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The roles of signaling pathways in the production of trypsin proteinase inhibitors (TrypPIs) in rice infested by the leaf folder (LF) 
Cnaphalocrocis medinalis were studied. Infestation by LF increased TrypPI levels in the leaves of rice plants at the tillering, 
booting and flowering stages but decreased TrypPI levels at the ripening stage; TrypPI levels in rice stems did not increase at any 
developmental stage. Infestation by LF at the tillering stage systemically increased TrypPI levels in leaves but not in stems; it also 
enhanced salicylic acid (SA) levels in leaves and stems, and the ethylene level released from plants. However, LF infestation did 
not increase JA concentrations. Exogenous application of SA or ethylene enhanced TrypPI levels in the leaves and stems of plants 
at the tillering stage, whereas treatment with both SA and ethylene induced lower levels of TrypPIs than treatment with SA or 
ethylene alone, suggesting an antagonistic effect of SA and ethylene on TrypPIs induction. The results suggest that both SA and 
ethylene signaling pathways are involved in the production of TrypPIs in rice induced by LF; moreover, the antagonistic effect of 
SA and ethylene may explain the changes in TrypPI levels seen at different plant developmental stages and in different organs. 

rice, Cnaphalocrocis medinalis, jasmonic acid, salicylic acid, ethylene, trypsin proteinase inhibitor, herbivore-induced  
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Plant proteinase inhibitors (PIs) are a group of small pro-
teins, widespread in plants, with a molecular mass of be-
tween 8 and 20 kD. PIs are well known to reduce the 
growth of some lepidopteran and coleopteran larvae by in-
hibiting the activity of digestive enzymes in larval midguts 
[1–5]. Moreover, some plant PIs specifically inhibit the 
proteases of pathogens [6,7]. Therefore, PIs are regarded as 
an essential part of the plant’s natural defense system 
against pests [8–10]. 

PIs can be induced by herbivore infestation, pathogen 
infection or mechanical wounding [11–16]. The induced PIs 
represent either local [7,17] or systemic [18–21] responses, 
and either age-dependent [22] or organ-specific [8,18] traits. 
Application of chemical signals, such as jasmonic acid (JA), 

abscisic acid (ABA) and ethylene or salicylic acid (SA) can 
manipulate the production of PIs in plants [13,14,23,24], but 
the effects of each compound differ for different PIs. For 
example, mRNA levels of OsPIN (one of the PI genes 
found in rice) in rice plants were significantly up-regulated 
by SA, JA and H2O2 but not by ABA and ethylene [25], 
whereas the expression levels of OsBBPI were increased by 
JA and ethylene but inhibited by SA and ABA [12]. Thus, 
the induced PI levels in plants depend on cross-talk among 
multiple signaling pathways that are elicited by the herbivore. 

Leaf folder (LF) Cnaphalocrocis medinalis (Guenée) is 
one of the most important rice pests. Because its larvae, 
which feed on the mesophyll cells of the leaf, cause a de-
crease in leaf area, the yield loss that results from infesta-
tion is dramatic [26]. Previous studies have shown that LF 
caterpillar infestation increases the levels of SA, H2O2 and 
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trypsin PIs (TrypPIs) but not JA in plants [27]. In contrast, 
LF caterpillar feeding induced lower TrypPI levels in rice 
as-lox mutants with low elicited JA levels than in wild-type 
plants, and the exogenous application of JA partially re-
stored the induction of TrypPIs in as-lox mutants [28]. The-
se results raise the question: which signaling pathways are 
responsible for the production of TrypPIs in rice induced by 
LF? 

To answer this question, we first correlated the changes 
in LF-induced TrypPI levels with developmental stage in 
rice. Second, we measured local and systemic changes in 
levels of SA, JA and TrypPIs, and changes in the concentra-
tion of ethylene released from LF-infested plants. Finally, to 
determine if the exogenous application of chemical signals 
enhanced TrypPI levels in plants, we measured the TrypPI 
levels in plants treated with SA, ethylene, or both phyto-
hormones. 

1  Materials and methods 

1.1  Plant materials 

The rice cultivar Xiushui 11 was used in the experiments. 
Pregerminated seeds were sown in a greenhouse; after 20 d, 
the seedlings were transplanted into small (8 cm diameter × 

10 cm height, each with one plant) or large (15 cm diameter × 

10 cm height, each with 3 or 15 plants) clay pots. All plants 
were placed in a controlled climate room maintained at 
28±2°C, 70%–80% RH (relative humidity), and 12 h pho-
toperiod. Plants were watered daily and each pot was sup-
plied with 10 mL nutrient solution (urea, 1 g L

−1) every 
week. Plants were used for experiments 25–30 d after trans-
planting.  

1.2  Insects 

Leaf folder larvae in their first or second instars were cap-
tured in the field in Hangzhou, and then reared on Xiushui 
11 rice plants. Third-instar larvae were used in the experi-
ments. 

1.3  Plant treatments 

(i) LF treatment.  Plants (one per pot) were individually 

infested at noon (12:00) with two third-instar larvae of LF 
that had been starved for 2 h and then placed on the leaves 
at nodes 3 and 4 (the youngest fully expanded leaf was de-
fined as leaf node 1; thus, nodes 3 and 4 refer to the 3rd and 
4th fully expanded leaves, which are older than leaf node 1) 
(LF). Control plants (C) were not manipulated. 

(ii) Mechanical wounding.  Two leaves (at nodes 3 and 
4) per plant (one per pot) were damaged by rolling a fabric 
pattern wheel over the leaf surface to create two rows of 
standardized puncture wounds (each row 18 cm long) on 

each leaf (W). Control plants were not manipulated (C). 
(iii) SA treatment.  Pots with one plant were used for 

the experiments. Plants were individually sprayed with 2 mL 
SA (25, 50 or 100 μg mL−1) in 50 mmol/L sodium phos-
phate buffer (titrated with 1 mol/L citric acid to pH 8, with 
0.01% Tween) (SA). Controls were sprayed with 2 mL of 
the buffer (Buf). 

(iv) Ethephon treatment.  Plants (3 per pot) were en-
closed in a sealed, transparent, plastic cage (14 cm diameter 

× 55 cm height), after which 20 mL ethephon (Sigma-  
Aldrich, St Louis, MO, USA; 3 concentrations in MilliQ 
water, pH 7.2) was placed in the cage for 12 h (Eth). After 
12 h, the ethylene concentrations in the cages were deter-
mined using the method described below; concentrations 
were 0.034, 0.039 and 0.056 ppm (1 ppm=1 mg/L), respec-
tively, corresponding to the three ethephon concentrations. 
Controls were similarly treated with 20 mL distilled water 
(Water). 

(v) SA+Eth treatment.  Pots with 3 plants were used for 
the experiment. Plants were treated with SA (50 μg mL−1) 
and, after the SA solution had dried, with ethephon (0.056 
ppm ethylene) for 12 h as described above (SA+Eth). 
Three groups of control plants were set up: (1) those treated 
with the buffer and, after the buffer dried, with ethephon 
(0.056 ppm ethylene) (Buf+Eth); (2) those treated with the 
buffer, and then with water (Buf+Water); and (3) control 
plants (C). 

1.4  JA and SA analysis 

Plants (1 per pot) were randomly assigned to 2 treatment 
groups, LF and C. The leaves at nodes 2, 3 and 5, and the 
leaf sheath corresponding to the leaf at node 3 (3 cm in 
length) from each plant were harvested 0, 0.5, 1, 2, 4, 12, 24, 
or 48 h after the start of treatment. Each treatment at each 
time interval was replicated 5 times. Samples were immedi-
ately immersed in liquid nitrogen and stored at −80°C. 
Jasmonic acid and SA were extracted for gas chromatography– 
mass spectrometry (GC-MS) analysis using labeled internal 
standards (328 ng D3-JA, kindly supplied by Ian T. Bald-
win, Max Planck Institute of Chemical Ecology, Jena, Ger-
many, and 345 ng D6-SA, by Cambridge Isotope Laborato-
ry, Cambridge, MA, USA) as described by Lou and Bald-
win [29]. 

1.5  Ethylene determination 

Potted plants (15 per pot) were randomly assigned to 2 
treatment groups, LF and C. Each pot was covered with a 
sealed, transparent, plastic cage (14 cm diameter × 55 cm 
height). Ethylene production was determined by sampling  
5 mL of headspace from the cage using a syringe at 2, 4, 6, 
8, 10, 12, 16, 20, 24, 28, and 32 h after the start of treatment. 
Each treatment was replicated 3 times. The ethylene sam-
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ples were analyzed by gas chromatography as described by 
Wang et al. [27]. 

1.6  Effects of developmental stage of rice plants on 
induction of TrypPIs by LF 

Plants (1 per pot) at different developmental stages (tillering, 
booting, flowering or ripening) were randomly assigned to 2 
treatment groups, LF and C. The leaf at node 3 and the leaf 
sheath corresponding to the leaf at node 3 (3 cm in length) 
from each plant were harvested on days 1, 3, and 5 after the 
start of treatment. Each treatment at each time interval was 
replicated 6 times. Samples were immediately immersed in 
liquid nitrogen and stored at −80°C until TrypPI levels 
could be determined. TrypPI concentrations were measured 
by the radial diffusion assay as described by Lou and Bald-
win [16] and expressed as nmol per mg of total protein. 

1.7  Local and systemic changes in TrypPI levels in rice 
plants infested by LF 

Plants (one per pot) were randomly assigned to 3 treatment 
groups: LF, W and C. The leaves at nodes 2, 3 and 5, and 
the leaf sheath (corresponding to the leaf at node 3) (3 cm in 
length) from each plant were harvested on days 1, 3, and 5 
after the start of treatment. Each treatment at each time in-
terval was replicated 6 times. Samples were immediately 
immersed in liquid nitrogen and stored at −80°C until 
TrypPI levels were determined. 

1.8  TrypPI levels in rice plants treated by SA, ethephon, 
or both  

Plants (3 per pot) were randomly assigned to 8 treatment 
groups: SA (25, 50 or 100 μg mL−1), Buf, Eth (0.034, 0.039 
and 0.056 ppm), water, SA+Eth, Buf+Eth, Buf+water and C. 
The leaves at nodes 3 and 4, and the corresponding leaf 
sheaths were harvested at days 1, 3, and 5 after the start of 
treatment (for SA+Eth, Buf+Eth, B+water and their corre-
sponding controls, samples were harvested 3 d after treat-
ment). Each treatment at each time interval was replicated 
six times. Samples were immediately immersed in liquid 
nitrogen and stored at −80°C until TrypPI levels were de-
termined. 

1.9  Data analysis 

Differences in JA, SA and ethylene production, and TrypPI 
levels in plants at different developmental stages were de-
termined using Student’s t-test. Other data were analyzed by 
one-way ANOVA; if the ANOVA analysis was significant 
(P<0.05), Duncan’s multiple range test was used to detect 
significant differences between groups. Data were analyzed 
using Statistica (Star Soft, Tulsa, OK, USA). 

2  Results 

2.1  Effects of developmental stage of rice plants on 
induction of TrypPIs by LF 

Levels of TrypPIs in leaves and stems induced by LF de-
pended on the plant’s developmental stage (Figure 1). The 
level increased significantly in local leaves of plants at the 
tillering, booting or flowering stages when they were in-
fested by LF, but decreased at the yellow ripening stage. In 
contrast, at all tested developmental stages, TrypPI levels in 
the stems of infested plants were lower than levels in the 
stems of non-infested plants, especially at the booting, 
flowering and yellow ripening stages. 

2.2  Local and systemic changes in TrypPI levels in rice 
plants infested by LF 

Levels of TrypPIs increased in infested leaves at node 3 on 
days 1, 3, and 5 after the start of treatment compared to 
those of control and mechanically wounded plants (Figure 
2). TrypPI levels peaked on the third day following treat-
ment (Figure 2(b)). Similar increases of TrypPI levels were 
found in the non-infested leaves at nodes 2 and 5 of infested 
plants. The levels of TrypPIs in the non-infested leaves at 
node 2 of infested plants significantly increased on days 3 
and 5 after LF infestation compared to the levels in control 
and mechanically wounded plants (Figure 2(a)), and the 
levels of TrypPIs in leaves at node 5 only significantly  

 

Figure 1  Mean (+SE) levels of TrypPIs at different developmental stages 
of rice plants infested by LF. (a) Leaf; (b) stem. C (control), non-manipu-      
lated plants; LF, plants infested by LF; TS, tillering stage; BS, booting 
stage; FS, flowering stage; YRS, yellow ripening stage. Asterisks indicate 
significant differences between C and LF at the same developmental stage 
(*, P<0.05; **, P<0.01; Student’s t-test). 
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Figure 2  Mean (+SE) levels of TrypPIs in leaves and stems of rice plants 
infested by LF. (a) The leaf at node 2; (b) the leaf at node 3; (c) the leaf at 
node 5; (d) stem. C (control), non-manipulated plants; W, mechanically 
wounded plants; LF, plants infested by LF at nodes 3 and 4. Letters indi-
cate significant differences among treatments at the same treatment time (P 
< 0.05, Duncan’s multiple range test). 

increased by day 5 of the treatment (Figure 2(c)). There was 
no significant difference between TrypPI levels in leaves from 
control and mechanically wounded plants (Figure 2(a)–(c)). 

Levels of TrypPIs in LF-infested plant stems were sig-
nificantly higher than those in mechanically wounded plants 
but not in control plants at days 1 and 5 after treatment 
(Figure 2(d)). 

2.3  Changes in JA, SA and ethylene levels of rice 
plants infested by LF 

Levels of JA in LF-infested plants were not higher than 
those in control plants (Figure 3). In contrast, JA levels 
were significantly decreased in some leaves of infested 
plants, namely the infested leaves (at node 3) at 2 h and the 
non-infested leaves at node 5 at 1 h after the start of treat-
ment (Figure 3). 

 

Figure 3  Mean (+SE) levels of JA in leaves and stems of rice plants 
infested by LF. (a) The leaf at node 2; (b) the leaf at node 3; (c) the leaf at 
node 5; (d) stem. C (control), non-manipulated plants; LF, plants infested 
by LF at nodes +3 and +4. Asterisks indicate significant differences be-
tween C and LF at the same treatment time (*, P<0.05; **, P<0.01; Student’s 
t-test). 

Infestation by LF increased the levels of SA in rice plants, 
depending on the timing of measurements during treatment 
(Figure 4). Levels of SA in infested leaves at node 3 

 

Figure 4  Mean (+SE) levels of SA in leaves and stems of rice plants 
infested by LF. (a) The leaf at node 2; (b) the leaf at node 3; (c) the leaf at 
node 5; (d) stem. C (control), non-manipulated plants; LF, plants infested 
by LF at nodes +3 and +4. Asterisks indicate significant differences be-
tween C and LF at the same treatment time (*, P<0.05; **, P<0.01; Student’s 
t-test). 
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significantly increased at 2 h after treatment when compared 
to SA levels in control plants (Figure 4(b)). Similarly, in 
non-infested leaves at node 5 of the infested plants, SA  
levels were significantly increased at 0.5 h after treatment 
(Figure 4(c)). However, in leaves at node 2, the levels of SA 
were not as drastically altered as those in leaves of control 
plants (Figure 4(a)). In stems, LF infestation also signifi-
cantly increased the levels of SA at 1 h after treatment (Fig-
ure 4(d)).  

Significant increases in ethylene levels in LF-infested 
plants compared to non-infested plants were observed 2 to 
32 h after treatment (Figure 5). Because the container was 
airtight, levels of ethylene in the container increased with 
treatment time. 

2.4  TrypPI levels in rice plants treated with SA, eth-
ylene or both  

Levels of TrypPIs in SA-treated rice plants were enhanced 
compared to levels in plants in treatment groups Buf and C, 
depending on the SA concentration and plant tissue sampled 
(Figure 6). In leaves, 50 μg mL−1 SA solution significantly 
enhanced TrypPI levels on days 1 and 3 after treatment, yet 
100 μg mL−1 SA significantly increased TrypPI levels only 
at day 3; in contrast, 25 μg mL−1 SA had no effect on 
TrypPI levels (Figure 6(a)). In stems, 25 μg mL−1 SA treat-
ment increased TrypPI levels at day 1 after treatment and  
50 μg mL−1 SA increased TrypPI levels at day 3, but 100  
μg mL−1 SA had no effect (Figure 6(b)). 

Ethephon treatment also increased the levels of TrypPIs 
in the leaves of rice plants, and the induced TrypPI levels 
were positively correlated with the concentration of applied 
ethylene (Figure 7(a)). For stems, only treatment with 0.056 
ppm ethylene significantly enhanced TrypPI levels 5 d after 
treatment (Figure 7(b)). Treatment with 0.034 ppm ethylene 
decreased TrypPI levels in stems at day 1 after treatment. 

Similarly, the levels of TrypPIs in leaves treated with 
Buf+0.056 ppm Eth increased compared to the levels of 
TrypPIs in control leaves or in leaves treated with Buf+  

 

Figure 5  Mean (+SE) levels of ethylene released from rice plants infest-
ed by LF. C (control), non-manipulated plants; LF, plants infested by LF at 
nodes 3 and 4. Asterisks indicate significant differences between C and LF 
at the same treatment time (*, P<0.05; **, P<0.01; Student’s t-test). 

 

Figure 6  Mean (+SE) levels of TrypPIs in leaves and stems of rice plants 
treated by SA. (a) Leaf; (b) stem. C (control), non-manipulated plants; Buf, 
plants individually treated with 2 mL of 50 mmol/L Na2HPO4 buffer (pH 
8.0); 25 μg mL−1, plants individually treated with 2 mL of 25 μg mL−1 SA; 
50 μg mL−1, plants individually treated with 2 mL of 50 μg mL−1 SA; 100 
μg mL−1, plants individually treated with 2 mL of 100 μg mL−1 SA. Letters 
indicate significant differences among treatments at the same treatment 
time (P<0.05, Duncan’s multiple range test). 

Water (Figure 7(c)). However, there was no difference be-
tween TrypPI levels in the leaves of plants treated with SA 
(50 μg mL−1)+Eth (0.056 ppm) and of plants treated with 
Eth (Buf+Eth) alone. In stems, treatment with SA (50 μg mL−1) 
+Eth (0.056 ppm) did not increase TrypPI levels more than 
in control plants or those treated with Buf+Water. 

3  Discussion 

The systemic induction of herbivore-induced defense re-
sponses, including changes in levels of volatile and non- 
volatile chemicals, has been reported in many plant species, 
such as tomato and Nicotiana attenuata [30]. Similarly, we 
found that LF infestation resulted in a systemic increase of 
TrypPI levels in the leaves of rice plants at the tilling stage, 
and this response was more rapid and stronger in young 
leaves than in old leaves (Figure 2). However, LF infesta-
tion did not enhance the levels of TrypPIs in rice stems at 
the tillering stage, though it decreased the levels in stems at 
the booting, flowering and yellow ripening stages (Figures 1 
and 2). This indicates that induction of TrypPIs in rice 
plants by LF infestation is in part systemic and transportation 
of the wound signals follows source–sink relationships, moving 
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Figure 7  Mean (+SE) levels of TrypPIs in rice plants treated with 
ethephon, SA or both. (a, b) levels of TrypPIs in leaves (a) or stems (b) of 
plants treated with ethephon; (c) levels of TrypPIs in leaves and stems of 
plants treated with SA, ethephon or both. C (control), non-manipulated 
plants; Water, plants fumigated with 20 mL of ddH2O; 0.034 ppm, plants 
fumigated with 20 mL ethephon solution in a plastic cage resulting in 
0.034 ppm ethylene in the cage 12 h after treatment; 0.039 ppm, plants 
fumigated with 20 mL ethephon solution in a plastic cage resulting in 
0.039 ppm ethylene in the cage 12 h after treatment; 0.056 ppm, plants 
fumigated with 20 mL ethephon solution in a plastic cage resulting in 
0.056 ppm ethylene in the cage 12 h after treatment. Buf+Water, plants 
first individually treated with 2 mL of 50 mmol/L Na2HPO4 buffer (pH 8.0) 
and then fumigated with 20 mL of ddH2O; Buf+0.056 ppm Eth, plants first 
individually treated with 2 mL of 50 mmol/L Na2HPO4 buffer (pH 8.0) and 
then fumigated with 20 mL ethephon solution resulting in 0.056 ppm eth-
ylene in the cage 12 h after treatment; 50 μg mL−1 SA+0.056 ppm Eth: 
plants first individually treated with 2 mL of 50 μg mL−1 SA and then fu-
migated with 20 mL ethephon solution resulting in 0.056 ppm ethylene in 
the cage 12 h after treatment. Letters indicate significant differences among 
treatments at the same treatment time (P<0.05, Duncan’s multiple range test). 

in the phloem together with sucrose [13]. 
It is well documented that herbivore infestation may elic-

it JA, SA and ethylene signaling pathways in plants; more-
over, these pathways are known to play an important role in 

shaping plant defense responses [16,31]. In this study, we 
found that LF infestation increased SA and ethylene levels 
in rice plants, but, surprisingly, decreased JA levels (Figures 
3–5). This indicates that LF infestation activates the SA and 
ethylene signaling pathways but not the JA signaling path-
way in rice plants, which is different from other chewing 
herbivores whose infestation generally activates the 
JA-mediated pathway in plants [30,32]. It is reported that 
SA suppresses JA accumulation and signaling in several 
plant species, such as Arabidopsis, N. attenuata and rice 
[33,34]. Thus, the decrease in JA levels in LF-infested rice 
plants might be because of an increase in SA levels. Unlike 
some chewing herbivores, LF larvae feed only on the epi-
dermis of the leaves; this behavior damages plants less than 
if entire leaves are browsed. Whether non-activa-     tion 
of the JA signaling pathway in plants infested by LF is re-
lated to the feeding habits of LF remains to be elucidated. 

Like TrypPI levels, SA levels in plants infested by LF 
were also systemically increased (Figure 4). In addition, 
much higher levels of ethylene were released in LF-infested 
plants than in control plants (Figure 5); the compound might 
be airborne or transported through the plant. The exogenous 
application of SA or ethylene at appropriate concentrations 
to rice plants enhanced the levels of TrypPIs in leaves and 
stems (Figures 6 and 7). Furthermore, treatment with both 
SA and ethylene resulted in relatively lower levels of 
TrypPIs in leaves and stems than treatment with SA or eth-
ylene alone, and TrypPI levels in stems were similar to 
those of controls (C or Buf+Water) (Figure 7(c)). This indi-
cates that both SA and ethylene signaling pathways are in-
volved in the production of TrypPIs in rice induced by LF. 
The data also imply that SA and ethylene play antagonistic 
roles in the induction of TrypPIs in rice plants, particularly 
in rice stems. The antagonistic effect between SA and eth-
ylene on the production of total TrypPIs in rice might result 
from the induction of the two opposing signal molecules on 
the same TrypPI; this is the case for OsBBPI, whose mRNA 
levels were increased by ethylene but inhibited by SA [12]. 
On the other hand, SA and ethylene may enhance the levels 
of the same TrypPI through two pathways that work in op-
position to one another. Thus, plants treated with both SA 
and ethylene may have lower levels of TrypPIs than those 
treated with SA or ethylene alone. The antagonistic effect of 
SA and ethylene on the induction of TrypPIs may explain 
why LF infestation did not enhance TrypPI levels in the 
stems of plants (Figures 1 and 2). 

As reported in other plants, for example, N. attenuata [13] 
and N. plumbaginifolia [35], the developmental stage of rice 
plants also influenced the degree to which TrypPIs were in-
ducible by LF (Figure 1). Compared to those in non-infested 
plants, for example, TrypPI levels in infested leaves were 
significantly increased at the tillering, booting or flowering 
stages of plants, whereas levels were decreased at the rip-
ening stage (Figure 1). Changes in the inducibility of 
TrypPIs in leaves or stems at different developmental stages 
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might be related to plant energy allocation [13]. For in-
stance, at the ripening stage, most of a plant’s energy has 
been allocated to production; therefore little energy remains 
for defense responses, which cause the levels of TrypPIs in 
leaves to increase or decrease. Plant energy allocation is a 
complex physiological process in which phytohormones 
play an important role [36]. On the other hand, constitutive 
and elicited levels of phytohormones, such as JA, SA and 
ET, change with plant developmental stage [37–39]. There-
fore, changes in the inducibility of TrypPIs in rice leaves or 
stems at different developmental stages may be shaped by 
interactions among plant hormones, such as SA and eth-
ylene. The relative amount of SA and ethylene in tissues or 
organs, and the sensitivity of the tissues or organs to SA and 
ethylene, might change with developmental stage, resulting 
in changes in the inducibility of TrypPIs.  

In summary, LF infestation elicited SA and ethylene 
signaling pathways in rice, both of which, through cross- 
talk, manipulated the production of TrypPIs in plants. The 
levels of SA and ethylene in tissues or organs, the sensitivi-
ty of the tissues or organs to SA and ethylene, and the an-
tagonistic effect of SA and ethylene on the induction of 
TrypPIs all influenced the production of TrypPIs in LF- 
induced rice plants. The interaction of these factors deter-
mined the levels of LF-induced TrypPIs in different tissues 
and organs and at different developmental stages.  
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