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In many animals and insects, hearing is very acute to the faintest of sounds; the underlying mechanism can be explained by 
self-tuning. Recently, signal response amplification has been shown to be implemented through networks exhibiting scale-free 
topology, which has potential applications in artificial information processing systems and devices. We review in this paper the 
main results obtained in networked double-well oscillators and briefly discuss future research directions.  
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Systems that can detect and amplify signals at specific fre-
quencies are commonplace in the natural world and most 
notably in the visual and auditory systems of animals [1]. 
Signal detection in animals is through light- and aural-  
sensitive organs, constituted by a large number of net-
worked units. For example, cells in living organisms re-
spond to their environment by an interconnected network of 
receptors, messengers, protein kinases and other signaling 
molecules [2–4]. One of the more prominent features of our 
hearing system is the ability to perceive sound stimuli that 
range over six orders of magnitude in sound pressure [5]. 
Hair cells within the cochlear are stimulated by sound 
waves, the induced motion being amplified at characteristic 
locations that depends on the frequencies of sound. These 
cells transmit signals to the auditory nerve [6]. 

It is well known that many animals and insects have the 
ability to detect faint sounds from their environment. Physi-
ological evidence exists for a range of animals and insect 
auditory systems that this active audition is due to Hopf 
bifurcations [7–9]. Models have also been proposed to de-
velop the underlying mechanism behind enhanced amplifi-
cation in hearing systems, i.e. self-tuned critical oscillations 
of hair cells nearby the Hopf bifurcation. For example, 
Camalet et al. argued that the active amplification of faint 

sounds is provided by a dynamic system maintained at the 
threshold of an oscillatory instability [2]. Stoop et al. sug-
gested a van-der-Pol oscillator model to explain the active 
signal amplification in the Drosophila hearing system [4]. 
McCullen et al. claimed that the generalized van-der-Pol 
oscillator with a 3-cell feed-forward network can explain 
the signal amplification well [1]. In detail, a double-well 
potential may be used to show how self-tuning works [10]. 
This potential can be expressed in the form U(x) = a(x1)2 

×(x+2)2, where a controls the barrier height of the potential; 
x=±1 are the locations of the two minima. Suppose an os-
cillator has probability w+ (w) of jumping from the right 
(left) well to the left (right) well; then self-tuning means that 
the parameter a can be self-adjusted by the following equa-
tion: 

 
d ( )

( ) [ ( ) ( ) ( ) ( )],
d

a t
a t w t p t w t p t

t
          (1) 

where p+ (p) denotes the probability that the oscillator stays 
at x=±1. If w+ and w are small, the first term in eq. (1) will 
be larger than the second term and thus result in a decrease 
in a. For larger w+ and w, the first term in eq. (1) will be 
smaller than the second term and thus result in an increase 
in a. Therefore, the parameter a is self-tuned to an optimal 
value by switching probabilities w+ and w. 

Scientists and engineers frequently take inspiration from 
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nature, although signal detection is one area where biology 
has excelled in producing systems with superior characteris-
tics over man-made devices. Artificial information-pro- 
cessing systems and devices usually consist of many non-
linear oscillators [11–13]. An interesting question is what 
can be incorporated into artificial systems and devices from 
these self-tuning auditory systems of animals and insects. 
Most of the technical and biology networks have been 
found to be scale-free (SF) networks where node degrees 
satisfy a power-law distribution [14,15]. Accruing evidence 
suggests that the functional connections between different 
areas of human and cat brains are also SF networks [16–18]. 
Recently, the brain, a vastly interconnected network, has 
been shown to behave much like the internet [19]. Thus, 
understanding how the SF topology of networked units in-
fluences signal detection abilities is an essential task. 

This topic has been intensely studied recently [20–23]. 
By considering a SF network with a double well unit on 
each node, the network topology has been found to have a 
strong effect on the signal response, especially for weak 
external signals. We summarize three important achieve-
ments: (1) Acebron et al. first considered weak signaling for 
a Barabasi-Albert (BA) SF network and found that the hub 
has the ability to amplify weak signals in a middle range of 
coupling strength [20]. (2) Liu et al. discovered that when 
adding noise, the hub will exhibit a double resonance asso-
ciated with noise and coupling strengths [21]. (3) Kondo et 
al. showed that the hub and other nodes also contribute to 
signal amplification, i.e. each fifty-fifty unit corresponds to 
a maximum amplification at a specific coupling strength 
[23]. In this paper, we will review these results and briefly 
discuss future research directions. 

1  Signal amplification on the hub 

In accordance with the BA algorithm, we first construct a 
SF network with total node number N, average links k, and 
degree distribution p(k)~k3 [24,25]. Next, on each node we 
set a double-well oscillator linked with others, each link 
having coupling strength λ. Interactions among the oscilla-
tors can only occur via these links. The networked double- 
well systems are as follows: 

 
.

1

d ( ) /d ( ) cos ,
ik

i i i j i
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      (2) 

where the potential 2 2( ) ( 1) ( 1)V x x x   , ki denotes the 

number of links of node i, and cosA t  the weak signal. 
This potential has an unstable maximum at x=0 and two 
minima at x=±1. Without couplings, an oscillator will ulti-
mately stay at one of the two minima. We choose a signal 
strength A=0.8 so that there is no jumping at non-hub nodes. 
In this paper, we fix N=500, k=6 and 0.5   for the SF 
network if without specific illustration. Initially, { ( 0)}ix t  

( 1, 2, , ) i N  are randomly chosen to be either 1 or 1 

with probability 1/2. Figure 1 shows the stationary state of 
two typical nodes; the dotted and solid lines represent the 
evolutions on the hub with links khub=68 and a general node 
with links kge=5, respectively, and (a), (b) and (c) corre-
spond to coupling strengths λ=0.02, 0.05 and 0.1, respec-
tively. From Figure 1(a) we see that the general node oscil-
lates around the equilibrium point x=1 whereas the hub os-
cillation is a little away from x=1 and with much larger am-
plitude than that of the general node. At the optimal cou-
pling strength λ=0.05, the hub will oscillate between x=1 
and x = 1, i.e. around x=0; see Figure 1(b). If λ is greater 
than the optimal value, the hub oscillation will be away 
from x=0, again because of the synchronization of oscilla-
tors; see Figure 1(c). That is, the hub oscillation is signifi-
cantly amplified in a mid-range in the coupling strength 
whereas the general node is not. 

To characterize the signal response amplification at the 
hub, Acebron et al. introduced a gain G as a measure of the 
information processing efficiency and find that the hub has 
the ability to amplify weak signals in a mid-range in the 
coupling strength [20]. Specifically, G is defined by 

 max / / ,i L
i

G a A a A   (3) 

where [max ( ) min ( )] / 2 i t i t ia x t x t  determines the os-

cillation amplitude for the i-th node and aL the maximal 
amplitude given by the L-th node. Although G depends on 
the maximal ai which is not necessary for the hub, both the 
theoretical analysis and numerical simulations in the work 
of Acebron et al. [20] focus on the hub. Implicitly, they as-
sume that the maximum response occurs on the hub, which 
is correct only for a very weak signal. Figure 2 shows how 
the gain on the hub changes with coupling strength λ where 
the “squares”, “circles” and “triangles” identify results for 
signal strengths A=0.4, 0.8 and 1.2, respectively. Note that 
G is significantly amplified in a range around λ=0.05. 
 

 

Figure 1  Signal response on a BA network with N=500, with coupling 
strength, corresponding to panels λ = 0.02 (a), λ = 0.05 (b) and λ =0.1 (c). 
The dotted and solid lines represent the dynamics of the hub with links 
khub=68 and of a general node with links kge=5, respectively. 
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Figure 2  The gain G of the hub as a function of coupling strength λ for a 
SF network with N=500 and k=6; “squares”, “circles” and “triangles” 
mark signal strengths A=0.4, 0.8 and 1.2, respectively.  

Considering that the hub has a large degree, Acebron et 
al. treated the hub and its neighbors as a starlike network. 
That model explained the observed behaviors in Figure 2 
very well; see details in [20]. 

2  Double stochastic resonance 

Stochastic resonance (SR) was originally investigated by 
Benzi et al. to model switching of the Earth’s climate be-
tween ice ages and periods of relative warmth with a period 
of about 105 years [26]. An important ingredient of SR is 
the existence of optimal noise strength where the signal-to- 
noise ratio (SNR) of a nonlinear system is found to be sen-
sitive to the noise amplitude and can reach a maximum val-
ue at an optimal noise level [27–29]. A large number of 
applications of SR have been reported [11–13,27–32], espe-
cially in biological systems. One new aspect here is that we 
have an extra coupling strength parameter; detectability 
determined from eq. (2) turns out to attain the maximum 
values at finite coupling strength. Thus, we may expect a 
type of double resonance with respect to noise strength (as 
in SR) and coupling strength [21]. 

In a second application, signal detection in cells or neu-
rons is modeled through the jumping/firing between the two 
minima of the potential V(x) but not the oscillations around 
one of the two minima. Liu et al. added noise to eq. (2) to 
induce and sustain the jumping behavior [21]. Eq. (2) then 
becomes  

 
1

d ( ) /d ( ) cos ( ),
ik

i i i j i i
j

x V x x x x A t  


      t  (4) 

where noise ( )i t  is treated as independent Gaussian white 

noise with average zero satisfying  

 ( ) ( ) 2 ( ).       i j ijt t T t t  (5) 

With noise, the dynamics of eq. (4) will be completely 
different from that of eq. (2) as noise may induce jumping/ 
firing between the two equilibrium positions x=±1. Figure 3 
shows the results for T=0.2 with panels (a), (b) and (c) cor-
responding to λ=0.02, 0.05 and 0.1, respectively; the solid 
lines in each panel oscillate between the two equilibrium 
positions, in contrast to those in the panels of Figure 1 for 
T=0 where these lines oscillate around x=1. Without noise, 
no jumps occur and thus the system remains near its initial 
condition; noise induces jumping and thus diverges from its 
initial condition. We can say that the former has a form of 
memory, the latter a loss of memory, for its initial state. 

From Figure 3, we conclude that the maximum ai of all 
the nodes will become approximately the same and will not 
change with coupling strength. Thus, G is no longer a good 
quantity to characterize the influence of noise and coupling. 
Liu et al. suggested that in this situation, a good quantity to 
characterize the influence of noise and coupling is the SNR; 
i.e. how the coupling strength and noise strength influence 
the SNR [20]. To obtain the SNR, we first fix T and let the 
coupling strength λ change. By taking a time series for each 
λ and evaluating the Fourier transformation to obtain its 
power spectrum, we can calculate the SNR at reference 
frequency ω [12,13]. Figure 4(a) and (b) show how the var-
iation of SNR with coupling strength at T=0.2 for the gen-
eral node and the hub, respectively. The general node and 
the hub show stochastic resonance dependent on coupling 
strength, but the hub is about 20 times larger than the gen-
eral node indicating the hub amplifies weak signals detected 
by a large number of the surrounding general nodes. 

Next, we fix λ while varying T. We find that the SNR al-
so shows resonance dependent on noise strength T similar to 
traditional SR. Figure 4(c) and (d) show the results for the 
general node and the hub, respectively. In summary, SF 
networked two-state systems show an interesting double SR 
at the hub, i.e. resonance for both coupling strength and  

 

 

Figure 3  Influence of noise on the dynamics of double-well systems for a 
BA network with N=500 and T=0.2 with varying coupling strength λ=0.02, 
0.05 and 0.1 corresponding to panels (a), (b) and (c), respectively; the 
dotted and solid lines correspond to the hub with links khub=68 and a gen-
eral node with links kge=5, respectively. 
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Figure 4  Variation in SNR with coupling strength and noise strength for 
BA networked oscillators with N=500. In (a) and (b) T=0.2, and in (c) and 
(d) λ=0.03. (a) and (c) correspond to results for a general node with links 
kge=5; (b) and (d) that for the hub with links khub=68. 

noise strength. Its theoretical explanation can be found in 
[21]. 

3  Contribution of non-hub nodes to the signal 
amplification 

Although Acebron et al. have showed that the existence of 
the hub unit played a decisive role in increasing gain, their 
theory is only limited to the hub or when the hub jumps 
between the two minima. As a result, the properties of a SF 
network are not fully elucidated, and the roles of network 
structures such as the power-law degree distribution [14] 
remain to be clarified. To illustrate the function of non-hub 
nodes, Kondo et al. developed a one-body theory that ena-
bles analytic expressions to be obtained for the gain G and 
the degree kL of the unit, as well as the maximum response 
to an input signal in terms of the coupling strength λ [23]. 

Reconsidering the model of eq. (2), let us first introduce 
the concept of a fifty-fifty unit. A unit i belongs to the fifty- 
fifty unit F if about half of its neighbors (ki/2) are oscillating 
in the left well (x≈1) and the rest in the right well (x≈1) 
in a stationary state; we express this as iF. The main ob-
servation, which enabled us to reduce eq. (2) to a one-body 
problem for G, is that the unit L, which realizes maximum 
response aL, belongs to the fifty-fifty unit, i.e. LF. This 
first occurred to us through data analysis of our numerical 
experiments that later turned out to be reasonable. 

If iF and is located on the left well at some time, the 
unit i feels an attractive force from ki/2 units in the right 
well with nearly no force from the ki/2 units in the left well. 
If the force happens to be strong enough to pull the unit i to 
the right well over the potential barrier of V(x), it moves to 
the right well and a similar process occurs to bring the unit i 
back to the left well. This to-and-fro motion is the mecha-
nism needed for a unit to perform large amplitude oscilla-

tion around the center x=0. 
This is easily formulated using eq. (2) as follows: If we 

choose arbitrarily a unit iF, to be labeled by f for conven-
ience, we can write down eq. (2) as 
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where the assumption 
1 1

i ik k

j f f fj j
x x k x

 
   is used. 

In a stationary state xf(t) performs a periodic oscillation with 
period 2π /p   and we denote the solution as 

, ( )f px t . 

The maximum value of xf can be obtained by putting xf=0 in 
eq. (6). Let Amax be the value of sin( )A t  and let 

,max( )fg x  be 
eff ,max ,maxd ( ) / df fV x x  when 

, ( )f px t  takes 

the maximum value ,maxfx . The pair 
,max max( , )fx A  is 

easily seen to satisfy the following algebraic equation: 

 ,max eff ,max ,max max( ) d ( ) / d .f f fg x V x x A     (7) 

Kondo et al. proved that in general, we have [21]  

 max min,  .A A A A    (8) 

Thus eq. (7) becomes 

 3( ) 4 ( 4) .f f f fg X X k X A       (9) 

Figure 5 shows graphically how the amplitude of oscilla-
tion changes with λkf for A=0.8, where the solid curve rep-
resents y=g(X), the dashed lines y=±A, the bold arrow the 
oscillation amplitude, and (a), (b), (c) and (d) correspond to 
cases λkf = 0, 43A2/3, 1.8 and 3.6, respectively; here 
43A2/3 represents a critical value for c

fk , the derivation 

of which will be given below in eq. (11). 

 

 

Figure 5  Variation in the oscillation amplitude with parameter λkf setting 
A=0.8 in eq. (9). (a), (b), (c) and (d) correspond to λkf = 0, 43A2/3, 1.8 and 
3.6, respectively; the solid curve represents y=g(X), the dashed lines y=±A, 
and the bold arrow the oscillation amplitude. 
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The amplitude of the oscillation decreases monotonically 
with λkf for c 2/34 3f fk k A    . In Figure 5(a) we ob-

serve that there are six solutions to eq. (9). On physical 
grounds, there are two oscillatory motions, one around +1 
and the other around 1, both with the same small ampli-
tude 2af indicated by arrows along the x-axis. As λkf in-
creases, af also increases slowly and at the critical point 

c 2/34 3  fk A  experiences a finite jump; see Figure 5(b). 

c
fk  can be determined from eq. (9) as follows. We define 

X* (see Figure 5(b)), where the two curves y=g(X) and y=A 
are tangent to each other. From *d ( ) / d | 0

X
g X X , we have 

 * c(4 ) /12.  fX k  (10) 

Because g(X*)=A, we obtain an important result  

 c 2/3 c 2/34 3 , ( , ) (4 3 ) / ,f L fk A A k A      k  (11) 

where kL denotes the degree of the node corresponding to 
the maximum amplitude aL. This result indicates that the 
maximum amplitude does not always occur on the hub but 
on the node with degree kL. That is, there is a kL for each 
specific λ and the khub of the hub is only one of these. 

The value of aL is readily determined as follows. From 
Figure 5(b), g(x+)=A and we obtain X+=A1/3. That is, our 
unit performs a large amplitude oscillation between 
±X+=±A1/3, with ±X+ denoting the non-degenerate solutions 
to eq. (9) at c f fk k  and this realizes the maximum 

amplitude  

 1/3 2/3, = / .   L La X A G a A A  (12) 

If λkf is further increased, Xf now starts to decrease from the 
value in eq. (12). 

Because the SF network has a broadly distributed degree, 
k, we can find a node with k=kL for a wide range of λ. This 
result is significant because it tells us that the signal re-
sponse can be amplified for a wide range of coupling 
strengths λ, which is necessary and crucial in the application 
of a signal device. In contrast, for very small λ, we find no 
node with degree kL, eq. (11), for a finite system and here 
effects of finite size of the system come into play. This 
point will be considered later. 

To check the validity of eq. (11), we have performed 
numerical simulations to obtain experimentally G and kL, by 
first constructing 100 different SF networks and then 
providing each with randomly chosen initial configurations 
{ ( 0) 1}  ix t  for each λ. Thus we obtain 100kL for each 

λ, from which we calculate the average kL and its standard 

deviation 2( )      L L Lk k k . 

We plot in Figure 6 kL with its standard deviation (the 
error bar) as a function of the coupling strength λ; the solid 
curve is obtained from eq. (11) and the “squares” and “cir-

cles” correspond to results for N=500 and 2000, respective-
ly. It is easy to see that the theoretical curves agree well 
with the numerical simulations except in the small λ region, 
confirming our fifty-fifty assumption. We notice also that in 
the small λ region, larger sized (N=2000) networks find 
better agreement with theory than those of smaller sized 
(N=500) networks. The reason is that large N has larger khub 
and more links to satisfy the smaller λ in eq. (11), i.e. the 
finite size effect in the small λ region. As shown in Figure 6, 
the experimental results are reproduced by our simple one- 
body theory rather well. 

For a realistic network, an interesting question arises 
whether the gain changes with coupling strength λ. Thus we 
divide the coupling range into three regions: the first region 
is identified by 0<λ<λ1 with λ1 satisfying λ1kmax=43A2/3, 
where kmax denotes the largest degree of the concrete net-
work at hand; the second region is λ1<λ<λ2 and λ2 is the 
point when the system begins to become synchronized; In 
the third region, λ>λ2, and all the units oscillate with the 
same phase in the same well (±1) following the input signal 
Asin(ωt). Our theory then predicts that the gain for the se-
cond region is given by G=A2/3. Thus, in the following, we 
will mainly focus on the first and third regions. 

For the first region, no unit is of sufficient degree k to 
satisfy eq. (11) for kL, which determines the finite size effect 
seen in Figure 6. Thus, all the units oscillate around their 
equilibria, i.e. ≈±1. For a fixed coupling strength λ, the 
maximum amplitude of oscillation is expected to occur on a 
fifty-fifty unit. Let us set kf equal to kmax. From eq. (6) we 
easily obtain its solution 

 0 1( ), fx x x t  (13) 

where max
0

4

4

k
x


   is the equilibrium solution of eq.  

 

 

Figure 6  The average kL and the standard deviation δkL of the degree of 
the unit L with maximum amplitude are shown, where the “squares” and 
“circles” represent the cases of N=500 and 2000, respectively. The solid 
curve is obtained from eq. (11). In simulations, we evaluated 100kL for 
each λ, which are used to calculate kL and δkL.  
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(6) if there is no external force, and x1(t) is a linear response 
solution 

1 max2 2
max

[ cos 2(4 )sin ].
4(4 )

A
x t k t

k
   

 
   

 
(14) 

From 0 fx , we can determine both Xmax and Xmin, and 

obtain the gain max min( ) / (2 )G X X A   by 

 
2 2

max

1
.

4(4 ) 


 
G

k
 (15) 

As λkmax<43A2/3 in this region, G will be small and slowly 

increase from 21/ 64   to 4/3 21/ 36 A  as λ in-
creases from 0 to λ1. 

For the third region (λ>λ2), the dynamics is fully syn-
chronized, ( ) ( )( 1, 2, , )  ix t x t i N . Eq. (2) is reduced to 

 34 4 sin( ).   x x x A t  (16) 

Following the same argument used in deriving eq. (9) from 
eq. (6), we have from eq. (16) 

 34 4 .   X X A   (17) 

Denoting the solutions for ±A in eq. (17) by Xmax and Xmin, 
respectively, we have asynch = (XmaxXmin)/2, and thus Gsynch 
= asynch/A is independent of λ in this region. 

Thus we obtain the gain for the entire range of coupling 
strengths. To verify the analysis, we perform numerical 
simulations on SF networks with N=500 and N=2000. Fig-
ure 7 displays the results for A=0.4 (“squares”), A=0.8 
(“circles”) and A=1.2 (“triangles”); the solid lines corre-
spond to the theoretical results. From eq. (12), the values for 
the theoretical gains in the intermediate ‘plateau’ region are 
1.84, 1.16 and 0.88 for A=0.4, 0.8 and 1.2, respectively. The  

 
 

 

Figure 7  Variation in gain G with coupling strength λ for a SF network 
of size N=500 (a) and N=2000 (b). The “squares”, “circles” and “triangles” 
represent the signal amplitudes of A=0.4, 0.8 and 1.2, respectively, and the 
lines denote the theoretical results. 

numerical simulations are in good accord with the theory. In 
detail, comparing Figure 7(a) with (b), the simulation with 
N=2000 agrees better with the theoretical results than that 
with N=500, confirming that the theoretical results corre-
spond to the large-N limit, N→∞. Comparing Figure 7(a) 
with Figure 2, agreement is only found in the small λ region, 
indicating that the hub is only one of the fifty-fifty units in 
the one-body theory. Considering that the smallest λ deter-
mines the sensitivity to weak signals, we say that the hub 
determines the sensitivity of the system. 

4  Discussions and conclusions 

To begin, the results for signal amplification discussed in 
this paper are specifically for SF networks. However, in real 
situations, the configurations of complex networks are de-
fined with different purposes and thus are not limited solely 
to SF networks. Hence, it would be interesting to study 
whether signals can be amplified in a general network, i.e. a 
non-SF network. In this situation, we lose the advantage of 
the presence of a hub with a large number of links. For the 
near future, this is a promising but challenging research 
direction. 

A second direction of research in signal amplification is 
its implementation in a local area of the network. As is 
well-known, real networks are usually very large. Associ-
ated global information is generally unknown and can be 
estimated only through local measurements [33,34]. Thus, it 
would be useful to amplify local signals, especially those at 
a specific node. For example, in cell phone networks and ad 
hoc networks, each user is only concerned with the signal 
amplification of his/her unit whereas the manager of the 
network needs to be concerned with those of every node. 
Furthermore, to deal with all node information in large 
networks would be very costly in both time and resources, 
even being sometimes impracticable. Ideally, an approach 
that amplifies signals using only local information would be 
interesting to have. We are currently pursuing this direction 
[35]. 

A third direction of research could be the implementation 
of signal amplification with frequency specificity. As men-
tioned in the introduction, this corresponds to networks 
having characteristic locations, such as in the cochlea of the 
inner ear, responding to a specific tone. The field in general 
is ripe for all manner of research. 

In conclusion, we have briefly discussed how the topol-
ogy of SF networks can be used to amplify signals in artifi-
cial information processing systems and devices. Inspiration 
has been gleaned from the self-tuning signal amplification 
in auditory systems of animals and insects. Without back-
ground noise, both the hub and other nodes in the SF net-
works have been found to contribute in amplifying the sig-
nal response. In the presence of noise, signal amplification 
was represented by the SNR and a double SR was found. A 
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one-body theory was provided to explain the amplified sig-
nal response in the context of scale-free networks, where the 
hub determines the sensitivity of the hearing system. All 
these results were confirmed by numerical simulations. 
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