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In this paper, I present a numerical study on the collective behavior of one-dimensional coupled map lattices with the nearest cou-
pling to different scales for the whole system. Using the maximum Lyapunov exponent as a tool for subsystem and return map-
ping, I observed several basic patterns of collective behavior and investigated the contrasts between the different scales. To study 
the mechanism, the system under entirely random perturbations was investigated using the Monte Carlo method and the contrast 
with the deterministic approach is given. The results show that the response to a random input is complicated and involves the 
correlation of different signals and taking into consideration the dynamic properties of the system itself. 
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Space-time chaos has been studied for many years and is 
still a major topic of research. Using coupled map lattices 
(CMLs) as a basic model for studying space-time chaos has 
received increased attention for some time [1]. Previous 
research on this model has mainly been applied to global 
dynamics, while little consideration of the dynamics has 
been given to different scales of the system as the lattices 
were assumed to be coarse grained. However, if the system 
has some collective behavior, the dynamics for different 
scales of the system should be considered. On the other 
hand, the relationship between few and many bodied sys-
tems continues to attract great interest. A similar pertinent 
question is whether I can also treat the dynamics of the 
CML with a deterministic approach and add random per-
turbations? An interesting paper [2] gives a positive answer 
to this for a special case, although random noise is artifi-
cially added. From the research presented in this paper, it is 
clear that the question is a difficult one. Furthermore, recent 
works related to nontrivial collective behavior has attracted 
wide attention. In particular, using Lyapunov modes gives a 

very new and profound comprehension of collective spatio-
temporal chaotic behaviors [3]. 

In this paper, I aim to carry out a numerical study of col-
lective behaviors for various local scales of the whole sys-
tem (the scale here is the length of a subsystem). Common 
and extensively studied models (CML) are employed. 

1  A brief introduction of study model 

The model CML consists of many lattices coupled with 
each other and each lattice has its own internal dynamics. 
The internal dynamics are chaotic or periodic according to 
different internal dynamic parameters. In this paper, only 
the one-dimensional and nearest coupling are given consid-
eration. The mathematical formula for one-dimensional 
coupled map lattices is 

         1( ) (1 ) ( ) 2 1 1 , 
       n n n nx i f x i f x i f x i

(1) 

where n=1, 2,…N are discrete time steps, i=1,2,…L are  
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discrete lattice sites with periodic boundary conditions xn(L+1) 
= xn(1) and xn(0) = xn(L), xn(i) represents a continuous state, 
ε is the diffusive coupling strength with the nearest neighbor 
sites, and f (x) governs local dynamics, for f (x)=1ax2 with 
a [0,2] and x [1,1] [4]. 

Based on the research of Kaneko [1], I chose six types of 
dynamic modes for the global system to study: frozen ran-
dom pattern, pattern selection, defect chaotic diffusion, de-
fect turbulence, pattern competition intermittency, and fully 
developed turbulence characterized generally by the space- 
amplitude plot and space-time diagram, and called modes 1, 
2, 3, 4, 5 and 6, respectively, for brevity with L=100. With-
out declaring time steps for evolution, the transient process 
for evolution cannot be considered. In this study, I selected 
fixed parameters (, a) for modes 1, 2, 3, 4, 5 and 6 corre-
sponding to (0.15,1.52), (0.10,1.66), (0.10,1.79), (0.10, 
1.885), (0.30,1.775) and (0.30,2). 

2  Numerical analysis 

2.1  Spatial correlation and statistical equivalence of  
each lattice 

The spatial correlation of different locations in extended 
space is employed to investigate dynamic effects of any two 
lattices in the model studied. For a fixed time n, the arith-
metic average of a lattice for the whole system is xn= 
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  and the corresponding deviation for this av-

erage is    ˆn n n
x i x i x  , and thus we write the spatial 

correlation function, which characterizes the correlation 
between the different individual lattices as [5]  
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The spatial correlation generally tended to decrease rap-
idly when the length between two given lattices increased 
but the time steps for evolution cannot lead to an increased 
correlation. Numerical studies show that mode 3 and mode 
5 have abnormal values. The evolution can strengthen the 
correlation although the decay of correlation according to 
increasing length remains. This is a type of long-rang cor-
relation that originated from local coupling. The numerical 
work is depicted in Figure 1. 

To testify the equivalence of every single lattice for its 
statistical property, I studied the difference between the 
state value of every single lattice and the arithmetic average 
of the state values for the whole system under the arithmetic 
average of a few time steps and a few systems selected at 
random for initial state values. The transient process for 
evolution is deleted, and the time and ensemble used    

 

Figure 1  (Color online) Spatial correlation function versus different lengths 
between two lattices for given steps of time n=100, n=1000 and n=10000 
by averaging 500 random initial conditions. (a)–(f) correspond to modes 1, 
2, 3, 4, 5 and 6. Mode 3 and mode 5 show abnormal values. The evolution 
can strengthen the correlation although the decay of correlation according 
to increasing length remains. 

correspond to an order larger than 100. Figure 2 shows, as 
expected, that every lattice in the model is equivalent, be-
cause the system CML is a ring in the periodic condition. 
Therefore, I studied the dynamic property of a given scale 
only for lattices of a fixed subsystem but with different ini-
tial conditions. For example scale 5 corresponds to a sub-
system composed of a fixed lattice i=1 to fixed lattice i=5 
but with different initial state values. 

 

Figure 2  (Color online) Difference between the state value of a single 
lattice and the arithmetic average of state values for the whole system 
under the arithmetic average of 100 time steps and 500 systems selected at 
random with initial state values. The transient time steps are 5000 for the 
six dynamic modes studied. 
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2.2  Maximum Lyapunov exponent for subsystems  

The stability of the subsystem is now investigated and one 
of the most important parameters characterizing the dynam-
ic instability of chaotic systems is the spectrum of Lyapun-
ov exponents [4,6,7]. Furthermore, there are other charac-
teristic methods for chaotic systems with important applica-
tions [8,9]. In particular, the positive maximum Lyapunov 
exponent (MLE) is an important feature for describing the 
sensitive dependence on initial conditions for chaotic mo-
tion, and thus MLE must be computed frequently. There are 
two computational methods conventionally accepted as be-
ing equivalent. The first method computes the divergence 
rate of two adjacent trajectories of the system, where the 
distance between the two trajectories is frequently reformed 
to a numerical value which is much smaller than the attrac-
tor scale and much larger than the computation error. The 
second is to work in the tangent space of the dynamic sys-
tem. All Lyapunov exponents are calculated by evaluating 
the Jacobian of the dynamic function of a system along a 
trajectory [4]. 

We see the commonality of the above two methods in 
that they are both required to compute the average of the 
divergence rate from a long and true trajectory. For highly 
dimensional dynamic systems, such as CML, using the first 
method to compute the MLE is much more direct and has 
high efficiency, so this method is employed. The basic 
method to compute the MLE for the whole system is as fol-
lows: if I apply a very small perturbation {dx0(i)} to the 

state of system {xm(i)}, there will be a new state ( )mx i  = 

xm(i) + dx0(i), i=1,2,…L. Now, iterating CML, I obtain 

{xm+n(i)}, { ( )}m nx i and {dxn(i)} in the discrete time m+n. 

Therefore, the mathematical formulation of the MLE is 
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To avoid excessively large perturbations, it should be re-
iterated for every time step of the evolution. 

In this study, the interest is not to focus on the MLE of 
the whole system but on the MLE of different scales (length 
of the lattice system). The whole system is divided into two 
parts: the subsystem and surrounding regions. It is similar to 
a deterministic system subjected to noise perturbations [10]. 
We call this the quantity characterizing the subsystems with 
scale-limited Lyapunov exponents. The corresponding MLE 
is called the maximum Lyapunov exponent for subsystems 
(SMLE). The analytical study of SMLE for CML with the 
nearest coupling can be done for a case that is easily treated, 
such as a fully chaotic logistic map [11]. General studies of 
SMLE for different scales of CML are not found in the cur-
rent literature. 

From the numerical simulation depicted in Figure 3, 
there is a clear tendency of pattern transition from a discon-
tinuing variation to a smooth variation in the SMLE versus  

 

Figure 3  (Color online) Variation in SMLE versus different scales with 
different types of dynamic modes, 10 random chosen initial state values 
were taken for each mode. There is a clear tendency for pattern transition 
from a discontinuing to smooth variations in SMLE as the scale is increased.  

increasing scale for all modes with the most random select-
ed initial values. The case of the discontinuing platform of 
the SMLE is clearly emergent in modes 1 and 2. Further-
more, the platform is not emergent randomly in different 
positions. It was found that there were fixed platforms for 
different random initial state values although I was not able 
to establish what the exact conditions should be for the 
emergence of these platforms. The different final states of 
the system for asymptotic evolution corresponding to dif-
ferent initial states are observed directly for modes 2, 3, 4 
and 5 with different values for SMLE. This is a typical fea-
ture of high dimensional systems [1]. 

2.3  Return map for collective behavior of subsystem 
versus SMLE 

To study the collective behavior directly, the return map is 
employed [12,13], and the relationship between the SMLE 
and return map is compared. The arithmetic average of the 
state value of every lattice in the subsystem is expressed as 

    
1

1 ,
scale

scalen n
i

h x i


   (4) 

and thus the return map is taken as hn+1 versus hn. I obtain 
the information of collective behavior from the return map 
which actually comes from the similar idea of the Poincare 
map [4]. Unexpectedly, during the process of transition be-
tween different platforms of the SMLE, the return map 
could not be changed sharply but had some variations in the 
topology structure for most cases from the extensive nu-
merical simulations. 

For platforms of the SMLE emerging mainly in modes 1 
and 2, typical comparisons between the return map and the 
SMLE are depicted in Figure 4. As the scale increases, the  
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Figure 4  (Color online) A typical return map of the mode 1 with different scales to illustrate the pattern transitions between the discontinuous platforms of 
the SMLE. (a) gives the variation of SMLE versus different scales, and the inset illustrates the transition of platform of SMLE in detail corresponding to 
scale=14 and 15. (b) shows the change of return map for initial scale=1, 2 and 3, and the SMLE of scale=1 and 2 are negative. (c) shows the change of return 
map for scale=14, 15 and 16 corresponding to a discontinuous platform of SMLE as well as the similar contrast of return maps in (e) to a discontinuous 
platform of SMLE with starting scale = 44, the return map of scale = 48 and 100 are also plotted for comparison. (d) shows the change of return map for 
different scales but corresponding to the same platform of SMLE. The arrows in the figure just give the positions of SMLE corresponding to return maps of 
different scales. 

complexity of the collective behavior also increases. We 
observe some isolated points depicted in the return map 
corresponding to negative values for the SMLE. Further-
more, the platforms of SMLE are also numerically observed 
to be near zero, computed using random initial values, and 
corresponding return maps show closed curves, i.e. quasi- 
periodicity (this case is not shown in Figure 4). Return maps 
to different platforms of a positive SMLE show abnormal 
changes with some different topological structures although 
some cases are large and some minor. These situations are 
illustrated in Figure 4(c) and (e). Meanwhile, for the same 
platform of the SMLE, the structure of the return map is 
changed gradually as the scale is increased. Figure 4(d) 
gives a clear illustration of this transition pattern. The 
SMLE of mode 2 for most cases is negative which corre-
sponds to the periodicity of hn. Some limited points emerge 
in the return map as expected, similar to the case of Figure 
4(b) of mode 1 for scale 1 corresponding to large negative 

values of SMLE. 
The dynamic properties of different scales for mode 3 

have special features, and the main is the different structure 
of the return map with an odd- or even-numbered scale. The 
structures of the return map with an odd-numbered scale are 
composed of two separate regions. However, with an 
even-numbered scale there is only a single region. This is a 
general rule and there are no exceptions for the numerical 
simulations illustrated in Figures 5 and 6 for the two typical 
cases selected. With an increase in SMLE, the different 
structures for these two patterns gradually merge into the 
same pattern. After the SMLE introduces the platform 
shown in Figure 5(a), the pattern cannot be changed further 
whatever the scale of the subsystem is. Extensive numerical 
simulations show that the merging process always exists 
with the exception of the scale corresponding to the last 
platform of SMLE (in fact the SMLE here has only one or 
two platforms).  
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Figure 5  (Color online) Comparisons between the SMLE and return map 
with different scales for mode 3 corresponding to the typical case of SMLE 
changed from negative to positive value with the enlargement of scales. (a) 
shows the variation of SMLE versus the enlargement of scales, (b)–(f) give 
the illustration of the change of return map with the enlargement of scales. 
Note that there is a different structure for the return map with an odd- or 
even-numbered scale, and the structures of the return map with an odd- 
numbered scale are composed of two separate regions. 

A more difficult case showing dynamic variations in the 
return map of mode 3 is seen in Figure 6 although the initial 
expression is similar to Figure 5. It is seen that a different 
pattern of the return map corresponding to an odd- or even- 
numbered scale always exists but the tendency weakens as 
the scale increases. The imperfect torus in the return map, 
with some single points inside it, is broken when the scale is 
gradually increased, but it does not have the tendency to 
change to the chaos illustrated in Figure 5. The broken pro-
cess is also an organized process. Finally I was able to es-
tablish a return map for the largest scale, the scale=100, 
which shows the perfect torus, i.e. quasi-periodicity. The 
case of a scale=99 is very similar to perturbations of a Ham-
iltonian system meeting the condition of integrability, i.e. 
the crossing of the elliptic points and hyperbolic points is 
the requirement based on the KAM theory [4]. 

Dynamic properties for the typical case of mode 4 are il-
lustrated in Figure 7. These share the important characteris-
tics of mode 3 reported above, especially for the different 
pattern of the return map corresponding to whether the scale 
is odd or even, although this is not clear for mode 4 with 
some of the random initial values selected. The top of Fig-
ure 7 shows variations in the regions occupied in the return 
map. There is a clear tendency to decrease the size of the 
return map although the size changes very slowly. This sit-
uation is similar to Figure 6. Careful examination of the 

 
Figure 6  (Color online) Comparisons between the SMLE and return map with different scales for mode 3 corresponding to the typical case of negative 
SMLE. (a) shows the variation of SMLE versus the enlargement of scales, (b)–(o) give the illustration of the change of return map with the enlargement of 
scales. Note that the similar situation like Figure 5 of different structures for the return map with an odd- or even-numbered scale, and the typical patterns of 
return map are weakened with the merging process going on. To note specifically, the broken process of the geometric structure of the return map is also an 
organized process for the new geometric structure as well. 
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Figure 7  (Color online) Comparisons between the SMLE and return map 
with different scales for mode 4. The different structure of the return map 
with the scale for an odd or even number is held until after the merging pro-
cess. (a) shows the tendency for return maps to different scales, and some 
typical scales are selected for this illustration. To show the merging process 
for the return map with an odd- or even-numbered scale, (b)–(e) show the 
process.  

figures reveals the common feature of increasing the SMLE 
corresponds to decreasing the size of the return map. The 
inset in Figure 6(a) clearly illustrates this. Based on the in-
vestigation above, I conclude that dynamic modes 3 and 4 
share the same class of collective behaviors for their sub-
systems. 

Modes 5 and 6 share the common feature illustrated 
clearly in Figure 8, where all the regions of the return map 
for different scales of subsystems are located in the region 
surrounded by the region of the return map for the scale=1 
with greater symmetry for mode 6. Conversely, the size of 
the region occupied in the return map decreases as the scale 
of the subsystem increases and the corresponding SMLE 
increases. Figure 8(a) and (b) clearly illustrates this. 

Careful study of the SMLE and return map, reveal the 
basic patterns for the collective behaviors of the subsystems. 
This raises several questions. First, I note that the traditional 
methods for studying the relationship between different 
lattices, such as the spatial correlation function, cannot di-
rectly characterize the collective behaviors. While the ex-
pressions for the spatial correlation of mode 3 and mode 4 
are quite different, they share the same class of collective 
behaviors as in the analysis above. Therefore, combining  

 

Figure 8  (Color online) Comparisons between the SMLE and return map 
with different scales for typical cases of mode 5 (a) and mode 6 (b). All 
regions of the return map for different scales of subsystems are located in 
the region of the return map for scale=1, and there is a greater degree of 
symmetry for mode 6 compared with that of mode 5. The size of the region 
occupied in the return map decreases as the scale of the subsystem increas-
es and as the corresponding SMLE increases.  

the SMLE and return map, the emergence of global attrac-
tors is observed. Furthermore, these methods can be ex-
tended to more real physical systems with space extended 
beyond the CML. This enables the investigation of the col-
lective behaviors for different scales of subsystems, such as 
many-particle Hamiltonian systems. 

2.4  Connection with random dynamics using  
maximum Lyapunov exponent 

We now consider the likely connection with random dy-
namics. The dynamic behavior of the subsystem can be 
considered from two perspectives: the deterministic and the 
random. The subsystem, subject to the effect of the evolu-
tion of the whole system, is equivalent to an independent 
system with perturbations from the boundary lattices. For 
the model studied, x(L)x(scale) and x(scale+1)x(1) corre-
spond to perturbations of x(1) and x(scale), and L is the 
length of the whole system. We also investigated the equiv-
alence of deterministic dynamics of the whole system and a 
few of the dynamics of the body subject to random forces. 
Recent study [14] is relevant to this work. The research in 
this paper is different from that paper because random  
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samples are obtained from the lattice system itself rather 
than using artificially added random samples. To justify the 
assumption of equivalence, the Monte Carlo method is em-
ployed to study the stability of the lattice system with ran-
dom perturbations generated from the whole original system 
using a numeric statistical distribution [15]. The samples 
used are statistically independent and the typical discrepan-
cies of the SMLE between them are depicted in Figure 9. 

To differentiate the independent system with random 
perturbations from the subsystem under the evolution of the 
whole system, I use max to express the MLE common to 
these two different types of system. The transient process 
for evolution is deleted and initial state values for the nu-
merical computation of the two types of system are the 
same. From the numerical study, the results cannot be inter-
preted by spatial correlation, as the intuitive assumption that 
the less the correlation between lattices the more coinci-
dence in max between the random and the deterministic 
systems, is not supported. 

It is possible that there is an important role for the weak 
correlation of perturbations introduced from the two lattices 
on the boundary to the dynamic stability, i.e. max. A strong 
oscillation of max for the random system in modes 3 and 4 
versus an odd- or even-numbered scale was found. Fur-
thermore this oscillation coincides with a different pattern 
for the return map with the scale of the subsystem for even 
or odd numbers. Although in Figure 9 the random system of 
mode 2 expresses almost the same values of max as for the 
deterministic system, there have been some large deviations 
in some of the lengths of the system. For a relatively large 
length of the system, there has been a trend to the same  

 

Figure 9  (Color online) Comparison of typical cases of six modes with 
the largest Lyapunov exponents between a system with random perturba-
tions generated by the distribution of probabilities obtained from the 
boundary lattices in the sense of whole system’s evolution (round box) and 
the corresponding deterministic system (SMLE) (square box). 

value of max between the random and deterministic systems, 
which corresponds to the decreasing spatial correlation. 
However, it is clear that the mechanism of the numerical 
results is still an ongoing problem. 

3  Discussion and conclusions 

This paper considers the stability of a subsystem subject to 
the evolution of the whole system. The numerical analysis 
of collective behaviors of subsystems is the focus, with the 
spatial correlation function between two lattices taken as a 
complementary tool to study complexity. The pattern for 
collective behavior has a relationship that corresponds with 
the stability of the subsystem. This paper also studies the 
comparison of the random system with samples obtained 
from the boundary lattices and the subsystem subject to the 
evolution of the whole system. The results show that an 
entirely random system cannot be equivalent to a determin-
istic one from correlation between lattices. The mechanism 
for the collective behaviors is still an ongoing problem, and 
the propagation of perturbations being accounted for in the 
expression of SMLE [16] remains for future study. Fur-
thermore, the study under the Hamiltonian frame for 
treating perturbations needs serious consideration [17]. 
The relationship between random perturbations and col-
lective behavior is also an interesting topic with prom-
ising application [18]. 

Another related case of interest is to consider different 
types of local dynamics and different types of ranges for 
coupling [19–28] in investigating the variations in patterns 
of collective behaviors as well as the SMLE. Considering 
the non-extensivity of the long-range coupling case, non- 
extensive statistical mechanics may be applied for a deeper 
understanding of numerical results [29]. A nontrivial collec-
tive behavior-synchronization of whole lattices was found 
when the coupling value surpassed some critical value for 
system’s other fixed parameters [30], thus posing an inter-
esting question as to whether there are non-trivial relation-
ships between the synchronization and topological structure 
of the return map as well as for the SMLE (for synchroniza-
tion, the return map for each scale of subsystem is the same). 

In summary, this paper first takes the SMLE and return 
map as main tools for studying collective behaviors of the 
different scales of subsystems, although extensive studies 
were also taken for the CML with the nearest coupling. Us-
ing numerical simulation, I obtained new results not previ-
ously reported and found basic patterns for collective be-
haviors. Therefore, this study has value in searching for the 
connection of dynamics between few and many bodies [31, 
32]. We expect more valuable achievements in the future. 
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