
   
 

© The Author(s) 2011. This article is published with open access at Springerlink.com csb.scichina.com   www.springer.com/scp 

                      
*Corresponding author (email: jiangj2007010209@gmail.com) 

Article 

Statistical Physics and Mathematics for Complex Systems December 2011  Vol.56  No.34: 36773682 

 doi: 10.1007/s11434-011-4697-3  

Application of varentropy as a measure of probabilistic uncertainty 
for complex networks 

JIANG Jian1,2,3*, WANG Ru1,4, PEZERIL Michel3 & WANG Qiuping Alexandre1,3 

1 Institut Supérieur des Matériaux et Mécaniques Avancés 44, Avenue F.A. Bartholdi, 72000 Le Mans, France;  
2 Complexity Science Center, Institute of Particle Physics, Central China Normal University, Wuhan 430079, China; 
3 LPEC, Faculté des Sciences et Techniques, Université du Maine, Ave. O. Messiaen, 72035 Le Mans, France; 
4 College of Information Science and Engineering, Huaqiao University, Quanzhou 362021, China 

Received April 9, 2011; accepted May 18, 2011 

 

Varentropy is used as a general measure of probabilistic uncertainty for a complex network, inspired by the first and second laws 
of thermodynamics, but not limited to the equilibrium system. By exploring the relationship between the varentropy of the scale 
free distribution and the exponent of power laws as well as network size, we get the optimal design of a scale-free network against 
random failures. The behaviors of varentropy and the Shannon entropy of double Pareto law degree distribution are analyzed to 
compare their usefulness. Our conclusion is that varentropy is suitable and reliable. 
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Complex networks have recently attracted much interest 
from the community of physicists thanks to the possible 
application of various techniques inspired by statistical me-
chanics. Networks describe different interaction patterns in 
complex systems. In many cases, the interaction is change-
able by time, and the topology of the network changes ac-
cording to the external conditions. If a network is treated as 
a thermodynamic system which has an energy function de-
pending on its topology, and entropy is introduced to de-
scribe the disorder strength, it could constitute a topological 
ensemble whose physical quantities are described by meth-
ods of statistical mechanics [1–11]. Equilibrium network 
ensembles are defined as stationary ensembles of graphs 
generated by restructuring processes, like edges of the graph 
are removed and/or inserted obeying detailed balance and 
ergodicity. During such processes, topological phase transi-
tions are expected as the temperature is varied. However, 
this thermodynamic analogy has not yet been fully explored.  

In particular, the concept of energy, which is very important 
in the study of statistical ensemble, is a big challenge. The 
function form of entropy in complex networks is not given a 
priori. Many different expressions have been suggested in 
recent research. They include functions of the node degree, 
number of links, or some global properties of the network. 
For instance, Farkas et al. [4] constructed several patterns of 
the energy E in the network based on vertex degrees or de-

grees of neighboring vertices, such as 2
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bined two competing terms with different strengths and as-
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in which M is the total number of links and J1, J2 are the 
competitive strengths of the two parts in the function. So far, 
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there is little convincing theoretical derivation for the defi-
nition of the energy in a complex network. One of our aims 
in the present paper is to tentatively solve this problem. 

If the energy function of a complex network is given, we 
can obtain an optimized network ensemble which minimiz-
es the energy through zero temperature dynamics. On the 
other hand, we can get various topologies of the network at 
finite temperature. It is well known that many real world 
networks are scale-free networks and they are robust to 
random failures but vulnerable to targeted attacks. In addi-
tion, the character of heterogeneity of a network is directly 
related to this feature and can be measured by entropy 
[13,14]. Sole et al. [14] introduced the entropy of the re-
maining degree and the mutual information to study net-
works with different heterogeneity and randomness. In the 
present paper, we investigate the entropic behavior of the 
power law degree distribution to describe a network’s het-
erogeneity, based on a generalized information measure 
called varentropy [15]. We find that the optimization of a 
scale-free network’s robustness to random failures is equiv-
alent to maximizing the entropy of the degree distribution. 
Through optimization, we can get a scenario of optimal de-
sign of scale-free networks against random failures. 

1  Optimization of a scale-free network against 
random failures 

We give a simple introduction to a universal measure of 
probabilistic uncertainty proposed in our previous work [15]. 
First, we suppose that we have a random discrete variable ki 
with a probability distribution pi = f (ki) /Z, where i is the 
state index and Z is a normalization constant. The average 

value of ki is given by i i
i

k k p   and the normalization is 

1i
i

p  . The uncertainty in a probability distribution of k 

can be measured by many quantities. The Shannon entropy 
formula, or some of other known entropy forms, can also be 
used as a measure of the uncertainty of any pi. However, no 
given entropy form, including the Shannon one, can be 
maximized for any distribution pi according to MaxEnt 
rules [16]. Here, a general definition of the uncertainty 
measure underlying MaxEnt is found, in such a way that 
each derived entropy could be maximized to give the corre-
sponding distribution. The general measure I is proposed by 
a variational definition as  

  d d d d ,i i
i

I k k k p      (1) 

where d d ,i i
i

k p k   and  is a characteristic constant.  

This definition was inspired by the first and the second 
laws of thermodynamics in equilibrium thermodynamics.  

Considering the definition of internal energy, i i
i

E p E   

where Ei is the energy of the microstate i with probability pi, 
we obtained 
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volume, or distance. Based on the first law of thermody-

namics, the quantity i i i
i
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change in the system; that is, i i
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reversible process, where S is the thermodynamic entropy 
and T the absolute temperature. S has the following varia-
tional relation: 
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T
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As is well known, S measures the dynamical disorder of 
the system or the uncertainty of the probability distribution 
of energy in the dynamics. In contrast to another measure 

22 2E E   , S can be maximized in MaxEnt for an equi-
librium system to derive the probability distribution. Eq. (1) 
is just an extension of eq. (4) to arbitrary random variables k 
and to arbitrary systems (even out of equilibrium), and is a 
generic definition of maximum uncertainty measure for any 
random variable. 

Regarding a scale-free degree distribution i ip k Z  

where i
i

Z k    and  is an exponent, we derived the 

entropy formula in previous work [15]: 
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I is known as the varentropy. The variation in varentropy 
against the exponent is shown in Figure 1. It suggests that 
varentropy decreases sharply with the increase of the expo-
nent from 1.0 to 3.0. It is worth noticing that when →1, 
the value of varentropy increases without bound, and when 
< 1, varentropy becomes negative, which is meaningless 
in a physical context. Form the point of mathematics, the 
reason for this may be related to the divergence of the nor-
malization constant Z at  < 1. Thus, the behavior of varen-
tropy for scale-free degree distribution at < 1 is still obscure.  
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Figure 1  Variation in varentropy I versus exponent  suggests that 
varentropy decreases sharply with the increasing of exponent from 1.0 to 
3.0. When →1, the varentropy increases without bound. 

In fact, the majority of scale-free networks in nature have an 
exponent between 2 and 3 and they are finite networks with 
finite degree k = kmin,kmin+1,...,kmax where kmin is the mini-
mum degree and kmax is the maximum degree cutoff present 
in the network, which are in the range of valid applications 
of varentropy. 

We also can use varentropy to study the resilience of 
networks, which is very important to understand how to 
design networks that are optimally robust against both fail-
ures and attacks. For this subject, many different approaches 
have been proposed, such as the percolation theory [17,18], 
evolutionary algorithm [13], entropic principle [19], spectral 
and statistical measurement [20]. In the present paper, we 
focus on the entropy of the degree distribution to describe 
the network’s heterogeneity, which measures the diversity 
of the degree distribution [14] within the context of a com-
plex network. For a scale-free network, the effect of diver-
sity (long tail) is an increase in the uncertainty. When the 
exponent increases or the cutoff degree decreases, the net-
work becomes less heterogeneous and smaller entropy is 
observed [14]. Here, based on the relationship among kmax, 
N and α in the network, 1/( 1)

maxk N    (> 1, N is the total 

number of vertices in network) [2]. Eq. (5) could be rewrit-
ten as 
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Thus the varentropy I can be expressed as a function of  
and N. Figure 2 shows the variation in varentropy I versus N 
with different exponents  = 3.0 (solid line),  = 2.8 (dashed 
line), and  = 2.5 (dotted line), and suggests that the varen-
tropy functions are monotonically increasing with the in-
crease of network size N. Moreover, varentropy I tends to a 
constant when N increases up to certain value for each case. 
The larger the exponent, the faster the varentropy value tends  

 

Figure 2  Variation in varentropy I versus network size N with different 
scaling exponent  = 3.0 (solid line), = 2.8 (dashed line), and = 2.5 
(dotted line). The three curves are all monotonic increasing. With the in-
crease of network size N, varentropy I increases and tends to a constant 
above certain N for each case. The larger the exponent, the faster the 
varentropy value tends to the stable value. In addition, the value of varen-
tropy decreases when exponent  increases, which agrees with Figure 1. 

to the stable value. Varentropy decreases with the increase 
of exponent , which is consistent with the behavior of 
Figure 1. We conclude that the network designed with larg-
er size N is more robust with given exponent , and the 
network with small exponent  will be more robust with 
given N. 

2  Application to the double Pareto law distri-
bution 

In the real world, there are many truncated degree distribu-
tion in complex network such as the exponential truncated 
and double Pareto laws. Here, we pay more attention to the 
double Pareto law distribution and investigate its entropic 
behavior. First, we express the probability distribution as 
follows: 
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where kc is the intersection of two power laws and ,> 0. 
With the normalization condition 1i

i

p   and p1(kc) = 

p2(kc), we have 
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 (8) 

According to eq. (1), we obtain the expression of the en-
tropy function: 
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where 2min 2 maxp c k   and C is the integration constant and 

is equal to 
1

0
dk p  in order to keep I = 0 for the non- 

probabilistic case pi = 0,...1,...0 for all possible states i = 1, 
2,…. Next, we investigate the variation in the entropy func-
tion versus different variable , , kc, kmax. In Figure 3(a), 
the entropy decays with the increase of  at kc = 100,  = 3, 
kmax = 103 and tends to a minimum value approximately 1.0 
for larger values of  with 

1
0pI  . In Figure 3(b), the ten-

dency of the entropy function is similar to that in Figure 3(a) 
at kc = 100,  = 1.2, kmax = 103. It tends to a minimum value 
15.8 for larger  with 

2
0pI  . In Figure 3(c), the entropy 

grows fast until kmax and increases to around 2000 at kc = 5, 
 = 1.2,  = 2.5, and after that, it reaches the maximum value 
5.88. In general, the vertex in the network with bigger size 
often has larger degree, and thus this curve suggests that the 
size effect of the network becomes trivial when its size 
reaches some critical scale. In Figure 3(d), the entropy in-
creases monotonically with increasing of kc at kmax = 103,  = 

1.2,  = 1.5. When kc is equal to 1 or 1000, the truncated 
distribution p evolves into single distribution p2 or p1, and 
then the value of each entropy is equal to Ip2 = 25.5 or Ip1 = 

86.1, respectively. Hence, from the above discussion, we 
find that for a network with a double Pareto law distribution, 
it will become more heterogeneous when the degree distri-
bution has two smaller exponents and a larger cross over 
point with larger network size. 

In addition, we make a comparison with the Shannon en-
tropy formula using the conditions of Figure 3(a). According  

 

Figure 3  Variation in entropy function versus various parameters of a 
double Pareto law degree distribution. 

to the expression of Shannon entropy lni i
i

S P P  . Sub-

stituting eq. (7) into it, we get 
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where c1 and c2 are as in eq. (8). Here, we investigate the 
variation in Shannon entropy versus . In Figure 4, we can 
find that the tendency of Shannon entropy at kc = 100,  = 3, 
kmax = 103 is similar to that in Figure 3(a). Both are mono-
tonically decreasing functions. However, the difference 
between the two pictures is that when  increases without 
bound, the Shannon entropy trends to 0, but the varentropy 
tends to 1. We believe that the latter result is more reasona-
ble because the value of the entropy of Sp2

 is not 0, but 1 
when   . Thus the Shannon entropy may be invalid for 
this kind of double Pareto law distribution in this condition. 

3  Equilibrium network ensembles 

Energy is often an important concept in optimization prob-
lems. It is not possible to derive an energy expression for 
graphs from first principles. We can find analogies with 
well-established equilibrium graph ensembles by assigning 
a statistical weight to each allowed graph. Phenomenologi-
cal and heuristic arguments could lead to such various en-
ergy functions such as those described in the introduction. 
As is well known, the entropy is the bridge between the 
microscopic dynamics and macroscopic behaviors. Accord-
ing to the first law in equilibrium thermodynamics, 

 d d d ,E T S W   (11) 

 

Figure 4  Variation in Shannon entropy versus  under the same condi-
tions as in Figure 3(a) with kc = 100,  = 3, kmax = 103. Shannon entropy 
decays with the increasing of , which is similar to that of varentropy. 
However it tends to zero at larger , which is different from that in Figure 
3(a) with limiting value 1.0. In fact, when  increases without bound, Sp1

 is 

close to zero, the Shannon entropy of function p should be equal to Sp2
 

which is not zero. 
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where E is the internal or mean energy of the system, T is 
the temperature of the system, S is the entropy of the system, 
and dW is the work done to the system by external forces. It 
could be rewritten as dS = ( dE  dW) /T and in another form 
of probability pi = f (Ei), we have 

 
1

d d .i i
i

S E p
T

   (12)  

If pi = exp(Ei) /Z (Z is the partition function), after  
integrating of the above equation, we will get the Shannon- 
Gibbs entropy lni i

i

S P P  . To investigate what will 

happen if pi is not an exponential distribution or Ei is not the 
energy of the system of the state i, we get the extensive ex-
pression of the entropy in the formation of eq. (1), substitute 
the scale-free distribution pi = ki

/Z (k is the degree of the 
node in the network) into it, and obtain 
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Comparing with dS = ( dE  dW) /T, the above equation is 
rewritten as 

  1/1
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1 1 /
I k Z 
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Then, the thermodynamic equation of the scale-free network 
could be 

 ,k   1 1 ,    1/ ,Z    (15) 

where parameters ,  ,      are analogous to the system 

energy, temperature, and free energy in thermodynamics 

respectively. k  is the average degree of a scale-free net-
work. Thus, based on the foundation of the first and second 
laws of thermodynamics, thermodynamical quantities of 
scale-free networks such as “energy”, “temperature”, and 
“free energy” are given. Although the assumption of an 
“equilibrium network ensemble” is used here, we believe 
that it is still a reasonable approach to apply statistical 
mechanisms and thermodynamics to complex networks. 

4  Discussion and conclusions 

In the present paper, we introduced an alternative method 
for the optimization of scale-free networks in terms of net-
work entropy. This network entropy is not the traditional 
Shannon entropy. It is another definition of uncertainty 
measure of the system called varentropy, resulting from the 
first and second laws of thermodynamics, proposed in our 
previous work. Our findings indicate that small exponent 
and large network size can facilitate the optimal design of 
the scale-free network against random failures. 

In addition, we studied the entropic behavior of the double 
Pareto law distribution with varentropy and Shannon entro-
py formula. The theoretical expression of each entropy 
function is obtained and their variance versus different pa-
rameters of distribution is analyzed. Through the comparison, 
we find that Shannon entropy may be less reasonable for 
calculation with this kind of distribution in some conditions. 

Lastly, we have shown that scale-free network ensembles 
can be described naturally by statistical mechanics and the 
thermodynamics methods, and provided the theoretical es-
timation of the quantities like “energy”, “temperature” and 
“free energy” of the network ensemble, which is different 
from many previous works with various arbitrary defini-
tions without any derivation. The results presented in this 
paper are only a tiny fraction of what can be done with the 
thermodynamics equation of scale-free network ensembles. 
They can facilitate the application of statistical physics and 
thermodynamics tools in the field of complex networks, and 
can also help to expand the analysis towards problems, such 
as optimization, extracting information and topological phase 
transitions. 
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