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A first-principles derivation is presented of canonical distributions for a finite thermostat taking into account nonextensive energy. 
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variational entropy function is also derived from these distribution functions.. 
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Studies into the family of small or finite-size systems reveal 
that these systems show complex statistical characteristics 
very different from large systems, and expose failings in our 
understanding of thermostatistics for finite systems and 
their nonequilibrium dynamics [1–4]. One of these charac-
teristics is nonextensivity (refer to [2] and references therein 
for examples), which means that macroscopic quantities of 
such systems may not be proportional to system size. A 
thermodynamic quantity of a nonextensive system is called 
nonadditive if this quantity is not the sum of that of its sub-
systems. Nonextensivity might arise from surface effects or 
interactions between subsystems. Thus, extensive energy and 
entropy may become inappropriate in treating finite systems. 

There has already been much discussion on the proper-
ties of finite systems that has raised many questions and 
controversies [5–7]. To describe the behaviors of these sys-
tems, one point worth noting is that the Boltzmann-Gibbs 
statistical mechanics, which is based on the concept of ex-
tensive entropy, is not applicable [1,8,9]. Consequently, it is 
questionable to assume an exponential distribution for finite 
systems. Therefore, one of the first things to work out for a 
statistical description of finite systems is to find the appro-

priate probability distribution. Some published results ob-
tained by first principles (see [8] for example) have shown 
that a small system, in equilibrium with a finite reservoir, 
may follow a q-exponential distribution of nonextensive 
statistical mechanics (NSM), as proposed by Tsallis [9]. 
This NSM has been used widely in many areas, and consid-
ered effective in solving many physical problems [10–13]. 
Results from mathematical proofs are able to demonstrate a 
connection between the system’s finiteness and nonexten-
sivity of the theory. However, most proofs have relied on 
the additivity of energy. Clearly, for large systems, this as-
sumption is acceptable and provides a helpful approxima-
tion in obtaining the statistics in the thermodynamic limit. 
The assumption is, however, questionable when establishing 
statistics for finite systems. Related problems arising from 
this additive energy assumption can be found in [14–17]. 

Work in [18] represents a first attempt to build statistics 
for finite systems based on energy nonadditivity. A result 
proved in this work was that additive energy is unnecessary 
in the development of a NSM for small systems by mean 
field theory. In our present work, we follow on from [18], 
and provide results that have greater generality. We have 
introduced the high-temperature approximation for the sake 
of simplicity. In the following sections, the possible canoni- 
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cal distribution and thermodynamic entropy are derived. 
Based on the results from these calculations, a summary and 
some interesting inferences are given. 

1  Probability distribution for the model 

We present here introductory material and brief outlines of 
proofs required in later sections. As in [19], let us begin 
with an adiabatically and mechanically isolated system  , 
with finite N particles and energy E. The probability distri-
bution function can be given by 
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Next, divide this system into two interacting subsystems 

1 and 2 with Hamiltonians H1(X1) and H2(X2). Assuming 

the nonadditive rule of energy suggested in [20,21], we can 
write the energy of the system as  
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where λ is a coupling constant, which denotes the nonexten-
sivity of the system. Here is the generalized form of the 
additive energy; 

1 1 2 2( ) ( )H X H X  is the interaction energy 

between 1  and its thermostat system 2 . Obviously, we 

still have the assumption 1 1( )H X E , even if the thermo-

dynamic limit N→∞ is invalid. If we substitute eq. (2) into 
eq. (1), the probability distribution of 1  is given by 
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where K(P2) is the kinetic energy and V(R2) is the potential 
energy of the particles in the thermostat system, with the set 
of momenta and coordinates denoted by P2 and R2, respec-
tively. For simplicity, we let H1, H2 and H represent H1(X1), 
H2(X2), and H(X) in the following work. Hence { }k   can 

be given in the form  
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in which we have set 1 1 2(1 ) ( )y E H H V R     and 

1 2 1 1 2( , , ) [1 ( )] ( )u H P H X K P   . Here { }k y  can be regarded 

as the hyper-surface corresponding to u=y. Naturally, it is 
equal to the derivation of the hyper-volume of the momen-
tum space associated with P2 by the quantity 1 2( , , )u H P , 

i.e. { }k ky y     with 
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After introducing new variables, 
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with k=3(n1)+α and the mass of n-th particle mn, the equa-

tion u=y can be written as 
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Here b depends only on N2. Thus, we can get the following 
distribution: 

2

2

2 2

2

3

2
1 1

3
1

2
1 1 2 2

3 3
1

2 2
1 1

3
1

2
1

2 2

1

( ) (1 )

{ [1 ] ( )} d

(1 ) ( )

1
1 ( ) d , 

 

 

 

N

N

N N

N

b
p X H

E H H V R R

b
H E H

H
V R R

E H















 



 

  

  








 
  

 





  

(8)

 

where b   is the normalization constant if the mass of 

the particle is fixed. This equation is exact, because we have 
not made any approximation so far. For an adiabatically 
system, it is easy to see the following relationship: 
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If the high-temperature approximation is introduced, we 
immediately get H2>>V(R2), which indicates that the kinetic 
energy is much greater than the potential energy. Next, the 
integral in eq. (8) can be expanded as follows: 
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where V represents the volume of the system. Considering 
the result above, the energy distribution function for finite 
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systems can be written as 
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Here, we have replaced H1 by ε and 2
2 2( )d / Nk V R R V   

which include potential energy contributions. Moreover,  

we will find that 
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 obtained in the high-     

temperature approximation. By employing the same trick as 
eq. (10), eq. (11) can be replaced by 
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Thus, the final distribution can be given as 
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In the above derivation, we have taken 2 23 3
1

2 2

N N
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From eq. (13), we conclude that the distribution of a finite 
system with nonadditive energy is dependent on the size of 
the system and the nonextensive parameter. Having as-

sumed that E , we can expand 
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first order, as long as the factor λE is not much larger than 1, 
implying that the nonextensive energy λH1H2 is relatively 
small compared with H2. Thus, we obtain 
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In seeking to explicitly reveal the influence of nonextensiv-
ity, we neglect the potential energy to reduce the complexity 
of the equation; i.e. we are considering the distribution for 
an ideal non-interacting classical system. Hence the final 
distribution eq. (13) reduces to 
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where C is a normalization constant. Moreover, because 
interactions are ignored, it is reasonable to assume that 

23
,

2

N
E   where θ/2 represents the mean kinetic energy 

per degree of freedom in the reservoir. By employing the 
normalization condition 
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one can easily get the expression for C. Figure 1 shows 
curves of the probability distribution in eq. (15). 

These curves suggest that probabilities associated with 
for high-energy states increases as nonextensive energy 
declines. If λ=0, curves reduce to exponential decays as   
N2→∞. However, if λ≠0, no trend to a Boltzmann    
distribution will occur because of nonextensive energy  

 

Figure 1  Probability distribution versus energy for fixed particle number 
N2=100 and different values of . 

considerations. 
Notably, for weak potential energy, we can derive this 

energy distribution in an alternative way. Adopting the con-
clusion of [16], we get 
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As is discussed above, both H1 and λH1H2 are much smaller 
than H2, and hence we obtain the conclusion that 2E H . 

Imposing this constraint, we can rewrite the Hamiltonian in 
eq. (2) as 

 1 2 1 1 2 2( ) ( , ) ( ) ( ),H X H X X H X H X    (18) 

where 1 1 1 1( ) (1 ) ( )H X E H X   . If we substitute 
1 1( )H X  

for the H1(X1) in eq. (17), the original distribution trans-
forms exactly into the form of eq. (15), which justifies eq. 
(15) from another standpoint. The above calculations sug-
gest that NSM distributions for small systems based on 
nonadditive energy exist. Additionally, as we have not taken 
account of specific forms of interactions, this distribution 
might be applicable for various specific forms of the poten-
tial energy. 

2  Entropy function in ideal case 

With entropy as defined in [22] as a measure of disorder or 
randomness in a thermodynamic system, we can give the 
thermodynamic entropy by a variational relation: 

 d (d d ),S      (19) 

where β is the inverse temperature. This expression for the 
variation in entropy can be viewed as a generic entropy 
definition of an uncertainty measure, and the specific form 
can be derived from this entropy expression if the probabi- 
lity distribution is given. Let {pi} be the set of probabilities 
corresponding to the spectrum {εi}. In the ideal case, we can 
write the probability distribution for a finite system with 
nonadditive energy as 
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where Z is given in the form 
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From the definition eq. (19) 
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where i (pi) can be solved from the energy probability dis-
tribution eq. (20) 
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we have a very specific form for the entropy, namely 
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Considering the variational condition d 0i
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After integration, the expression for entropy is 
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in which the const ensures that S vanishes in the absence of 
uncertainty. 

The dependence of S for a two-state system on a single- 
state probability for different values of E is given in Figure 
2, from which S is seen to be maximal for states of equal 
probability. Moreover, the value of entropy decreases as  
increases; the explanation is that an increasing interaction 
energy reduces the residual uncertainty for the system of  

 

 

Figure 2  Entropy S for two-state system versus probability for fixed 
particle number N2=100 and different values of E. 

interest.  
If =0, we find that entropy reduces to the same form as 

the Tsallis entropy 
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where 2
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
. This nonextensive index coincides with 

that of [23], the index deduced on the basis of additive  
energy. 

3  Discussion and conclusion 

In summary, under the assumption of nonadditive energy, 
we have derived the energy probability distribution for fi-
nite size systems from first-principles. The Boltzmann dis-
tribution can be obtained by taking λ=0 and the thermody-
namic limit, N2→∞. From eq. (13), the nonextensive ener-
gy precludes the distribution from reducing to Boltzmann 
form even if N2→∞. These calculations have been made 
without considering explicit expressions for the potential 
energy. Thus, the validity of the conclusions might be gen-
eral and independent of differences in the potential energy. 
The result is valid to describe the general thermostatistics of 
finite systems. The Boltzmann distribution appears as a 
special case within the framework. However, some ques-
tions with the procedure still remain. For example, the basic 
assumption that the energy nonextensivity of finite systems 
can be parameterized by a fixed constant , unrelated to the 
properties of the system, is not a sound hypothesis. This 
nonextensive parameter depends on the characteristics, such 
as size and interactions of the system. Some adjustment of 
this model can be brought by introducing a  related to size, 
but calls for further research. These investigations can be 
applied to the analysis of various systems [24–27]. By 
deepening our understanding of distribution functions and 
their statistics, we would have a very powerful tool for the 
study of complex systems. 
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