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Branched glycerol dialkyl glycerol tetraethers (GDGTs) were analyzed in peat samples taken from the Zoigê grassland, located on 
the eastern margin of the Qinghai-Tibetan Plateau. The mean annual air temperature (MAAT) and pH in the 210Pb-dating peat core 
were reconstructed based on the cyclization of branched tetraethers (CBT) and methylation of branched tetraethers (MBT) indices 
for the last 150 years. The results showed that the MAAT and pH values involved three stages of variation over the last 150 years. 
The pH was stable and the MAAT decreased slowly by about 1°C from 1851 to 1927. The pH decreased rapidly by 0.6 and the 
MAAT decreased significantly by 2.5°C between 1927 and 1979. The pH and MAAT increased by 0.8 and 5°C, respectively, 
since the 1980s. The reconstructed temperatures correspond well to the mean winter temperatures reconstructed using tree-rings 
from the Jiuzhaigou Valley, situated at the boundary between the Qinghai-Tibetan Plateau and the Sichuan Basin. The estimated 
MAAT was similar to the temperatures reconstructed using tree-rings, indicating an increasing trend, as shown by local instru-
mental records from 1957 to 2001. These results provide further confidence in the application of proxies based on glycerol dialkyl 
glycerol tetraethers in peat records for continental paleoclimate reconstruction. 

peat, Zoigê grassland, methylation of branched tetraethers, cyclization of branched tetraethers, mean annual air temper-
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Reconstructions of paleoclimates and paleoenvironments 
can help us to better understand the variation processes and 
mechanisms of the Earth’s systems and effectively reduce 
the uncertainties in these predictions by providing a basis 
for climatic and environmental predictions. Ice-core, loess, 
tree-ring, coral, and marine and lacustrine sedimentary rec-
ords have been used for paleoclimate reconstruction. The 
key to establishing high-resolution climatic and environ-
mental sequences ingeological history is to search for sensi-
tive climatic and environmental proxies. Peat core sedi-
ments are also an important geological record. Peat core 
sediments are mainly accumulated in situ by plant remains 

and the burying process is relatively simple. The organ-
ic-matter content of these plant remains is relatively abun-
dant, thus the remains are a good indicator to study the 
paleoenvironment/paleoclimate in terms of molecular or-
ganic geochemistry data. 

Lipids (n-alkane, fatty alcohol, fatty acid, sterone, 
triterpenoid and linear-chain ester) in peat core sediments, 
isotopes of C, H, and O in celluloses, peat core humification 
rates and sporopollen fossils are good biomarkers for pale-
oenvironmental reconstructions [1–8]. Although these cli-
matic proxies can be used to reconstruct paleoenvironments, 
providing information about changes in the paleoenviron-
ment/paleoclimate (dry or wet, cold or warm), they cannot 
be used to calculate temperature values quantitatively. 
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Moreover, most proxies show an indeterminate relationship 
with environmental factors (temperature, precipitation and 
CO2 partial pressure); hence future work is needed to per-
fect these. 

In recent years, the methylation of branched tetraethers 
(MBT) index and the cyclization of branched tetraethers 
(CBT) ratio, based on the distribution of glycerol dialkyl 
glycerol tetraethers (GDGTs), have been developed [9–12]. 
At present, two classes of GDGTs, namely isoprenoid 
GDGTs (GDGT-0–GDGT-4 and crenarchaeol) and 
branched GDGTs (I–III) (their molecular structures are 
shown in Figure 1), are being extensively studied. Isopre-
noid GDGTs are biosynthesized exclusively by Archaea and 
are one of the biomarkers of Archaea [13]. The exact origin 
of the branched GDGTs is ambiguous, but it is likely that 
branched GDGTs are produced by bacteria in soil and peat 
[14]. Weijers et al. [9] described the relationship between 
the relative distributions of branched GDGTs and local en-
vironmental factors (temperature and pH) using 134 global-
ly distributed soil samples from 90 different locations and 
showed that mean annual air temperature (MAAT) and soil 
pH were the major factors affecting the distribution of 
GDGTs. The amount of cyclopentane in the branched 
GDGTs is related to soil pH, whereas that of methyl groups 
is related to both MAAT and soil pH. Based on these ob-
servations, two indices were proposed for quantifying the 
distributions of branched GDGTs: the CBT index, reflecting 
soil pH, and the MBT index for both MAAT and soil pH. 
The indices are defined in formulas 1–4. 

Peterse et al. [12] determined these indices for soils sam-

pled from a transect in the peripheries of two hot springs in 
California. The CBT values of these geothermally heated 
soils showed good correlation with pH (R2 = 0.76), also the 
relationship between MBT, soil pH and temperature for the 
geothermally heated soils was similar to that of the global 
data set [9]. The results confirmed the dependence of the 
MBT index on soil temperature and pH and supported the 
applicability of the MBT/CBT indices as proxies for conti-
nental paleotemperatures and soil pH values in the past. 
Branched GDGTs have been used to reconstruct continental 
temperatures and soil pH values for several areas and geo-
logical times, for example, the last glacial-interglacial tran-
sition period in the Congo Basin, Africa [15], the Paleo-
cene-Eocene thermal maximum from Arctic Ocean sedi-
ments [16], and at the Oligocene-Eocene boundary in 
Greenland [11]. Furthermore, Peterse et al. [17] applied 
these proxies to paleoclimate reconstruction in high-latitude 
environments with a MAAT of < 0°C. Although branched 
GDGT concentrations in the soil are relatively low, recon-
structed MAATs based on the MBT/CBT proxies are ca. 
−4°C, close to the measured MAAT (ca. −6°C). 

In this study, we measured the GDGT contents in Zoigê 
peat samples, calculated the MBT and CBT proxies by ap-
plying them to a peat core, and compared the estimates for 
the last 150 years with regional instrumental records of air 
temperatures and pH. The results provided some heuristic 
data for reconstruction of the continental paleoenvironment. 
The precisions of CBT and MBT computation are 0.014 and 
0.008, respectively, and those of the pH and MAAT values 
obtained by conversion are ±0.04 and ±0.3°C, respectively. 

 

 

Figure 1  Molecular structures of isoprenoid and branched GDGTs. 
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1  Materials and methods 

1.1  Sampling and dating 

The Hongyuan peat is located on the eastern edge of the 
Qinghai-Tibetan Plateau, in the northeast of Sichuan, in the 
middle of the Ngawa Tibetan and Qiang Autonomous Pre-
fecture; it is situated in China’s biggest moss-land plateau – 
the Zoigê peat area. It is a subalpine meadow prairie belt 
consisting of herbaceous peat [18,19]. In the Hongyuan area, 
the prevailing climate is a monsoon climate characteristic of 
a continental plateau in a frigid-temperate zone, with short 
spring and autumn periods, long winters, and no summer. In 
this area, the annual mean temperature is 0.6–1.2°C and the 
annual mean precipitation is 560–860 mm. The climate is 
further characterized by a great difference in temperature 
between day and night, sufficient rainfall, and contempora-
neous rainy and hot seasons [19,20]. 

The sampling site (32° 46′ N, 102° 30′ E) is located 2 km 
west of Hongyuan County in the Zoigê peat-core area in 
Hongyuan, Sichuan, at an altitude of 3510 m above sea lev-
el. The sampling tool was a stainless steel Wardenaar. The 
sample column was 25 cm long. The whole sample column 
was put into a PVC tube and kept at −10°C in the laboratory. 
The sample was divided longitudinally into two parts: one 
was used for 210Pb dating, and the other (subsampled at in-
tervals of 0.5 cm) was used for GDGTs testing. 

The age model was established using 210Pb data from the 
Nanjing Institute of Geography and Limnology, Chinese 
Academy of Sciences (Figure 2), and the sample core was 
dated in the constant initial concentration mode [21–24]. 

 

 

Figure 2  210Pbuns profile (uns: unsupported. The amount of 210Pbuns in a 
sediment sample can be calculated by measuring both 210Pb and 226Ra). 

The precipitation rate is 0.16 cm/a, and the sample core time 
span is 1851–2006. 

1.2  Methods 

(i) Pretreatment method.  Samples for lipid analysis were 
freeze dried and powdered with a mortar and pestle prior to 
extraction. Approximately 500 mg of freeze-dried sample, 
with a moderate amount of C46-GDGT (standard material, 
see the structure in Figure 1), were extracted by Soxhlet 
extraction with dichloromethane (DCM)/methanol (MeOH) 
(2/1, v/v) for 72 h. The solvent was evaporated and the ex-
tract was separated by Al2O3 column chromatography with 
hexane/DCM (9/1, v/v) and DCM/MeOH (1/1, v/v) as se-
quential eluents. The polar fraction (DCM/MeOH) was 
concentrated by rotary evaporation, redissolved in hex-
ane/isopropanol (99/1, v/v), and filtered using a PTFE 0.45 
μm filter. The filtrate was tested by high-performance liquid 
chromatography/atmospheric pressure chemical ionization  
−mass spectrometry (HPLC/APCI−MS). 

(ii) Instrumental methods.  The HPLC/MS method used 
was modified from that described by Hopmans et al. [25], as 
discussed by Schouten et al. [26]. 

(1) Chromatography conditions. Analyses were per-
formed using an Agilent 1200 series liquid chromatograph 
equipped with an auto-injector and ChemStation chroma-
tography management software. Separation was effected 
with a Prevail Cyano column (2.1 mm × 150 mm, 3 μm; 
Alltech, Deerfield, USA) kept at 30°C. The injection vol-
ume was 3 μL. GDGTs were eluted isocratically with 99% 
hexane and 1% propanol for 5 min, followed by a linear 
gradient to 2% propanol over 40 min. The flow rate was 0.2 
mL/min. After each analysis, the column was cleaned by 
back-flushing hexane/propanol (90:10, v/v) at 0.2 mL/min 
for 15 min. 

(2) Mass spectrometry conditions. Detection was 
achieved using atmospheric pressure, positive ion chemical 
ionization–Agilent 6410 triple quad mass spectrometer 
(APCI−MS). The conditions were: nebulizer pressure 60 psi; 
vaporizer temperature 300°C; drying gas (N2), flow rate 5 
L/min, temperature 200°C; capillary voltage 2500 V; and 
corona 5 μA. GDGTs were detected via single-ion monitor-
ing (SIM) of their [M + H]+ and [M + H]+ + 1 [i.e. proto-
nated molecular ions (m/z values are shown in Figure 2) and 
first isotope peak ions] and quantified by integration of the 
peak areas [26]. 

Absolute concentrations were calculated using a newly 
synthesized internal standard material (C46-GDGT) (refer to 
the method described by Huguet [27]). The relative re-
sponse factors (RRF) of each GDGT and the internal stand-
ard material were not measured, so only semi-quantitative 
results were achieved. 

GDGT indices were calculated as follows [9], where the 
roman numerals correspond to the GDGT structures shown 
in Figure 1: 
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 CBT = 3.33 0.38 pH,   (3) 

 MBT = 0.122 + 0.187 CBT + 0.020 MAAT.   (4) 

2  Results and discussion 

2.1  GDGTs composition and structural characteristics 
in the profile 

Five isoprenoid and nine branched GDGTs were detected in 
the samples. The abundances of isoprenoid GDGTs are rel-
atively low (0.001–0.63 μg/g, Figure 3(a)), accounting for 
about 3% of the total GDGTs, including GDGT-0, GDGT-1, 
GDGT-2, GDGT-3, and crenarchaeol. GDGT-0 is the most 
abundant isoprenoid GDGT, accounting for 62%–100% of 
the total isoprenoid GDGTs. Isoprenoid GDGTs possessing 
more than four cyclopentane groups were not examined. 
The above results are similar to those in the published liter-
atures for soil and peat samples [9,28,29]. 

The concentrations of branched GDGTs vary between 
1.8 and 20.3 μg/g, accounting for 96%–100% of the total 
GDGTs (Figure 3(b)). The examined branched GDGTs are 
mainly GDTG-I, GDTG-II, and GDGT-III (Table 1), with 
the highest concentration being that of GDGT-II and the 

lowest concentration that of GDGT-III. The concentrations 
tend to decrease as the number of cyclopentane groups in 
the GDGTs changes from 0 to 2. Branched GDGTs were 
discovered in a Dutch Holocene peat deposit and identified 
by Sinninghe Damsté et al. [30]. Weijers et al. [14] found 
that the stereoconfigurations of the glycerol moieties of the 
membrane lipids were identical to those of the glycerol 
moieties synthesized by bacteria. Thus, it is likely that the 
branched GDGTs are produced by bacteria. Branched 
GDGTs occur ubiquitously in soils [31,32], peats [31], lakes, 
and coastal marine sediments [31,33] throughout the world. 
It was initially thought that all of the branched GDGTs in 
lakes and coastal marine sediments were deposited after 
being transported by rivers from land [34,35]. Recent stud-
ies suggest that at least part of the branched GDGTs in ma-
rine sediments may be produced in situ [17,36–38]. 

2.2  pH and MAAT 

In recent years, branched GDGTs in marine sediments have 
been used to reconstruct continental paleotemperatures and 
soil pH values in the last glacial-interglacial transition peri-
od in the Congo Basin, Africa [16], in the Paleo-
cene-Eocene thermal maximum from Arctic Ocean sedi-
ments [15], and at the Oligocene-Eocene boundary in 
Greenland [11]. Branched GDGTs in lake sediments have 
also been used to reconstruct paleoenvironments. For ex-
ample, Zink et al. [39] found that the MBT index was a 
good tool for reconstructing continental paleotemperatures 
by comparing the distributions of branched GDGTs in lake 

 

 

Figure 3  (a) Concentrations of isoprenoid GDGTs; (b) concentrations of branched GDGTs; (c) MBT; (d) CBT; (e) pH in the profile. 
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deposits and recorded temperatures in New Zealand. Tyler 
et al. [36] reconstructed pH and MAAT values for approxi-
mately the past 400 years using a recent sedimentary GDGT 
profile from Lochnagar lacustrine deposits. The MBT/CBT 
proxies have been applied successfully to both marine and 
lacustrine deposits, but, to our knowledge, they have not 
been applied to the dating of peat-core deposits. In this re-
search, we discussed the usefulness and potential applica-
tion of these proxies in peat-core deposits. 

In this research, the calculated CBT and MBT indices are 
0.583–0.865 and 0.260–0.337, respectively (Figure 3(c) and 
(d)); Table 1). According to formulas (2) and (3), the pH 
values in the Zoigê peat core for the last 150 years are 
within the range 6.4–7.2 (Figure 3(e)). The pH values of the 
remaining soils were measured according to standard 
methods, i.e. in a peat/water mixture (1/2.5, m/v) [17]. The 
pH obtained by this method for the surface peat is 6.9, i.e., 
slightly lower than the calculated result obtained using the 
CBT index (7.1). The values deduced from the CBT index 
suggest that the pH variations could involve three periods in 
the last 150 years: in the period 1851–1927, the pH was 
stable at 7.0, reflecting the situation in this area — an unin-
habited peat area before 1930 [40]; in the period 1927– 

1979, the pH decreased from 7.0 to 6.4, possibly because of 
deforestation in northwestern Sichuan Province, deforesta-
tion for farmland reclamation and the development of fire 
land since the 1920s [41], leading to extensive deposition of 
humus (mainly humic acid and fulvic acid); from 1979 to 
the present, the pH has increased by a large margin from 6.4 
to 7.2. The steady increase in pH in the last 30 years could 
possibly be attributed to disturbance by human activities, 
resulting in decreased amounts of humic acid [42,43]. 

According to formula (4), the MAAT changed from 
−0.4°C to 4.7°C (Figure 4(d)). The MAAT variation, as 
defined by the CBT/MBT indices, could also involve 
threeperiods in the last 150 years: in the period 1851–1927, 
the MAAT varied over a small range from 2.8°C to 3.8°C 
(decreasing slowly by approximately 1°C); in the period 
1927–1979, the MAAT varied between −1.2°C and 2.4°C, 
and reduced by 2.5°C at 0.05°C/a; from 1979 to the present, 
the MAAT varied between −1.2°C and 3.9°C, and increased 
rapidly by 5°C at 0.17°C/a. The variations in the calculated 
MAAT values showed the same tendency in a given time 
period (since 1949) as the annual mean temperature in Chi-
na. However, the climate in the Zoigê grassland has obvious 
regional features because the area is located in the 

 

 

Figure 4  (a) MAAT values on a three-year scale; (b) average winter temperatures; (c) average summer temperatures from the Zoigê Weather Station [48]; 
(d) MAAT values calculated by MBT/CBT indices; (e) the correlation between instrumental MAAT and MAAT values calculated by MBT/CBT indices; (f) 
the correlation between average winter temperatures and MAAT values calculated by MBT/CBT indices; (g) the correlation between average summer tem-
peratures and MAAT values calculated by MBT/CBT indices. 
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Table 1  Concentrations of branched GDGTs in peat core 

Samples Depth (cm) 
Concentrations of branched GDGTs (g/g dw) 

MBT CBT 
Ic Ib Ia IIc IIb IIa IIIc IIIb IIIa 

HYS2-01 24.75 0.274 1.812 3.137 0.175 0.674 7.649 –a) – 2.704 0.318 0.637 

HYS2-02 24.25 0.136 0.753 1.404 0.067 0.278 3.406 – – 1.075 0.322 0.669 

HYS2-03 23.75 0.171 0.948 1.806 0.092 0.357 4.152 – – 1.455 0.326 0.659 

HYS2-04 23.25 0.276 1.266 2.855 0.148 0.613 6.620 – – 2.260 0.313 0.703 

HYS2-05 22.75 0.087 0.444 0.992 0.050 0.177 2.195 – – 0.718 0.327 0.711 

HYS2-06 22.25 0.058 0.263 0.583 0.029 0.124 1.284 – – 0.467 0.322 0.684 

HYS2-07 21.75 0.191 0.964 1.970 0.099 0.424 4.204 – – 1.429 0.337 0.648 

HYS2-08 21.25 0.260 1.382 2.880 0.141 0.606 6.562 – – 2.090 0.325 0.677 

HYS2-09 20.75 0.067 0.314 0.768 0.036 0.148 1.741 – – 0.576 0.315 0.735 

HYS2-10 20.25 0.126 0.592 1.326 0.055 0.264 2.959 – – 0.958 0.326 0.699 

HYS2-11 19.75 0.122 0.663 1.274 0.072 0.253 3.047 – – 1.025 0.319 0.674 

HYS2-12 19.25 0.052 0.279 0.572 0.028 0.125 1.315 – – 0.419 0.323 0.670 

HYS2-13 18.75 0.233 1.067 2.402 0.109 0.532 5.556 – – 1.791 0.317 0.697 

HYS2-14 18.25 0.198 1.137 2.287 0.104 0.480 5.863 – – 1.948 0.301 0.702 

HYS2-15 17.75 0.117 0.692 1.323 0.059 0.291 3.108 – – 1.023 0.322 0.654 

HYS2-17 16.75 0.142 0.940 1.962 0.085 0.457 4.901 – – 1.498 0.305 0.692 

HYS2-18 16.25 0.093 0.557 1.164 0.050 0.299 2.897 – – 0.908 0.304 0.676 

HYS2-19 15.75 0.100 0.574 1.192 0.033 0.314 3.169 – – 0.918 0.296 0.691 

HYS2-20 15.25 0.050 0.374 0.781 0.030 0.236 1.968 – – 0.596 0.299 0.653 

HYS2-21 14.75 0.065 0.448 0.887 0.036 0.280 2.268 – – 0.697 0.299 0.637 

HYS2-22 14.25 0.027 0.175 0.354 0.011 0.102 0.862 – – 0.283 0.307 0.642 

HYS2-23 13.75 0.121 0.821 1.575 0.044 0.507 3.983 – – 1.214 0.305 0.621 

HYS2-24 13.25 0.115 0.917 1.775 0.044 0.596 4.602 – 0.030 1.434 0.295 0.625 

HYS2-25 12.75 0.063 0.559 1.040 0.029 0.329 2.537 – – 0.866 0.307 0.605 

HYS2-26 12.25 0.066 0.565 1.117 0.036 0.345 2.969 – – 0.964 0.288 0.652 

HYS2-27 11.75 0.100 0.884 1.710 0.062 0.568 4.523 – 0.026 1.456 0.289 0.633 

HYS2-28 11.25 0.057 0.462 0.925 0.026 0.289 2.508 – 0.013 0.797 0.284 0.660 

HYS2-29 10.75 0.117 0.870 1.762 0.037 0.580 4.680 – 0.025 1.509 0.287 0.648 

HYS2-30 10.25 0.049 0.407 0.815 0.017 0.249 2.282 – 0.013 0.682 0.282 0.674 

HYS2-31 9.75 0.048 0.393 0.913 0.015 0.250 2.309 – 0.011 0.711 0.291 0.700 

HYS2-32 9.25 0.091 0.857 1.781 0.029 0.468 4.526 0.014 0.016 1.365 0.298 0.678 

HYS2-34 8.25 0.116 0.951 2.367 0.032 0.615 5.648 – 0.023 1.701 0.300 0.709 

HYS2-35 7.75 0.140 1.301 3.211 0.069 0.750 7.784 – 0.032 2.320 0.298 0.729 

HYS2-36 7.25 0.165 1.631 4.049 0.056 1.025 10.104 0.070 0.043 3.140 0.288 0.727 

HYS2-37 6.75 0.131 1.262 3.659 0.033 0.767 9.375 0.023 0.040 2.944 0.277 0.808 

HYS2-38 6.25 0.053 0.697 2.015 0.017 0.412 4.815 0.009 0.017 1.565 0.288 0.790 

HYS2-39 5.75 0.085 0.977 2.991 0.028 0.557 7.731 0.011 0.031 2.503 0.272 0.844 

HYS2-40 5.25 0.089 0.728 1.627 0.028 0.462 4.133 - 0.015 1.268 0.293 0.685 

HYS2-41 4.75 0.054 0.579 1.862 0.012 0.363 5.040 0.013 0.020 1.636 0.260 0.865 

HYS2-42 4.25 0.036 0.478 1.813 0.006 0.314 4.567 – 0.013 1.460 0.268 0.907 

HYS2-43 3.75 0.031 0.444 1.454 0.009 0.328 3.701 – 0.012 1.097 0.273 0.825 

HYS2-44 3.25 0.042 0.478 1.502 – 0.310 3.583 – 0.014 1.176 0.285 0.810 

HYS2-45 2.75 0.064 0.580 1.765 – 0.465 4.522 – 0.025 1.359 0.274 0.779 

HYS2-46 2.25 0.028 0.342 0.948 0.010 0.275 2.263 – 0.015 0.668 0.290 0.717 

HYS2-47 1.75 0.054 0.656 1.815 0.032 0.500 4.283 – 0.024 1.207 0.295 0.722 

HYS2-48 1.25 0.042 0.473 1.197 0.013 0.406 2.537 – 0.018 0.705 0.318 0.628 

HYS2-49 0.75 0.028 0.331 0.896 – 0.351 1.926 – 0.022 0.534 0.307 0.617 

HYS2-50 0.25 0.036 0.474 1.090 0.022 0.486 2.586 0.009 0.036 0.751 0.291 0.583 

a)  below the detection limit.                
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northeast of Sichuan and on the eastern edge of the Qing-
hai-Tibetan Plateau; it has a special geographical position, 
and is influenced by both the Qinghai-Tibetan Plateau cir-
culation system and the East Asian and Indian monsoons 
[20,44]. For instance, from 1910 to 1940, the national 
MAAT rose noticeably [45,46], but this area showed no 
warming tendency. The lowest winter mean temperature for 
this area, as identified by tree-rings, has not displayed any 
obvious tendency to rise [47]. In addition, the indications 
are that the rising tendency of the MAAT in this area is not 
completely consistent with that in other areas of China, or 
globally [45]. 

During the period 1957 to 2001, the average temperature 
calculated by MBT/CBT was 1.0°C, close to the average 
temperature in the last 45 years recorded by the Zoigê 
Weather Station (0.9°C) (Figure 4(a), (b), (c) and (d)) [48]. 
The calculated MAAT values correlate better with the rec-
orded annual mean temperatures (R2 = 0.324 (P < 0.05, N = 
15)) than with the average winter and summer temperatures 
(P < 0.05, N = 15) (Figure 4(e), (f) and (g)). However, all 
the correlations are relatively poor, probably because of the 
assumption of unvarying sedimentation rates made in the 
210Pb-dating constant specific activity model, which causes 
the calculated time isn’t completely identical with the actual 
time. 

The variation range of the calculated MAAT values 
(5.1°C) is more significant than that of the instrumental 
temperatures (1.4°C) in the period 1957–2001. When we 
examined the calibration data set of Weijers et al. [9], we 
found that the difference and standard deviation between the 
calculated and instrumental MAATs were –3.78°C, 5.95 
and 3.42°C, 4.36, respectively, for instrumental MAAT < 
10°C and MAAT > 10°C. This indicates that more precise 
empirical MAAT equations possibly need to be established 
for different areas, particularly on a local level, because of 
the different dynamic processes of soils in different areas of 
the world, or the different factors influencing the synthesis 
of branched GDGTs at different latitudes [36]. 

3  Conclusions 

We reconstructed the variation patterns of peat pH and 
MAAT values in the last 150 years at the Zoigê grassland. 
MBT/CBT indices related to the distribution of branched 
GDGTs in the peat core suggest that three periods could be 
involved. The variation range of the calculated MAAT val-
ues (5.1°C) is more significant than that of the instrumental 
temperatures (1.4°C) in the last 45 years; this is probably 
related to the dynamic features of the local soil. The average 
temperature calculated by MBT/CBT is close to the average 
temperature recorded by the Zoigê Weather Station for the 
last 45 years, and the MAAT value calculated from the 
MBT/CBT indices shows a similar variation tendency to 
that obtained by tree-rings. 
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