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Sea surface temperature (SST) records in the South Yellow Sea during the last 6200 years are reconstructed by the unsaturation  
index of long-chain alkenones (

K

37
U ′

) in sediment core ZY2 from the central mud area. The SST records varied between 14.1 and  
16.5°C (15.6°C on average), with 3 phases: (1) A high SST phase at 6.2–5.9 cal ka BP; (2) A low and intensely fluctuating SST 
phase at 5.9–2.3 cal ka BP; and (3) A high and stable SST phase since 2.3 cal ka BP. Variation of the SST records is similar to 
intensity of the Kuroshio Current (KC), and corresponds well in time to global cold climate events. However, the amplitude of the 
SST response to cooling events was significantly different in different phases. The SST response to global cooling event was 
weak while the KC was strong; and the SST response was strong while the KC was weak. The difference in amplitude of the SST 
response is possibly caused by the modulation effect of the Yellow Sea Warm Current which acts as a shelf branch of the KC and 
a compensating current induced by the East Asia winter monsoon. The warm waters brought by the Yellow Sea Warm Current 
cushion the SST decrease induced by climate cooling, and both the Kuroshio and East Asian winter monsoon play important roles 
in the modulation mechanism. The SST records display a periodicity of 1482 years. The same period was found in the KC records, 
indicating that variation of the SST records in the central South Yellow Sea is strongly affected by KC intensity. The same period 
was also found in Greenland ice cores and North Atlantic and Arabian Sea sediment cores, showing a regional response of marine 
environmental variability in the East China Seas to that in the global oceans. 
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The East China Seas (ECSs), including the Bohai Sea, the 
Yellow Sea and the East China Sea, are to the east of 
Mainland China, and open to the western Pacific Ocean 
(Figure 1). They cover one of the world’s shallowest and 
broadest continental shelves, the East China shelf, which  
                      
*Corresponding author (email: zshyang@ouc.edu.cn) 

has an area of 9.4×105 km2 and an average water depth of 
56 m inside the edge of the 150 m water depth contour. The 
Yellow Sea is semi-closed by Mainland China and the Ko-
rean Peninsula. The Shandong Peninsula divides the Yellow 
Sea into two parts, the North and South Yellow Seas. The 
North Yellow Sea borders the Bohai Sea by the Bohai 
Strait. The South Yellow Sea (SYS) borders the East China 
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Sea by a line connecting the northern edge of the Yangtze 
River mouth with Cheju Island, and indirectly opens to the 
western Pacific Ocean in the south via the East China Sea. 

Two of the world’s largest rivers in terms of sediment 
load, the Huanghe (Yellow River) and Changjiang (Yangtze 
River), discharge about 1.6 billion tons of sediment annu-
ally to the ECSs from Mainland China, contributing about 
10% of the world’s annual sediment discharge [1,2]. During 
the last deglacial cycle, the ECSs underwent dramatic envi-
ronmental changes such as eustatic sea-level fluctuation and 
evolution of cross-shelf circulation system. The cross-shelf 
circulations are primarily composed of warm, saline oceanic 
currents and cold, less saline coastal currents (Figure 1). 
The former mainly consist of the Kuroshio Current (KC), 
the Tsushima Warm Current (TSWC), the Taiwan Warm 
Current (TWWC) and the Yellow Sea Warm Current 
(YSWC); the latter are mainly composed of the Shandong 
Coastal Current (SDCC), the Jiangsu Coastal Current 
(JSCC), the Korea Coastal Current (KCC) and the East 
China Sea Coastal Current (ECSCC) [3–6]. 

A series of mud patches have developed in the ECSs 
since the last deglaciation. Grain-size of bulk sediments and 
quartz isolated from bulk sediments in these mud deposits 
has been successfully used as a proxy to reconstruct 
strength changes of the East Asian winter monsoon, because 
key grain-size component changes induced by coastal cur-
rents are closely related to the East Asian winter monsoon 
[7–12]. These studies document that these mud deposits in 
the ECSs are valuable for high-resolution Holocene pa-
leo-environmental reconstruction, because of their high 
sedimentation rates and continuous sedimentation records.  

The unsaturation index of long-chain alkenones ( K
37U ′ ) is  

a good proxy to reconstruct the sea surface temperature 
(SST), and has been widely used in oceans globally 
[13–20], including the ECSs [21,22]. The KC, which acts as 
the western boundary current of Pacific Ocean, plays key 
role in hydrographic environment of the ECSs by its shelf 
branch currents. However, their high-resolution shelf sedi-
mentation records have rarely been studied to reconstruct 
marine environmental responses of ECSs to the KC. The 
YSWC, a branch current of the KC, flows northward across 
the central mud area in the SYS and its high temperature 
characteristic will be recorded in the mud. The SST, which  
can be reconstructed using the proxy of K

37U ′  of sediments  

in the central mud area, will indicate environmental re-
sponses of the Yellow Sea to the KC via the YSWC, and 
also indicate the responses to climate changes. 

In this study, we analyze the unsaturation index of 
long-chain alkenones of an AMS 14C dated piston core ZY2, 
which is located on the path of Yellow Sea Warm Current. 
We use this to reconstruct the sea surface temperature and 
discuss the marine environmental responses to the Kuroshio 
Current and climate changes in the central SYS. 

1  Materials and methods 

Piston core ZY2 (35°31′N, 122°39′E) was collected in the 
central mud area in the SYS (Figure 1), at a water depth of 
69 m, having a length of 342 cm. Sediments of the core 
were sampled in the laboratory, at 1 cm intervals.  

Samples for grain-size analysis were spaced at 1 cm in-
terval. After pre-treated with 10% H2O2 solution to remove 
organic matter and with 3 mol/L HCl solution to remove 
carbonate components, grain-sizes of the sediment samples 
were measured using a Britain Malvern 2000 grain-size 
analyzer, with a measurement range of 0.02–2000 μm, size 
resolution of 0.01 Φ and measuring error of less than 3%. 

For alkenone analysis, samples were spaced at 2 cm in-
tervals in the top 36 cm of the core and at 4 cm intervals 
below that depth. About 2 g of freeze-dried sediment was 
extracted ultrasonically four times with ultra-clean solvents 
(dichloromethane/methanol, 3/1 by vol.), after adding the 
C24 deuterium-substituted n-alkane and C19 alcohol as in-
ternal standard. The extracts were hydrolyzed in KOH- 
MeOH solution, and then separated by silica gel cartridges. 

 

Figure 1  Location of core sites, Holocene sediment thickness off the 
Shandong Peninsular [23] (gray lines) and winter circulations in the ECSs 
[24]. The circulations include: YSWC, Yellow Sea Warm Current; TSWC, 
Tsushima Current; TWWC, Taiwan Warm Current; KC, Kuroshio Current; 
SDCC, Shandong Coastal Current; JSCC, Jiangsu Coastal Current; KCC, 
Korea Coastal Current; ECSCC, East China Sea Coastal Current; CDW, 
Changjiang Diluted Water; SWCICE, Southwestern Cheju Island Cold 
Eddy. 
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After derivatization by N,O-Bis(trimethylsilyl)trifluoro 
acetamide (BSTFA), alkenones within the alcohol subfrac-
tion were analyzed by gas chromatography. Biomarker 
identification and structure verification were performed on a 
Thermo Gas Chromatography/Mass Spectrometry. Quanti-
fication of the biomarkers was done on an Agilent 6890N 
gas chromatography, using a HP-1 column (50 m), H2 as 
carrier gas at 1.2 mL/min. SST was calculated using the 

following equation [25]: SST=( K
37U ′ –0.044)/0.033, which is 

suitable for ECSs [22]. 
Mixed benthic foraminifera were used for AMS 14C dat-

ing, performed in the Accelerator Mass Spectrometry 
Laboratory, Peking University. Raw radiocarbon dates were 
calibrated by Calib 5.0.2 [26], using Marine04 curve [27], 
setting the difference in reservoir age (ΔR) between the lo-
cal region and the model ocean to zero (Table 1). 

2  Results 

2.1  Lithology and chronology 

Lithology of core ZY2 is homogeneous and mainly com-
posed of grey, dark grey clay silt from the top down, with 
mean grain-size between 7.03 to 7.67Φ (7.42Φ on average). 
Grain-size distribution curves of the sediments are unimo-
dal, indicating a stable sedimentary environment. The core 
has no sedimentation hiatus; sedimentation rates were 44 to 
101 cm/ka based on AMS 14C data (Figure 2). Calendar age 
at the bottom layer of the core is about 6.2 cal ka BP. Be-
cause of sample measurement intervals, resolutions of 
grain-size time series of core ZY2 are about 18 years. 
Resolutions for SST are about 36 years in the top 36 cm of 
the core and 72 years below that depth. 

2.2  Sea surface temperature 

During the past 6.2 cal ka BP, the K
37U ′ -SST of core ZY2 in 

the central SYS fluctuated between 14.1–16.5°C, 15.6°C on 
average (Figure 3), similar to the results of nearby core YE2 
[21]. The SST time series can be divided into three phases: 
the SSTs were high from 6.2 to 5.9 cal ka BP, fluctuating 
between 15.8–16.2°C, 16.1°C on average; the SSTs were 
low from 5.9 to 2.3 cal ka BP, intensely fluctuating between 
14.1–16.0°C, 15.2°C on average; the SSTs were high and 
stable from 2.3 to 0 cal ka BP, fluctuating between 15.3 to 
16.5°C, 15.9°C on average. Three prominent low SST in-
tervals occurred at 5.5–5.05, 4.0–3.75 and 3.0–2.4 cal ka 
BP, when the SSTs were less than 15°C. 

Spectral analysis of the K
37U ′ -SST time series of core 

ZY2 was performed using the software REDFIT35, which 
is programmed for spectral analysis of an unevenly spaced 
time series [28]. Settings were: n50=4; Welch spectrum 
windows; remaining parameters as default. The result shows 
the highest confidence level period of 1482 years (Figure 4). 
This period is closely related to oceanic thermohaline circu-
lation, and exists in the KC [29], Greenland ice core [30], 
North Atlantic sediments [31,32] and Arabian Sea sediments 

Table 1  AMS 14C age data of core ZY2 

Depth 
(cm) 

AMS 14C age 
(a BP) 

Calendar age 
(cal a BP) 

2σ error bars 
(cal a BP) 

67.5 1825±30 1360 1287–1457 

128.5 2345±40 1964 1861–2089 

237.5 3955±40 3947 3831–4072 

272.5 4450±45 4633 4499–4792 

329.5 5555±40 5941 5857–6082 

 

Figure 2  Variation of lithology, grain size and age model in core ZY2. The lithology is homogeneous, with sand content less than 1%, silt content about 
65% and clay content about 35%. Grain-size distribution curves are unimodal. Sedimentation rates are 44 to 101 cm/ka. 
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Figure 3  
K

37
U ′

-SST time series (thin line) and three points moving aver-

age (thick line) in core ZY2. 

[33], suggesting there is a marine environmental tele-conn- 
ection between the East China Seas and global oceans. 

3  Discussion 

3.1  Response of the SST to climate event 

The SST variations in the central SYS during the past 6.2 
cal ka BP, show a good correspondence to global/regional 
climate events, especially the three prominent low SST in-
tervals (5.5–5.05, 4.0–3.75 and 3.0–2.4 cal ka BP). 

The East Asian monsoon is an important factor influenc-
ing the SST. Weakening of summer monsoon or intensifica-
tion of winter monsoon may decrease the SST in the central 
SYS. Desiccation of the Taiwan Retreat Lake between 4.5 
and 2.1 cal ka BP and reduction of its TOC content between 
5.8 and 5.1 cal ka BP indicate summer monsoon weakening 
in these periods [34,35], which is consistent with the three 
low SST intervals (Figure 5b). Magnetic susceptibility and 
Ti content of the Lake Huguang Maar sediments suggest 
winter monsoon intensification in these three intervals [36]. 
Additionally, studies of the Dunde ice core [37,38], 
Hongyuan peat [39] and historical documents [40,41] dem-
onstrate climate cooling in the three low SST intervals. 

The SST variations are closely related to cold climate 
events recorded by the Greenland ice core and North Atlan-
tic sediments. Increases of sea salt and terrestrial dust con-
tent of the Greenland ice core GISP2 at 6100–5000, 4000– 

 

Figure 4  Spectrum of SST time series (thin solid line), theoretical 
red-noise spectrum (thick solid line) and false-alarm level of 95% (dash 
line). The result shows a period of 1482 years. 

 

Figure 5  Comparison of SST in the central SYS with cold climate events. 
a, SST time series (thin line) and three points moving average (thick line) 
in core ZY2; b, TOC content in Taiwan Retreat Lake sediment core [34,35]: 
low content and lake desiccation indicates weak East Asian summer mon-
soon; c, EOF1 proxy in Greenland ice core GISP2 [30]: high EOF1 indi-
cates climate cooling; d, percentage of hematite-stained grains (HSG) in 
North Atlantic deep sea cores MC52-VM29-191 [31,32]: high percentage 
peaks indicate four cold climate events in the past 6000 years; e, atmos-
pheric residual Δ14C after removing a 2000 years moving average: high val- 
ue indicates solar irradiance decrease.  

3500 and 3100–2400 cal a BP indicate temperature de-
creases in the mid to high northern latitudes [30], which 
correspond well to the three low SST intervals (Figure 5c). 
A series of Holocene cold climate events have been identi-
fied from North Atlantic deep sea cores [31,32], and the 
three low SST intervals correspond to the Bond ice rafted 
debris events 2, 3 and 4 (Figure 5d). 

Relationships of the SST variations in the central SYS to 
Holocene glacier and solar activity are significant. Denton 
and Karlén [42] proposed several intervals of Holocene gla-
cier expansion. Two of these intervals, in 5800–4900 and 
3300–2400 cal a BP, correspond to the low SST intervals in 
5.05–5.5 and 3.0–2.4 cal ka BP respectively. Increase of re-
sidual Δ14C during 5.05–5.5 and 3.0–2.4 cal ka BP intervals 
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indicate reduction of solar irradiance [43], consistent with 
the SST decrease (Figure 5e). 

The SST variations in the central SYS are also linked to 
warm climate. The Sui-Tang Warm Period (1380–1180 cal 
a BP) in China and Medieval Warm Period (1050–650 cal a 
BP) in Europe occurred during the interval of 2.3–0 cal ka 
BP, when the SST was relative high. However, the short 
high SST interval of 6.2–5.9 cal ka BP is possibly influ-
enced by the intrusion of YSWC, because the SSTs in-
creased intensively at the beginning of the YSWC intrusion 
[21]. 

3.2  Response of the SST to the Kuroshio Current 

The YSWC, which brings warm and saline waters from 
southwest of Cheju Island to the Yellow Sea and forms 
warm and saline tongue structures in winter, is an important 
member of the cross-shelf circulations and plays a key role 
in water exchange and evolution of marine environments in 
the Yellow Sea. It has been proposed that the YSWC was 
formed at 6.5 cal ka BP [21], 6.4 cal ka BP [44,45] or 6 cal 
ka BP [46]. Core ZY2 is located on the front of YSWC in-
fluenced area, and age at the bottom of the core is 6.2 cal ka 
BP, so that sedimentary records after the intrusion of 
YSWC may be preserved in the core. If the YSWC intensi-
fies, the warm tongue will extend further north and bring 
more warm water, causing an increase of the SST in the 
position of core ZY2, and vice versa. According to SST 
along the 36° N transect in the Yellow Sea in February from 
1985–2007 [47], which is calculated to indicate northward 
extension intensity of the YSWC, discrepancies in transect 
mean temperatures in different years are mostly greater than 
2°C. 

Physical oceanographic studies reveal that northward ex-
tension of the YSWC is closely related to the KC [47,48]. 
About 2/3 of the annual mean YSWC transport is mainly 
determined by the KC, another 1/3 is mainly determined by 
the local wind [48]. Core B-3GC, which is taken from 
northern Okinawa Trough, is located in the root of the warm 
tongue that extends to the Yellow Sea. This is close to the 
source of YSWC, and influenced by the TSWC, which is a 
branch of the KC (Figure 1). Core ZY2 is located in the 
front of the warm tongue (Figure 1). Comparison between 
the two cores will reveal the influence of the KC on core 
ZY2 (Figure 6). The general trend of the SST variation in 
core ZY2 (Figure 6a) is consistent with that of the abun-
dance (Figure 6b) and δ 18O (Figure 6c) of P. obliquilocu-
latata (an indicator species of the KC) in core B-3GC [29], 
considering the chronological uncertainty of the two cores. 
The SST derived from core ZY2 increases while the KC 
influence intensifies, but decreases while the KC weakens. 
The P. obliquiloculatata minimum event during 4.6–2.7 cal 
ka BP, for example, shows that the SST from core ZY2 de-
creases while the KC influence weakens. The reason for this 
relationship is that weakening of the KC will reduce the 

 

Figure 6  Comparison of SST in the central SYS with KC proxies. a, SST 
time series (thin line) and three points moving average (thick line) in core 
ZY2; b, abundance; c, δ 18O of P. obliquiloculatata (an indicator species of 
the KC) in core B-3GC [29]. 

YSWC. Subsequent reduction of northward extension of the 
warm tongue will decrease the SST in the sea area near core 
ZY2. However, strengthening of the KC will intensify the 
YSWC, increasing northward extension of the warm 
tongue, which will increase the SST in the sea area near 
core ZY2. The correlation indicates that the SST variations 
in the central SYS, which are influenced by the YSWC, 
respond well to the KC variations. 

3.3  Modulation effect of the Yellow Sea Warm Current 
to the SST 

During the Little Ice Age (600–150 cal a BP [49]), which 
was a pervasive cold interval in global climate changes, 
climate proxies fluctuated intensively (Figure 5c–e). Chi-
nese historical documents [41,50–52] showed that tempera-
tures in eastern China at that time were the coldest in the 
past 2000 years. However, the SST decreased gently, with 
only low amplitude. The cold climate event at 1.4 cal ka BP 
recorded by the North Atlantic sediments [31,32] is also not 
obvious in the SST time series of core ZY2 (Figure 5a,d). 
As shown in Figure 5c–e, amplitudes of cold climate events 
in 3.0–2.4 and 4.0–3.75 cal ka BP were less than that in 
5.5–5.05 cal ka BP, but decrease of the SST in the first two 
intervals was greater than that in the last interval (Figure 
5a). By comparison with the KC indicators (Figure 6b, c), 
the amplitude of the SST decrease in the central SYS in 
response to the global/regional cold climate events was low 
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and the response was weak when the KC was strong, but the 
amplitude was high and the response strong when the KC 
was weak. 

One reason for the amplitude discrepancy between SST 
decrease and climate cooling may be a modulation effect of 
the YSWC to the SST. The YSWC, which is a compensa-
tion flow induced by the northerly wind [53,54], is not only 
influenced by the KC [47,48], but also influenced by the 
East Asian winter monsoon [6,53,55,56]. Strong northerly 
wind will cause the YSWC to extend further northward 
[53,55,56] and shift westward [6,47,56], bringing the axis of 
the YSWC closer to the location of core ZY2 (Figure 1). 
That is to say, if the KC and East Asian winter monsoon 
intensify, the YSWC will bring more warm water to the sea 
area near core ZY2. 

During the Little Ice Age, the KC and East Asian winter 
monsoon were both strong [7–9,29,36]. Combination of 
these two factors led the YSWC to intensify because of its 
dual properties of compensation flow induced by the winter 
monsoon and shelf branch flow of the KC [6,47,48,53, 
55,56]. Therefore, more warm water at the back of the 
YSWC transported northward. At the same time, strong 
winter monsoon caused the axis of the YSWC to shift 
westward [6,47,56], bringing it closer to core ZY2 (Figure 
1). SST increase in the central SYS induced by northward 
extension and westward shift of the YSWC, largely negated 
the influence of climate cooling to cause SST decrease, 
making the amplitude of SST reduction in the Little Ice Age 
relatively small. The strong KC [29] around 1.4 cal ka BP 
(Figure 6b, c) intensified the YSWC; warm water which 
extended northward partly negated the influence of climate 
cooling to decrease SST, similar to circumstances during 
the Little Ice Age. Additionally, amplitude of the 1.4 cal ka 
BP cold event seems not particularly high (Figure 5c–e). 
During 3.0–2.4 cal ka BP, amplitude of climate cooling was 
lower than that in the 5.5–5.05 cal ka BP interval (Figure 
5c–e). However, the weak KC and winter monsoon [29,36] 
(Figure 6b, c) caused the YSWC to be weak, so less warm 
water at the back of the YSWC transported northward, 
largely reducing the negating effect of the YSWC to SST 
decrease induced by climate cooling. Therefore, amplitude 
of the SST decrease in the 3.0–2.4 cal ka BP was highest. 
Circumstances during 4.0–3.75 cal ka BP were similar to 
those in the 3.0–2.4 cal ka BP interval. During 5.5–5.05 cal 
ka BP, the KC was slightly weak [29] (Figure 6b, c), but the 
winter monsoon was very strong [36], still causing the 
YSWC to extend northward and shift westward, and partly 
negating the SST decrease induced by climate cooling. 
Therefore, although amplitude of climate cooling during 
5.5–5.05 cal ka BP interval was higher than that in 3.0–2.4 
cal ka BP interval (Figure 5c–e), amplitude of SST decrease 
in the former interval was less than that in the latter interval. 

The YSWC, which has dual properties of compensation 
flow induced by the East Asian winter monsoon and shelf 
branch flow of the KC, significantly influences marine en-

vironments of the ECSs, and modulates responses of SST to 
climate changes (especially short duration cold climate 
events) in the central SYS. The modulation mechanism is 
that the strong KC and winter monsoon will intensify the 
YSWC, bringing more warm water to the central SYS and 
negating SST decrease induced by climate cooling in the 
central SYS; weak KC and winter monsoon have the oppo-
site effect. The KC and winter monsoon are key factors that 
influence intensity of the YSWC, and play key roles in the 
modulation mechanism. 

4  Conclusions 

(1) Based on the unsaturation index of long-chain alkenones 

( K
37U ′ ) in core ZY2, SST in the central SYS during the past 

6200 years fluctuated between 14.1 and 16.5°C (15.6°C on 
average), similar to findings of previous studies [21]. Tem-
peratures were high during 6.2–5.9 cal ka BP, were low and 
fluctuated intensely during 5.9–2.3 cal ka BP and were high 
and stable during 2.3–0 cal ka BP. The SST time series are 
interspaced with three low SST (<15°C) intervals at 
5.5–5.05, 4.0–3.75 and 3.0–2.4 cal ka BP. Spectral analysis 
shows a period of 1482 years existing in the SST variations. 

(2) SST variations in the central SYS recorded by core 
ZY2 correspond well to the global climate changes and KC 
variations. The SST variations are generally consistent with 
the KC variations. Amplitude of SST response to a cold 
climate event is significantly different in different KC 
variation phases. Generally, the SST response to a global/ 
regional cooling event is weak while the KC is strong, and 
the SST response is strong while the KC is weak. 

(3) The reason for the amplitude discrepancy between 
SST decrease and climate cooling may be the modulation 
effect of the YSWC. Warm water brought by the warm cur-
rent will negate SST decrease induced by climate cooling. 
The YSWC has dual properties of compensation flow in-
duced by the East Asian winter monsoon and shelf branch 
flow of the KC. Therefore, strong KC and winter monsoon 
will intensify the YSWC, bringing more warm water to the 
central SYS. Then, the negating effect to SST decrease will 
be intensified, and vice versa. Both the intensity of KC and 
the variation of East Asian winter monsoon play key roles 
in the modulation mechanism. 

The authors would like to thank Dr. Liu Yanguang from the Key Labora-
tory of Marine Sedimentology and Environmental Geology, State Oceanic 
Administration for the help with grain-size analysis, Zhang Hailong from 
Ocean University of China for the help with biomarkers analysis, and two 
anonymous reviewers for their valuable comments that considerably im-
proved the manuscript. This work was supported by the National Basic 
Research Program of China (2010CB428901) and the National Natural 
Science Foundation of China (90211022 and 41020164005). 

1 Milliman J D, Meade R H. World-wide delivery of river sediment to 
the oceans. J Geol, 1983, 91: 1–21 



1594 Wang L B, et al.   Chinese Sci Bull   May (2011) Vol.56 No.15 

2 Milliman J D, Syvitski J P M. Geomorphic/tectonic control of sedi-
ment discharge to the ocean: The importance of small mountainous 
rivers. J Geol, 1992, 100: 525–544 

3 Su J. A review of circulation dynamics of the coastal oceans near 
China (in Chinese). Acta Oceanol Sin, 2001, 23: 1–16 

4 Zang J, Tang Y, Zou E, et al. Analysis of Yellow Sea circulation. 
Chinese Sci Bull, 2003, 48(Suppl 1): 12–20 

5 Yuan D, Zhu J, Li C, et al. Cross-shelf circulation in the Yellow and 
East China Seas indicated by MODIS satellite observations. J Mar 
Syst, 2008, 70: 134–149 

6 Yuan D, Hsueh Y. Dynamics of the cross-shelf circulation in the 
Yellow and East China Seas in winter. Deep-Sea Res Part II, 2010, 
57: 1745–1761 

7 Qiao S, Yang Z, Liu J, et al. Records of late-Holocene East Asian 
winter monsoon in the East China Sea: Key grain-size component of 
quartz versus bulk sediments. Quat Int, 2011, 230: 106–114 

8 Xiao S, Li A, Jiang F, et al. Recent 2000-year geological records of 
mud in the inner shelf of the East China Sea and their climatic impli-
cations. Chinese Sci Bull, 2005, 50: 466–471 

9 Xiang R, Yang Z, Saito Y, et al. East Asia Winter Monsoon changes 
inferred from environmentally sensitive grain-size component records 
during the last 2300 years in mud area southwest off Cheju Island, 
ECS. Sci China Ser D-Earth Sci, 2006, 49: 604–614 

10 Xiao S, Li A, Liu J P, et al. Coherence between solar activity and the 
East Asian winter monsoon variability in the past 8000 years from 
Yangtze River-derived mud in the East China Sea. Paleogeogr Paleo-
climatol Paleoecol, 2006, 237: 293–304 

11 Xu F, Li A, Xu K, et al. Cold event at 5500 a BP recorded in mud 
sediments on the inner shelf of the East China Sea. Chin J Oceanol 
Limnol, 2009, 27: 975–984 

12 Liu S, Shi X, Liu Y, et al. Records of the East Asian winter monsoon 
from the mud area on the inner shelf of the East China Sea since the 
mid-Holocene. Chinese Sci Bull, 2010, 55: 2306–2314 

13 Prahl F G, Wakeham S G. Calibration of unsaturation patterns in 
long-chain ketone compositions for palaeotemperature assessment. 
Nature, 1987, 330: 367–369 

14 Prahl F G, Muehlhausen L A, Zahnle D L. Further evaluation of 
long-chain alkenones as indicators of paleoceanographic conditions. 
Geochim Cosmochim Acta, 1988, 52: 2303–2310 

15 Prahl F G, Collier R B, Dymond J, et al. A biomarker perspective on 
prymnesiophyte productivity in the northeast pacific ocean. Deep-Sea 
Res Part I, 1993, 40: 2061–2076 

16 Bard E, Rostek F, Sonzogni C. Interhemispheric synchrony of the last 
deglaciation inferred from alkenone palaeothermometry. Nature, 1997, 
385: 707–710 

17 Villanueva J, Grimalt J O, Cortijo E, et al. Assessment of sea surface 
temperature variations in the central North Atlantic using the al-
kenone unsaturation index ( K

37
U ′ ). Geochim Cosmochim Acta, 1998, 

62: 2421–2427 
18 Zhao M, Eglinton G, Haslett S K, et al. Marine and terrestrial bio-

marker records for the last 35000 years at ODP site 658C off NW 
Africa. Org Geochem, 2000, 31: 919–930 

19 Zhao M, Eglinton G, Read G, et al. An alkenone ( K

37
U ′ ) quasi-annual 

sea surface temperature record (A.D. 1440 to 1940) using varved 
sediments from the Santa Barbara Basin. Org Geochem, 2000, 31: 
903–917 

20 Zhao M, Huang C Y, Wang C C, et al. A millennial-scale K

37
U ′  

sea-surface temperature record from the South China Sea (8°N) over 
the last 150 kyr: Monsoon and sea-level influence. Paleogeogr Paleo-
climatol Paleoecol, 2006, 236: 39–55 

21 Wang L, Yang Z, Zhao X, et al. Sedimentary characteristics of core 
YE-2 from the central mud area in the South Yellow Sea during last 8 
400 years and its interspace coarser layers (in Chinese). Mar Geol 
Quat Geol, 2009, 29: 1–11 

22 Li G, Sun X, Liu Y, et al. Sea surface temperature record from the 
north of the East China Sea since late Holocene. Chinese Sci Bull, 
2009, 54: 4507–4513 

23 Yang Z S, Liu J P. A unique Yellow River-derived distal subaqueous 

delta in the Yellow Sea. Mar Geol, 2007, 240: 169–176 
24 Guo B, Xu J. Circulations of the coastal oceans near China. In: Su J, 

Yuan Y, eds. Hydrography of the Coastal Oceans Near China (in 
Chinese). Beijing: Ocean Press, 2005. 174–182 

25 Müller P J, Kirst G, Ruhland G, et al. Calibration of the alkenone pa-
leotemperature index K

37
U ′  based on core-tops from the eastern 

South Atlantic and the global ocean (60°N–60°S). Geochim Cosmo-
chim Acta, 1998, 62: 1757–1772 

26 Stuiver M, Reimer P J. Extended 14C database and revised CALIB 
radiocarbon calibration program. Radiocarbon, 1993, 35: 215–230 

27 Hughen K A, Baillie M G L, Bard E, et al. Marine04 marine radio-
carbon age calibration, 0–26 cal kyr BP. Radiocarbon, 2004, 46: 
1059–1086 

28 Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra di-
rectly from unevenly spaced paleoclimatic time series. Comput Geo-
sci-uk, 2002, 28: 421–426 

29 Jian Z, Wang P, Saito Y, et al. Holocene variability of the Kuroshio 
Current in the Okinawa Trough, northwestern Pacific Ocean. Earth 
Planet Sci Lett, 2000, 184: 305–319 

30 O'Brien S R, Mayewski P A, Meeker L D, et al. Complexity of 
Holocene climate as reconstructed from a Greenland Ice Core. Sci-
ence, 1995, 270: 1962–1964 

31 Bond G, Showers W, Cheseby M, et al. A pervasive millennial-scale 
cycle in North Atlantic Holocene and glacial climates. Science, 1997, 
278: 1257–1266 

32 Bond G, Kromer B, Beer J, et al. Persistent solar influence on North 
Atlantic climate during the Holocene. Science, 2001, 294: 2130–2136 

33 Sirocko F, Garbe-Schönberg D, McIntyre A, et al. Teleconnections 
between the subtropical monsoons and high-latitude climates during 
the Last Deglaciation. Science, 1996, 272: 526–529 

34 Selvaraj K, Chen C T, Lou J Y. Holocene East Asian monsoon vari-
ability: Links to solar and tropical Pacific forcing. Geophys Res Lett, 
2007, 34: L01703 

35 Selvaraj K, Arthur Chen C-T, Lou J Y, et al. Holocene weak summer 
East Asian monsoon intervals in Taiwan and plausible mechanisms. 
Quat Int, 2011, 229: 57–66 

36 Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the in-
tertropical convergence zone on the East Asian monsoon. Nature, 
2007, 445: 74–77 

37 Yao T, Thompson L G. Trends and features of clitnatic changes in 
the past 5000 years recorded by the Dunde ice core. Ann Glaciol, 
1992, 16: 21–24 

38 Shi Y, Kong Z, Wang S, et al. Mid-holocene climates and environ-
ments in China. Glob Planet Change, 1993, 7: 219–233 

39 Xu H, Hong Y, Lin Q, et al. Temperature variations in the past 6000 
years inferred from δ 

18O of peat cellulose from Hongyuan, China. 
Chinese Sci Bull, 2002, 47: 1578–1584 

40 Hou Y, Zhu Y. Important climatic events showed by historical re-
cords from middle and lower reach plain of the Yellow River during 
5–2.7 ka and their environmental significance (in Chinese). Mar Geol 
Quat Geol, 2000, 20: 23–29 

41 Ge Q, Wang S, Zheng J. Reconstruction of temperature series in 
China for the last 5000 years. Prog Nat Sci, 2006, 16: 838–845 

42 Denton G H, Karlén W. Holocene climatic variations—Their pattern 
and possible cause. Quat Res, 1973, 3: 155–174 

43 Stuiver M, Reimer P, Bard E, et al. INTCAL98 radiocarbon age cali-
bration, 24000–0 cal a BP. Radiocarbon, 1998, 40: 1041–1083 

44 Li T, Li S, Cang S, et al. Paleo-hydrological reconstruction of the 
southern Yellow Sea inferred from foraminiferal fauna in core 
YSDP102 (in Chinese). Oceanol Limnol Sin, 2000, 31: 588–595 

45 Li T, Jiang B, Sun R, et al. Evolution pattern of warm current system 
of the East China Sea and the Yellow Sea since the Last Deglaciation 
(in Chinese). Quat Sci, 2007, 27: 945–954 

46 Liu J, Li S, Wang S, et al. Sea level changes of the yellow sea and 
formation of the yellow sea warm current since the last deglaciation 
(in Chinese). Mar Geol Quat Geol, 1999, 19: 13–24 

47 Song D, Bao X, Wang X, et al. The inter-annual variability of the 
Yellow Sea Warm Current surface axis and its influencing factors. 



 Wang L B, et al.   Chinese Sci Bull   May (2011) Vol.56 No.15 1595 

Chin J Oceanol Limnol, 2009, 27: 607–613 
48 Xu L, Wu D, Lin X, et al. The study of the Yellow Sea Warm Current 

and its seasonal variability. J Hydrodyn Ser B, 2009, 21: 159–165 
49 Stuiver M, Grootes P M, Braziunas T F. The GISP2 δ 

18O Climate 
Record of the Past 16500 Years and the role of the Sun, ocean, and 
volcanoes. Quat Res, 1995, 44: 341–354 

50 Zhu K. A preliminary study on the climate changes since the last 
5000 years in China (in Chinese). Sci China, 1973, 2: 168–189 

51 Ge Q, Zheng J, Fang X, et al. Winter half-year temperature recon-
struction for the middle and lower reaches of the Yellow River and 
Yangtze River, China, during the past 2000 years. Holocene, 2003, 
13: 933–940 

52 Ge Q, Zheng J, Fang X, et al. Temperature changes of winter- 

half-year in eastern China during the past 2000 years (in Chinese). 
Qua Sci, 2002, 22: 166–173 

53 Naimie C E, Blain C A, Lynch D R. Seasonal mean circulation in the 
Yellow Sea—A model-generated climatology. Cont Shelf Res, 2001, 
21: 667–695 

54 Tang Y. Circulations of the Yellow Sea. In: Su J, Yuan Y, eds. Hy-
drography of the Coastal Oceans Near China (in Chinese). Beijing: 
Ocean Press, 2005. 200–202 

55 Mask A C, O’Brien J J, Preller R. Wind-driven effects on the Yellow 
Sea Warm Current. J Geophys Res, 1998, 103: 30713–30729 

56 Tang Y, Zou E, Lie H-J. On the origin and path of the Huanghai 
Warm Current during winter and early spring (in Chinese). Acta 
Oceanol Sin, 2001, 23: 1–12 

 
Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction 

in any medium, provided the original author(s) and source are credited. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


