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The deglacial 13C minimum events that originated from the ventilation of the deep Southern Ocean around Antarctica, have been 
recorded in a range of marine sediments from the southern to tropical oceans in late Pleistocene. However, the broad 13C mini-
mum event was also reported as far as to the northern middle latitudes, in northwestern Pacific marginal sea areas, during the last 
deglaciation. In the northwestern Pacific, forcing from the northern high latitudes is strongly expressed, while the records of in-
fluence from the southern high latitudes are few. The Kuroshio Source Region (KSR) forms a boundary between the northwestern 
Pacific and the southern, tropical Pacific. So, high-resolution planktonic foraminiferal records in core MD06-3054 from the KSR 
are well positioned to identify signals from the southern hemisphere in the northwestern Pacific. Planktonic foraminiferal tests 
from the upper 1030 cm of the core were subject to AMS14C, carbon and oxygen isotopic measurements. A negative excursion 
was found to occur from about 20.0–6.0 ka BP in 13C records of both surface (Globigerinoides ruber) and subsurface (Pulleni-
atina obliquiloculata) dwellers, but the overall trends of the two curves have reversed since 26.5 ka BP. Moreover, the 13C rec-
ord of G. ruber (the surface dweller) shows a robust link to the record of atmospheric CO2, and its changes precede the records of 
P. obliquiloculata (the subsurface dweller). According to the hydrologic conditions, the broad 13C minimum event recorded in 
the KSR is also a response to the increasing ventilation of the deep Southern Ocean around Antarctica during the last deglaciation. 
The inconsistency between the records of the surface and subsurface dwellers was possibly caused by the ways that the low 13C 
signal was transmitted. Subsurface water primarily received the low 13C signal from the Antarctic Intermediate Water (AAIW), 
whereas the surface water was probably mainly impacted by atmospheric CO2 in the KSR. The records from the KSR confirm the 
deduction that the broad 13C minimum event in the Okinawa Trough was due to the impact of tropical Pacific surface water dur-
ing the last deglaciation, and suggest that signals from the southern high latitudes also can be delivered to the northern middle 
latitudes. 
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In recent research, the ventilation of the deep Southern 
Ocean during recent glacial cycles is considered to link 
closely with the changes in atmospheric CO2 [1–5]. The 
release of the CO2 accumulated in the deep sea would 

change the concentrations and carbon isotopes of atmos-
pheric CO2 with an outcrop of deep ocean water around 
Antarctica during deglaciations [1–3,5,6]. Records of opal 
flux from Anderson et al. [1], evidence of planktonic and 
benthic foraminiferal 14C from Skinner et al. [2] both doc-
ument that the increasing ventilation of the deep Southern 
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Ocean was coincident with the rising of atmospheric CO2 
recorded in ice cores during the last deglaciation. During 
this time, the isotopic changes of atmospheric CO2 corre-
spond with the new outgassing, which was especially de-
pleted in δ13C and ∆14C [2,6–9]. On the other hand, with 
supersaturated deep water driven to the sea surface, the low 
δ13C signal was subsequently transmitted northward via 
Antarctic Intermediate Water (AAIW)/sub-Antarctic Mode 
Water (SAMW) [1,6,10], and caused the δ13C minimum 
event recorded in marine sediments from the southern to 
tropical oceans [6,11,12]. However this event was also re-
ported in northwestern Pacific marginal seas [13,14], as far 
away as the Okinawa Trough [15]. Though impacts from 
the southern high latitudes are reported widely in the tropi-
cal Pacific [6,10,16–19], there are few records of causal 
effects from southern hemisphere in the northwestern Pa-
cific. In contrast, forcing from the northern high latitudes is 
strongly expressed in this area, especially in the Okinawa 
Trough [20–22].  

The Kuroshio Source Region (KSR) forms a boundary 
between the northwestern Pacific and the southern, tropical 
Pacific region, so core MD06-3054 in this area is well posi-
tioned to identify influences from the Southern Hemisphere 
(Figure 1(a)). Here, the response of the northwestern Pacific 
upper water δ13C to the last deglacial ventilation of the deep  
Southern Ocean is examined using the carbon isotope com-
position of planktonic foraminifera tests, which is often 
used to reconstruct the history of water masses [6,10,23]. 

1  Oceanographic setting 

In the northwestern Pacific, the westward-flowing Northern 
Equatorial Current (NEC) bifurcates into the northward- 
flowing Kuroshio Current (KC) and the southward-flowing 
Mindanao Current (MC) at an average latitudinal position of 
about 15°N, after approaching the Philippine coast [24–28] 
(Figure 1(a)). The KC flows along the northern Philippine 
coast and out of the KSR to the east of Taiwan, then con-
tinues northward into the Okinawa Trough, carrying warm 
and saline water from the tropical Pacific to the northern 
middle latitudes, and having a significant impact on the en-
vironment and climate of the northwestern Pacific region 
[20,29]. Below the surface, the southern source water — the 
AAIW — can intrude into the KSR via the New Guinea 
Coastal Undercurrent and the Mindanao Undercurrent 
(MUC) [24,27]. Qu and Lindstrom [25] found that the 
AAIW is traced only to about 15°N based on both salinity 
and oxygen concentration. The high-oxygen concentration 
of the AAIW is shown to have been substantially decreased, 
falling below 2.0 mL L1, at about 15°N in the 27.2σθ sur-
face via MUC from historical data and six hydrographic 
section in the western Pacific Ocean (12°N, 14°N, 16°N, 
18°N, 20°N, 22°N) [24] (Figure 1(b)). So it can not be the 
source of the relatively high oxygen (2.0 mL L1) water 

existed in the Okinawa Trough [24]. Moreover, the subsur-
face flow near the coast is dominated by the southward- 
flowing Luzon Undercurrent (LUC) with relatively low 
(<1.9 mL L1) oxygen level at 16°–18°N, which also indi-
cates that there is no northward flow of AAIW over 15°N 
[25] (Figure 1(b)). The AAIW originates from the surface 
water in the sub-Antarctic band [19,25], along with another 
water mass — the SAMW, which have important impact on 
the subsurface water in the upwelling region of the eastern 
equatorial Pacific (EEP) [10,19,30]. The two water masses 
provide crucial channels that enable the southern high lati-
tudes to influence the tropics [1,6,10,19,30]. 

2  Materials and methods 

The Calypso core MD06-3054 (14°30.2816′N, 124°19.2400′E; 
water depth: 2021 m), located at the westernmost terminus 
of the NEC in the Philippine Sea, northwestern Pacific 
(Figure 1(a)), was obtained during the joint Chinese-French 
Marco Polo 2 cruise in Western Pacific in 2006. Samples 
were taken at 4 cm intervals from the upper 1030 cm of the 
core, and each sample was treated with the standard tech-
niques [31]. 15–20 tests of Globigerinoides ruber (size frac-
tion from 250 to 300 μm) and 5–8 tests of Pulleniatina 
obliquiloculata (size fraction from 300 to 400 μm) were 
hand-picked carefully for stable isotope analysis with the 
Finnigan MAT 253 at the State Key Laboratory of Marine 
Geology, Tongji University. Precision was checked against 
international standard NBS19. Standard deviation was 
±0.07‰ for δ18O and ±0.04‰ for δ13C in 2008. Conversion 
to the international Pee Dee Belemnite (PDB) scale was 
based on the NBS19 standard.  

The tests of mixed species Globigerinoides sacculifer 
and G. ruber (size fraction from 250 to 350 μm) were 
hand-picked with caution and subjected to AMS 14C meas-
uring in the National Ocean Sciences Accelerator Mass 
Spectrometry Facility at the Woods Hole Oceanographic 
Institute, USA. The raw AMS 14C ages were converted to 
calendar ages using the CALIB 6.0 program (http://calib. 
qub.ac.uk/calib/) with the dataset Marine 09 [32]. A reser-
voir correction has been considered for the 14C difference 
between atmospheric and surface waters [33]. 

3  Age model 

The age model is based on 8 AMS14C and the δ18O records 
of G. ruber and P. obliquiloculata (Table 1, Figure 2(c), 
(d)). The age model assumes that the upper 1030 cm of core 
MD06-3054 contain a continuous record since 26.5 ka BP, 
with an average temporal resolution of 245 a before 11.2 ka 
BP and 58 a afterwards at a 4 cm sampling interval. 

The oxygen isotope records of planktonic foraminifera G. 
ruber and P. obliquiloculata show a classic glacial/inter-  
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Table 1  AMS14C age points measured in the upper 1030 cm from core MD06-3054 

Sample No. Depth (cm) Material AMS14C (a) Cal age (a BP) 
Age errors (a) 

–σ +σ 
OS-72806 19 

G. ruber 
+ 

G. sacculifer 

930±30 546 65 83 
OS-72709 327 3020±30 2804 87 114 
OS-72962 447 4980±50 5353 157 186 
OS-72965 563 7080±35 7573 99 91 
OS-72712 675 9320±45 10181 181 159 
OS-72966 779 10250±40 11240 92 130 
OS-72808 827 11900±45 13342 113 121 
OS-72803 1019 22000±85 25901 468 359 

 

Figure 1  (a) Location of core MD06-3054 in the KSR, 
and the sites and the hydrological settings associated in 
the northwestern Pacific. The connected ocean currents 
(AAIW, NEC, KC, and MC) are shown with solid and 
dashed arrows, and the dashed contours are the annual 
average sea surface temperature (°C) at present (Data 
from WOA 05). The solid lies (ABCDEF) show the six 
geographic locations of vertical sections in Figure 1(b); 
(b) geostrophic velocity (cm s1) against depth (m) su-
perimposed on oxygen concentration (mL L1) at the six 
vertical sections: A (12°N), B (14°N), C (16°N), D 
(18°N), E (20°N), and F (22°N) modified from Qu and 
Lindstrom [24]. Positive values of geostrophic velocity 
are northward, and negative values are southward. The 
heavy dashed lines indicate the 27.2 σθ isopycnal surface 
[24].  
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glacial pattern since 26.5 ka BP in MD06-3054. Note that 
the values are more positive during the last glacial period 
than during the Holocene (Figure 2(c), (d)). The values de-
creased by over 2‰ in the last deglaciation and the de-
creasing trend was obviously relaxed during the mid-late 
Holocene.  

4  Results and discussion 

Both δ13C curves of the planktonic foraminifera G. ruber 
and P. obliquiloculata fluctuate greatly, even within a time 
period several hundred years. The δ13C records change from 
0.020‰ to 1.858‰ and from 0.021‰ to 1.677‰ for G. 
ruber and P. obliquiloculata, respectively (Figure 2(a), (b)). 
The δ13C of foraminiferal tests is mainly a representation of 
the isotope compositions of the sea water in which they 
lived, thereby providing a readily accepted method to re-
construct the evolution of sea water masses in paleoceano-
graphic research [6,10,23]. In this work, the test size frac-
tion was restricted to minimize its effect [34] on isotope 
analysis. The serious fluctuations of the δ13C records may 
reflect the influence of other factors, such as sea surface 
productivity, nutrient supply and terrestrial inputs [14,15,23, 
34]. However, there are two obvious features in both plank- 
tonic foraminiferal δ13C records for core MD06-3054 since 
26.5 ka BP. One is the negative excursion from about 20.0–  

 

 
Figure 2  The δ13C and δ18O records of planktonic foraminifera G. ruber 
and P. obliquiloculata from core MD06-3054 since 26.5 ka BP. Black solid 
lines in (a) and (b) indicate five-point running average records. The shaded 
area indicates the negative excursion that occurred from about 20.0–6.0 ka 
BP. The AMS14C age points are shown at the bottom with error bars (2σ). 

6.0 ka BP in both records, and the other is that the trends of 
the two curves show an overall reversed pattern since the 
last glacial: the δ13C records of G. ruber show an increasing 
trend, and the values are more positive during the late Hol-
ocene than the last glacial period, whereas for P. obliqui-
loculata, the δ13C records show a decreasing trend, and the 
values are more positive during the last glacial period (Fig-
ure 2(a), (b)). 

The negative excursion that occurred from about 20.0– 
6.0 ka BP in both δ13C records from core MD06-3054 
agrees well with the broad δ13C minimum event recorded 
during the last deglacial period in southern high latitudes 
[35], the Indian Ocean [36], the Atlantic Ocean [37], the 
EEP [6,36], and western Pacific marginal sea areas [13–15] 
(Figure 3). The cause of the deglacial δ13C minimum events 
was proposed to be due to upwelling of the deep Southern 
Ocean around Antarctica by Oppo and Fairbanks [11] for 
the tropical Atlantic and by Spero and Lea [6] for the EEP. 
During the last deglaciation, increased ventilation of the 
deep Southern Ocean has recently been documented by opal 
flux and foraminiferal 14C records [1,2]. On the one hand, 
with supersaturated deep water driven to the sea surface, the 
concentration of atmosphere CO2 increased and its carbon 
isotopes changed in response to the outgassing of low δ13C 
and ∆14C CO2 resolved in the deep ocean water [2,6–9,38]; 
on the other hand, the low δ13C signal was advected into the 
source region of the AAIW/SAMW and subsequently 
transmitted northward via AAIW/SAMW [1,6,10]. The 
negative excursion that occurred from about 20.0–6.0 ka BP, 
as recorded in the planktonic foraminifera from core MD06- 
3054, shows that the last deglacial low δ13C signal from the 
ventilation of the deep Southern Ocean in the southern high 
latitudes also transmitted to the KSR. 

In modern physical oceanographic research, the AAIW 
can intrude to the KSR [25,27], which may provide a means 
of transporting the low δ13C signal into this area during the 
last deglaciation. The δ13C record of the subsurface dweller 
P. obliquiloculata since 26.5 ka BP also infers the impact of 
the AAIW on the KSR. The decreasing trend reverses the 
record of the surface dweller G. ruber, with values that are 
more positive during the last glacial period than during the 
late Holocene, which is consistent with the record from the 
upwelling region of the EEP [36]. Loubere and Bennett [10] 
have traced the impact of SAMW on the tropical ocean 
from southern high latitudes using planktonic foraminiferal 
δ13C records in the southeastern Pacific, and they found that 
the planktonic foraminiferal δ13C records from subsurface 
water in the upwelling region of the EEP and the subtropical 
frontal region, shared a similar decreasing trend with the 
surface water in the sub-Antarctic band — the source region 
of the SAMW, with the feature that the values were more 
positive during the last glacial period than during the late 
Holocene (Figure 3(c)). The AAIW and SAMW both come 
from the surface water in the sub-Antarctic band and can 
deliver signals from southern high latitudes northward [1,6, 



2632 Chen S X, et al.   Chinese Sci Bull   August (2011) Vol.56 No.24 

 

Figure 3  The δ13C of G. ruber and P. obliquiloculata (black solid lines, five-point average) from core MD06-3054 since the last glacial in comparison with 
other records. The δ13C of G. ruber compared with (a) records from stratified ocean settings [6,35,37] and (b) records from core DGKS9603 [15] and site 
769 [14]. The δ13C of P. obliquiloculata and compared with (c) records from the SAMW [10,36] and (d) records from core DGKS9603 [15]. Values have 
been normalized to a late Holocene averages. The shaded area indicates the δ13C minimum event. 

19], so they should share the same history since the last gla-
cial. The consistent pattern of subsurface dweller δ13C rec-
ords from the KSR and the upwelling region of the EEP 
since the last glacial supports the influence of the AAIW on 
the KSR. 

Differing from the record of P. obliquiloculata, the δ13C 
record of the surface dweller G. ruber shows an increasing 
trend since the last glacial, with values that are more posi-
tive during the late Holocene than during the last glacial 
period, which agrees with the records from stratified ocean 
settings [6,35,37] (Figure 3(a)). Spero and Lea [6] explored 
the cause of the deglacial δ13C minimum events outside of 
the upwelling region in the EEP by examining the concen-
tration and carbon isotopic records of atmospheric CO2 in 
the Antarctic Taylor Dome ice core [8], and argued that the 
low δ13C signal was also delivered northward by atmos-
pheric CO2 during the deglaciations. The record from a 
marginal area of western Pacific — the Sulu Sea — also 
supports this view. Decreased sea level would greatly re-
strict the influx of western Pacific surface water from the 

South China Sea to the Sulu Sea during deglaciations, so the 
obvious negative excursions in the planktonic foraminiferal 
δ13C record of surface dweller from site 769 were consid-
ered to contribute to the increased atmospheric CO2 from 
the upwelling of the Pacific intermediate water in the far 
western Pacific [14] (Figure 3(b)). According to recent re-
search, the CO2 was possibly released from the ventilation 
of the deep Southern Ocean around Antarctica [1,2,6]. The 
minima of the δ13C average record of the surface dweller G. 
ruber in core MD06-3054 appear from about 13.0–11.0 ka 
BP (Figure 2(a)), agreeing with the rise in atmospheric CO2 
in Antarctic ice cores [8,38], and the increase in ventilation 
of the deep Southern Ocean [1]. The time agreement sug-
gests a robust link between surface water δ13C and the at-
mospheric CO2 in the KSR. Moreover, the different paces 
of the records of G. ruber and P. obliquiloculata also sug-
gest an impact of atmospheric CO2 on the surface water. 
Variations of δ13C records in the surface dweller obviously 
preceded the subsurface dweller since 26.5 ka BP in core 
MD06-3054. This precedence can be seen both at the be-
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ginning of the δ13C minimum event (20–17 ka BP) and at 
the time of the δ13C minima (13–9 ka BP) (Figure 2(a), (b)).  

During the last deglaciation, the low δ13C signal was also 
delivered to the middle latitudes by the northward-flowing 
KC. Li et al. [15] reported the last deglacial broad δ13C 
minimum event recorded in core DGKS9603 (28.15°N, 
127.27°E), located in the middle of the Okinawa Trough. 
The δ13C records of both surface and subsurface dwellers 
show a consistent trend since the last glacial in core 
DGKS9603, which agree with the surface dweller record 
and reverse the subsurface dweller record in core MD06- 
3054 (Figure 3(b), (d)). The trends of the δ13C records from 
the two cores confirm the deduction that the broad δ13C 
minimum event in the Okinawa Trough was mainly due to 
the impact of tropical Pacific surface water directly during 
the last deglaciation [15]. The distribution of the last degla-
cial broad δ13C minimum event in the Kuroshio drainage 
area indicates that signals from the southern high latitudes 
can be delivered to the northern middle latitudes. 

5  Conclusion 

The broad negative excursion that occurred from about 
20.0–6.0 ka BP appears in both planktonic foraminiferal 
δ13C records of G. ruber (a surface dweller) and P. obliqui-
loculata (a subsurface dweller) in core MD06-3054 from 
the KSR, in the northwestern Pacific. The negative excur-
sion is consistent with the last deglacial broad δ13C mini-
mum event recorded in oceans globally. However, the over-
all trends of the δ13C records are reversed since 26.5 ka BP: 
the δ13C records of G. ruber show an increasing trend, and 
the values are more positive during the late Holocene than 
during the last glacial period, which is consistent with the 
records from stratified ocean settings; whereas the records 
of P. obliquiloculata show a decreasing trend, and the val-
ues are more positive during the last glacial period, agreeing 
with the observations of the SAMW. Moreover, the δ13C 
record of the surface-dwelling G. ruber shows a robust link 
to the record of atmospheric CO2, and its changes also pre-
ceded the records of subsurface-dwelling P. obliquiloculata. 
Based on the hydrologic conditions, the broad δ13C mini-
mum event recorded in the KSR is also in response to the 
ventilation of the deep Southern Ocean around Antarctica 
during the last deglaciation. Inconsistency between the rec-
ords of the surface and the subsurface dwellers was possibly 
caused by the different ways that the low δ13C signal was 
transmitted. The subsurface water primarily received the low 
δ13C signal from the AAIW, while the surface water was 
most likely impacted primarily by atmospheric CO2. The 
records from the KSR confirm the deduction that the broad 
δ13C minimum event in the Okinawa Trough was due to the 
direct impact of tropical Pacific surface water during the last 
deglaciation, and suggest that signals from southern high lat-
itudes also can be delivered to the northern middle latitudes. 
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