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English and Chinese language frequency time series (LFTS) were constructed based on an English and two Chinese novels. 
Methods of statistical hypothesis testing were adopted to test the nonlinear properties of the LFTS. Results suggest the series ex-
hibited non-normal, auto-correlative, and stationary characteristics. Moreover, we found that LFTS follow the power law distribu-
tions, and thereby we investigated the fractal structure, long range correlation, and intermittency, which indicated the 
self-similarity features of LFTS, and also provided hints that human societies are likely to share some universal properties. 
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Composed of a number of different words, written human 
language texts, such as novels, poems, and essays, are 
simply normal examples of complex systems in nature [1–3]. 
In recent years, along with the development of complex 
network theory, physicists have shown great interest in an-
alyzing the characteristics of written human language texts 
from the complex network perspective. 

For example, Masucci and Rodgers [3] found the exist-
ence of different functional classes of vertices, and noted 
the significance of second order vertex correlations in Eng-
lish written human language networks. Li and Zhou [4], on 
the other hand, analyzed the Chinese character system, 
supposing that radicals comprised nodes and that two nodes 
were linked if they could form a character or part of one. 
Their results revealed that character networks displayed 
small-word properties and showed non-Poisson degree dis-
tributions. Liu [5] built a Chinese semantic network based 
on a treebank with semantic role annotation and then inves-
tigated its global statistical properties. Liu and Li [6] also 
explored 15 linguistic complex networks based on the de-

pendency of the syntactic treebanks of 15 languages. Yu et 
al. [7] described a series of identification experiments and 
rating experiments on the influences of the distance, spec-
tral shape, and relative amplitude of the first two formants 
of the phonetic quality of /γ/. 

In addition to the network point of view, however, time 
series analysis is also an important method for extracting 
information from signals related to real world complex sys-
tems. By analyzing such signals, we can better understand 
the underlying properties of complex systems.  

Thus, time series analysis methods have also been used 
to investigate written human language texts [8–11]. Cur-
rently, there are two ways to map a text into a time series. 
One counts the number of letters of each word, namely 
word length l, while time t refers to the position of the word 
in the document, i.e. the first word is considered to appear at 
time t=1, the second at time t=2, etc. By mapping word 
length to time in this way, length time series l(t) are con-
structed. The second way calculates the probability of ap-
pearances of each word in a text, namely the frequency f, 
while time t refers, again, to the position of the word; thus 
frequency time series f(t) are constructed. 
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In the current study, we attempted the second way of text 
mapping in an experiment to map the English and Chinese 
language text into frequency time series (www.cuiweiju.com, 
www.marxists.org). Two Chinese novels, A Q Zheng Zhuan 
(AQC) and Kun Lun Shang (KLS), and an English translat-
ed version of A Q Zheng Zhuan (AQE) were selected. The 
frequency of each word in the three novels was calculated, 
and each word was replaced by its corresponding frequency 
throughout the novels; the language frequency time series 
f(t) was thus constructed. 

As is well known, English and Chinese are two of the 
commonly used languages of the world, and both play im-
portant roles in international communication. In this paper, 
through analyzing the self-similarity of language frequency 
time series (LFTS), we attempt to find similar characteris-
tics between the English and Chinese written human lan-
guage texts, while also making comparisons between the 
two types of text. Furthermore, we relate the findings to 
language study and human thinking styles.  

By employing statistical hypothesis testing, we first put 
our emphasis on investigating several nonlinear properties 
of the LFTS, such as the JB test, the autocorrelation test, 
and the unit root test. These tests showed the foremost 
properties of the LFTS, on the basis of which we discussed 
the scaling properties of the LFTS, such as frequency dis-
tribution, fractal behavior, long range correlations, and in-
termittency. 

1  Statistical hypothesis testing of the language 
frequency time series 

In the literature, hypothesis testing is generally called con-
firmatory data analysis, the results of which are deemed to 
have statistical significance if they are unlikely to have oc-
curred by chance. When such tests are available, we may 
discover whether a second sample is significantly different 
from the first. Such decisions are normally made using null- 
hypothesis tests, which, assuming that the null hypothesis is 
true, determine the probability of observing a value for the 
test statistic that is at least as extreme as the value actually 
observed. 

In the following section, we considered the Jarque-Bera 
test, the autocorrelation test, and the unit root test of the 
LFTS, respectively. 

1.1  JB test 

It is apparent that the mean value, standard deviation, 
skewness, and kurtosis are simply normal parameters which 
describe the characteristics of time series. Skewness and 
kurtosis reflect the asymmetry degree and the convergence 
degree of the return series, respectively; for a standard nor-
mal distribution, the skewness is 0 and the kurtosis is 3. 

Here, we introduce the Jarque-Bera test [12], along with 
the null hypothesis that the data are drawn from a normal 
distribution, that is, the skewness and kurtosis values are 0 
and 3, respectively. The statistical quantity of the JB test is 
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where S is the skewness, K is the kurtosis, n is the statistics 
of the sample, and JB is the quantity for the JB test. The 
results of the JB test are shown in Table 1. 

The results show that the skewness values of the lan-
guage frequency time series are all non-zero, and that the 
kurtosis values are much larger than 3, indicating that they 
exhibit the leptokurtic. At the 5% significance level, the p 
values all equal 0, and thus we can reject the null hypothesis 
following the normal distribution, which implies that the 
language frequency time series are not random. In other 
words, when we express our ideas with text, some words 
may be used more often than others, such as prepositions 
and conjunctions, etc.  

1.2  Autocorrelation test 

Autocorrelation is the cross-correlation of a signal with it-
self. As a test, it is a mathematical tool to find repeating 
patterns, such as the presence of a periodic signal that has 
been buried under noise, or the identification of a missing 
fundamental frequency in a signal implied by its harmonic  

Table 1  JB test results of the LFTS 

Sample Statistics Mean SD Skewness Kurtosis JB p value* 

AQC 21118 0.007 0.010 2.145 7.381 28441 0 

AQE 17204 0.009 0.013 1.981 6.523 19975 0 

KLS 23270 0.005 0.009 2.699 9.848 64069 0 

* Statistical significance at 5% level. 
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frequencies [13]. 
The autocorrelation coefficient denotes the correlation 

degree of a language frequency time series f(t), f(t1), ..., 
f(tk) in different periods, and is defined as 
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The values of ACk range from 1 to 1, and the larger the 
absolute value of ACk, the stronger the correlation in the 
language frequency time series. 

The Ljung-Box test [14], on the other hand, is a type of 
statistical test that tests whether any of a group of autocor-
relations of a time series is different from zero. Instead of 
testing the randomness at each distinct lag, it tests the 
“overall” randomness based on a number of lags. The null 
hypothesis of the Ljung-Box test is that the language fre-
quency time series is random, and the test statistic is the Q 
value, which is defined as 
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where t is the observation of the sample, and ACj is the au-
tocorrelation coefficient. As in Table 2, one can observe 
that the Q values are large and the p values are all 0, and 
thus we can conclude that there exist strong autocorrelations 
in the language frequency time series, which indicates that 
the later time series strongly correlate with the former ones. 

1.3  Unit root test 

In statistics, the unit root test is used to test whether time 
series variables are non-stationary using an autoregressive 
model [15]. Generally, the stationary time series should 
satisfy the condition that the mean value be almost constant 
at any time point in the time series, and that the autocorrela-
tion function at two different time points is only relative to 
the time interval of the two time points ∆t. 

A well-known test that has been validated in large sam-
ples is the Augmented Dickey Fuller (ADF) test, which uses 
the existence of a unit root as the null hypothesis. The more 
negative the ADF statistic is, the stronger the rejection of 
the hypothesis that there is a unit root at some level of con-
fidence. 

Table 2  Autocorrelation test of the LFTS 

Sample AC* Q value* p value* 

AQC 0.004 167.7 0 

AQE 0.002 416.38 0 

KLS 0.011 229.2 0 

* At 11th order of lag. 

As seen in Table 3, one can find that the values of the 
ADF are much smaller than the critical values of the three 
different significance levels 1%, 5%, and 10%, and thus we 
can conclude that the language frequency time series are all 
stationary time series. Furthermore, it might be convenient 
for us to analyze the other properties of the language fre-
quency time series. 

The results of the autocorrelative and stationary proper-
ties tests suggest that the structures of human language texts 
might be similar across sentences, with only some insignif-
icant fluctuations.  

2  Self-similarity of the language frequency time 
series 

The above statistical hypothesis tests demonstrate that lan-
guage frequency time series are non-normal and stationary, 
and that later time series correlate with former ones; these 
results suggest that language frequency time series might 
display self-similarity characteristics.  

Therefore, in this section we discuss in detail the distri-
butions of the language frequency time series, and also em-
ploy detrended fluctuation analysis (DFA) to investigate the 
self-similarity of language frequency time series character-
istics, such as fractal structure, long range correlation, and 
intermittency, etc. 

Moreover, through such investigations we try to identify 
commonly shared characteristics of written human language, 
while also comparing the different properties of the English 
and Chinese languages. 

2.1  Distribution of the language frequency time series 

As seen in Figure 1, the distributions of the language fre-
quency time series all follow the shifted power law (SPL) 
[16] function: 

 0( ) ( ) .  P f f f  (6) 

Resorting to the original data, we discover that words 
with a large frequency tend to form binary structures, and 
are more likely to constitute phrases or short sentences. Al-
so, one can observe that the two Chinese language frequen-
cy time series almost overlap with each other, while they 
are different from the English frequency time series. This 
difference may be partially attributed to the different gram-
mar rules of English and Chinese.  

Table 3  Unit root test of the language frequency time series 

Sample ADF 1% 5% 10% p value 

AQC 105.4 3.43054 2.86151 2.566795 0.0001 

AQE 105.907 3.43056 2.86152 2.5668 0.0001 

KLS 91.1179 3.4305 2.86149 2.56679 0.0001 
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Figure 1  Distribution of the language frequency time series. 

2.2  Fractal structure of the language frequency time 
series 

The Hurst exponent [17,18] is generally used to measure the 
long term memory of time series, such as autocorrelations, 
etc. The value 0<H<0.5 indicates a time series with a nega-
tive autocorrelation, which means that a word with a small 
frequency value will probably be followed by a word with a 
large frequency value. The value 0.5<H<1, on the other 
hand, indicates a series with a positive autocorrelation, such 
as a word with a large frequency value followed by another 
word with a large frequency value. Finally, a value of 
H=0.5 indicates a true random walk of the time series which 
has no memory of previous values. 

Here, taking the standard deviation of the language fre-
quency time series as a new time series, we employed the 
detrended fluctuation analysis (DFA) method to calculate 
the Hurst exponent, that is, to calculate the standard devia-
tion of the new time series: 

 ( ) ~ .Hstd t t    (7) 

Std(t) is the standard deviation of the standard deviation 
time series, t is the time scale, and H is the Hurst exponent. 
The calculation steps are as follows. 

(1) The language frequency time series sample N is di-
vided into n bins, with the length of every bin being T=N/n, 
and then the standard deviation s(j) is calculated in all 
non-overlapping bins of length T, which denotes the fluctu-
ations in every bin. 
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(2) s(j) forms a new time series. The sum of the fluctua-
tions trace in step t is 
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The increment is ∆x(t0)=x(t+t0)x(t), t is an original value, 
and t0 is the increment. 

(3) The standard deviation of the increment ∆x(t0) is cal-
culated as 

 
22
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(4) The least squares method has been applied to calcu-
lating the Hurst index H, Std(t0)~t0

H. 
The results of the detrended fluctuation analysis of the 

standard deviation is shown in Figure 2, and the Hurst ex-
ponent H is calculated using least-squares regression, with 
Std(t0)~t0

H. As seen in Figure 2, the values of the Hurst ex-
ponent H are 0.53, 0.57, and 0.61 for AQC, AQE, and KLS, 
respectively, which are all between 0.5 and 1; thus one can 
observe the persistent behavior that exists in the language 
frequency time series. The larger the Hurst exponent, the 
stronger the persistent behavior, and thus we can conclude 
that the persistent behavior for the English language is 
stronger than that of the Chinese language due to the flexi-
ble mechanisms of English. 

While the fractal dimensions α are all less than 2, which 
suggests the language frequency time series possess the 
characteristics of the fractal structure and the long term 
memory, structures of written human language appear to 
have similar properties in different sentences. The fractal 
time series is self-similar in essence, that is, the series may 
have some similar statistical characteristics in the different 
time scales, and the probability distributions of the series 
still retains the same profile even if the time scale changes.  

2.3  Long range correlation of language frequency time 
series 

The detrended fluctuation analysis (DFA) [19,20] is a scal-
ing analysis method that can be also applied to quantifying 
the long range power law correlations in a time series anal-
ysis; the scaling exponent is used to clarify the time series 
that appear to be long memory processes or 1/f noise. 

 

 

Figure 2  Fractal structure of language frequency time series, by investi-
gating the Hurst exponent. 
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Supposing fi (i=1, 2,   N) is a time series of length N, 
the calculation approach of the DFA follows five steps. 

(1) The time series to be analyzed (with N samples) are 
integrated. 

 
1

( ) [ ],


   
j

i
i

y j f f    (12) 

 
1

1
.



   
N

i
i

f f
N

  (13) 

(2) The integrated time series are divided into boxes of 
equal length S, and a least squares line is fit to the data in 
each box of length S, which represents the trend in that box; 
then the y coordinate of the straight line segments is denoted 
by ys(k). 

(3) The integrated time series y(k) is detrended by sub-
tracting the local trend ys(k) in each box; then the root mean 
square fluctuation of this integrated and detrended time se-
ries is calculated by 
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(4) Repeat the calculation steps (1)–(3) for different box 
sizes S to characterize the relationship between F(S) and the 
box size S. 

(5) The scaling exponent β is calculated as the slope of a 
straight line fit to the log-log graph of S against F(S). 

 ( ) .F S S    (15) 

The scaling exponent β is similar to the Hurst exponent, 
according to which we can divide the time series into three 
categories. (1) If β=0.5, there is no correlation at all, and the 
time series follows random walking. (2) If β > 0.5, a persis-
tent long-range power-law correlation exists in the time 
series. (3) If β<0.5, power-law anti-correlation is presented 
in the time series. 

The results of the detrended fluctuation analysis of the 
language frequency time series are presented in Figure 3,  

 

 

Figure 3  Long range correlation analysis of the language frequency time 
series. 

with ( ) F S S , slope β equal to 0.61 for AQC and KLS, 

while the result of AQE was 0.63. Thus we can observe that 
the persistent long range power law correlation exists in the 
time series, and that the persistent trend is stronger for the 
English language, which is consistent with the results of the 
research on the fractal structure. The persistent long range 
power law correlations may also imply that self-similarity 
definitely presents in the time series. 

2.4  Intermittency in the language frequency time series 

Intermittency has been observed in many time series, which 
indicates that observations can differ dramatically depend-
ing on the timing. For example, fast increases in heart rate, 
which results from physiological activity, might exhibit 
intermittency. This is an essential property of the system 
that has been broadly used to characterize databases. The 
concept of intermittency we consider here also has connec-
tions with the concept of multi-scaling, or multi-fractal, in 
the stochastic processes. 

We first divide the value range of the frequency ∆ into M 
intervals δ, with M = ∆/δ. n is the number of frequencies 
that fall in δ of one event. Here, “one event” refers to the 
ensemble of frequencies in a single paragraph. Then, the 
q-order scaled factorial moment is defined as 
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where the brackets indicate an average over all paragraphs.  
If power-law scaling follows 

 ,  0,
  q

q qF   (17) 

then we can conclude that intermittency behavior has been 
observed.  

Calculating the second-order scaled factorial moment F2, 
we show the relationship between F2 and the intervals δ in 
Figure 4; the power-law scaling is also shown in double- 
logarithm scale, with 

 

 

Figure 4  Intermittency behavior of the frequency time series using the 
scaled factorial moment method. 



3722 Deng W B, et al.   Chinese Sci Bull   December (2011) Vol.56 No.34 

 2 ,  0.  F      (18) 

Thus, we can draw the conclusion that intermittence phe-
nomena exist in the frequency time series, which might fur-
ther show evidence that the frequency time series possesses 
self-similarity characteristics.  

3  Discussion and conclusion 

We have executed both English and Chinese language fre-
quency time series analyses, which demonstrate that lan-
guage frequency time series show non-normal and auto- 
correlative properties, and that the distributions of the lan-
guage frequency time series exhibit the shifted power law 
format. Based on the above analyses, further investigation 
will be needed on the fractal behavior, long range correla-
tions, and intermittency of the language frequency time se-
ries. In this study, we found that the fractal structure, per-
sistent long range correlation, and intermittency exist in the 
language frequency time series, which suggests that human 
societies are apt to possess some commonly shared charac-
teristics, such as self-similarity. However, whether these 
properties are tenable for language length time series is un-
clear. Future work should pay attention to such issues. 
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