one. However, i(t) is 
not monotonous. By calculating the first and second order 
derivatives of i(t), we can find the maximal value of i(t): 
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Because r(t)  [0,1], the parameter should satisfy the 
condition α  1. If α is not in this range, then i(t) attains its 
maximal value at the very beginning. 

Furthermore, the value of i() is equal to 0. In a real 
system, infected individuals originate from susceptible ones. 
However, the number of susceptible individuals is limited 
and all infected individuals will become removed ones with 
s(t) being zero or nonzero. This means that, when t=, 
i(t)=0 and s()=1r(). Putting this into eq. (8), we get 
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which also means that 
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The function r(t) monotonically increases, so the maxi-
mal value of r(t) always occurs at the final moment. The 
maximal value is less than 1 and approaches 1 when the 
ratio β/γ is large enough. This result has a biological inter-
pretation. If the recovery parameter γ is larger than the 
spreading parameter β, then infected individuals can be-
come recovery ones more easily than the susceptible indi-
viduals become infected ones. When all the infected indi-
viduals become removed ones, the remaining susceptible 
ones have no chance of becoming infected ones. Thus, the 
number of susceptible individuals is not equal to 0, and the 
percentage of removed individuals will obviously be less 
than 1. On the other hand, if β is larger than the recovery 
parameter γ, after almost all the susceptible individuals be-
come infected ones, all the infected individuals will slowly 
become recovery ones as the spreading process proceeds. In 
this case, the percentage of removed individuals is close to 
1. This result varies when noise is included in the models. 

We can analyze the effect that the introduction of noise 
parameters would have on the epidemic spreading. Because 
the percentage of susceptible individuals is monotonically 
decreasing, the value of β(t)s(t) will tend to zero when s(t) is 
close to zero. From eqs. (4) and (5), we can see that the 
noise parameters will become the main factors under this 
condition. Therefore, the β(t)s(t) value can be ignored when 
β(t)s(t) is close to zero. In this case, the coefficients are 

 1( )  t  (13) 

and 

 0 2 ( ).    t  (14) 

If the fluctuations of the noises are large enough, even when 
s(t) is small, the change from susceptible individuals to in-
fected ones can occur even with a tiny number of infected 
seeds. Indeed, we used the noise to describe the difference 
among individuals, and this satisfied simply Gaussian dis-
tribution. Because of the presence of noise, the spreading 
process contains more turbulence. 

3  Numerical analysis 

Some simulations which were performed are briefly de-
scribed below. 

Figure 1 shows a comparison between our model, the 
traditional SIR model and the real data for SARS in Beijing 
in 2003. The population of Beijing in 2003 was considered 
to be 1.5×107. From Figure 1, we can see that the traditional 
SIR model fits the peak value well, but not the peak width. 
The shorter predicted epidemic process may be because this  

 

Figure 1  (Color online) A comparison between the real data of SARS in 
Beijing in 2003 and the numerical simulations using the traditional SIR 
model and our model. One day in the real data is approximated by 33.3 
steps in the simulations. The parameters in the traditional SIR model were 
β = 0.21223, γ = 0.21; in our model they were β=0.153373, γ = 0.15. The 
mean and the mean square values of the variable ζ1(t) were 0 and 0.01. The 
mean and the mean square values of the variable ζ2(t) were 0 and 0.005. 
The same initial condition were used in both models: s(0) = 0.9999762, i(0) 
= 2.04×105 and r(0) = 3.4×106. 

model ignores the different characteristics of individuals. 
Because of the differences between infected individuals, as 
expected, the epidemic process is longer and contains more 
fluctuations than the traditional SIR. Considering the dif-
ferences among the individuals, including the preventive 
methods used, several susceptible persons still become in-
fected because of their close contact with infected ones. 
Doctors or individuals with weak immunities would be in 
this category. This will prolong the whole epidemic process, 
especially the epidemic peak. Therefore, the model that in-
cludes the noise can, under certain conditions, fit the real 
data better. 

Here we describe the effect of the damping factor. It can 
increase the saturation value of susceptible individuals. To 
show this effect, the numerical simulations were performed 
using the traditional SIR model and our model with and 
without noise and the results are shown in Figure 2. By in-
cluding the damping factor under the same conditions, the 
saturation value of s(t) predicted by the traditional model is 
larger than the saturation value from our model. The satura-
tion value of r(t) predicted by the traditional model is 
smaller than that from our model. This is because, under the 
control of the damping factor, the probability of individuals 
becoming infected would decrease. Additionally, the effect 
of including noise in our model is clearly seen in Figure 2(b) 
because, in that model, i(t) shows distinct fluctuation. 

In a series of simulations, we explored the effect of noise 
in our model. Figure 3 shows that the larger the mean 
squares, the greater the predicted fluctuations on the epi-
demic process. When the mean squares of ζ1(t) and ζ2(t) are 
1 and 0.2, two peaks are observed in the process. Clearly, 
the inclusion of noise in the model leads to predictions of a 
prolonged epidemic process with more fluctuations, especially  
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Figure 2  (Color online) Comparisons between the traditional model 
(with subscript “tra”) and our model with (with no subscript) and without 
noise (with subscript “wn”). The initial conditions used were s(0) = 
0.99997, i(0) = 0.00003 and r(0) = 0. The parameters in the traditional 
model were β = 0.25, γ = 0.1; in our model without noise they were β = 
0.25, γ = 0.1; in our model with noise they were β = 0.25, γ = 0.1. The 
mean and the mean square values of the noise ζ1(t) were 0 and 0.25, and 
the mean and the mean square values of the noise ζ2(t) were 0 and 0.1. (a)– 
(c) show the effect of the damping factor on the percentages of susceptible, 
infected and removed individuals, respectively, in the different models. 

during the peak time. 
We discussed the effect of the ratio β/γ when describing 

the analytical results from eqs. (11) and (12) above. The 
effect is similar to the effect predicted by the numerical 
simulations with noise. In Figure 4, when the ratio is large, 
for example α = 10, susceptible individuals are infected 
more quickly than infected ones recover. Even with a small 
number of susceptible individuals, infected ones change into 
removed ones slowly. This results in smaller saturated   

 

Figure 3  (Color online) The variations of s(t) (a), i(t) (b) and r(t) (c) with 
the time step t using different noise parameters in our model under the 
conditions: s(0) = 0.99, i(0) = 0.01, r(0) = 0, β = 0.5 and γ = 0.1.  

values for s(t) and r(t). Conversely, susceptible individuals 
cannot become infected ones quickly when there are a small 
number of infected individuals because there are not enough 
infected seeds. An extreme example is AIDS spreading. The 
recovery coefficient is near to zero (because the infected 
person usually dies after several or many years), so the ratio 
is almost infinity. If no cure is found for the infected people 
or no preventive method to prevent its spread to susceptible 
people is available, then this disease will spread across the 
globe even over a long time period. 

4  Conclusion 

In this paper, we report the development and application of  
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Figure 4  (Color online) The variations of s(t) (a), i(t) (b) and r(t) (c) with 
the time step t using different ratios of β/γ in our model. The initial condi-
tions were s(0) = 0.99, i(0) = 0.01 and r(0) = 0. The mean and the mean 
square values of the variable ζ1(t) and ζ2(t) were 0 and 0.05. α = 10, means 
β = 0.25 and γ = 0.025; α = 1 means β = 0.25 and γ = 0.25; and α = 0.1 
means β =0.025 and γ = 0.25. 

a modified SIR model with varied coefficients and white 
Gaussian noise. In the traditional SIR model, it assumed 
that the ensemble transmission effect can be described by a 
constant. However, this ignores the use of preventive and 
control methods along the epidemic process. Therefore, we 
included a damping factor, which is normally a decreasing 
function, to control the epidemic. Because of the presence 
of this factor, the saturation value of s(t) was larger than in 
the traditional SIR model and the saturation value of r(t) 
was smaller than that in the traditional SIR model. 

Additionally, considering the different characteristics of 
individuals, the transmission coefficient and recovery coef-
ficient were supposed to contain independent Gaussian 

noises representing the differences among individuals in a 
population. Because the damping factor weakens the in-
fected effect, when the noise is included and the time is 
large enough, the susceptive individuals can still be infected. 
Thus, by including the noise the model can predict a pro-
longed epidemic process producing the peak with some 
fluctuations. 

The analytic results also showed, that without the noise, 
the percentage of infected individuals i(t) can attain its 
maximal value under given conditions. The percentage of 
removed individuals r() is close to 1 when the ratio β/γ is 
large enough. When the noise and the modified coefficients 
were included, our model fitted the real data of SARS in 
Beijing in 2003 well, because it predicted the wider peak for 
i(t). In summary, we propose the use of variant coefficients 
and white Gaussian noise to describe the epidemic process. 
Including these parameters in the models might give us 
some new understandings about the epidemic process. Ex-
ploring this idea for other models and networks might pro-
duce useful results and is worthy of further study. 
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