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The entropy increase principle for an isolated system and the criteria of thermal equilibrium for an isolated system and systems 
with prescribed temperature and volume can be derived on the basis of the concept of entropy and the first and second laws of 
thermodynamics. In this paper, the entransy decrease principle for an isolated system is introduced on the basis of the concept of 
entransy. It is found that the entransy of an isolated system always decreases during heat transfer. This principle can be taken as 
an expression of the second law of thermodynamics for heat transfer. The thermal equilibrium criteria for an isolated system and a 
closed system are also introduced. It is found that when an isolated system reaches thermal equilibrium, its entransy is a minimum 
value. This criterion is referred to as the minimum entransy principle. When a closed system reaches thermal equilibrium, its free 
entransy is also a minimum value. This criterion is referred to as the minimum free entransy principle. Therefore, like entropy, 
entransy can be considered an arrow of time in heat transfer and used to describe the thermal equilibrium state. 
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Irreversibility is a common characteristic of all physical 
processes in nature. For instance, in friction processes, me-
chanical work can be totally transformed into heat. How-
ever, heat cannot totally be turned into mechanical work 
automatically. In diffusion processes, two kinds of fluid in a 
mixture cannot separate from each other automatically. A 
reversible physical process is the ideal case in which there is 
no dissipation, and this cannot be achieved in practice [1]. 
Therefore, for any physical process, there is always an evo-
lution direction that can be described by the second law of 
thermodynamics. In 1850, Clausius described the law with 
an expression that it is impossible to construct a device that 
operates in a cycle and produces no effect other than the 
transfer of heat from a lower-temperature body to a higher- 
temperature body [1]. In 1851, Kelvin introduced another 
expression based on heat-work conversion; that is, it is im-
possible for any device to operate in a cycle and receive heat 
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from a single reservoir and produce an equivalent amount of 
mechanical work [1]. The Clausius expression and Kelvin 
expression have been proved to be equivalent [1]. 

Clausius further introduced a quantitative description of 
the irreversible process using a state function, entropy, 
when he investigated the Carnot cycle in 1854. The expres-
sion of entropy is [1,2] 

rev

δd ,QS
T

⎛ ⎞= ⎜ ⎟
⎝ ⎠

                 (1) 

where dS is the variation of entropy, δQ is the heat ex-
change between the system and the environment, and T is 
the temperature of the heat source, which is also the envi-
ronment temperature for the reversible process. The sub-
script ‘rev’ indicates that the process is an ideal reversible 
process. Clausius derived the Clausius inequality for en-
tropy, which expresses the second law of thermodynamics 
with a mathematical expression and makes it possible to 
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calculate the irreversibility as a quantity. Since then, re-
searchers gradually developed the thermal equilibrium cri-
teria for various systems on the basis of the concept of en-
tropy; e.g. the isolated system, the system at constant tem-
perature and volume, and the system at constant tempera-
ture and pressure [1]. With these fundamental and important 
developments, the concept of entropy is widely used in 
thermodynamics, cybernetics, probability theory, life sci-
ences and other academic fields.  

The application of entropy is also researched in the field 
of heat transfer. From the view of thermodynamics, the heat 
transfer processes are irreversible and in non-equilibrium. 
For non-equilibrium thermodynamic processes, Onsager 
[3,4] established fundamental equations and derived the 
principle of the least dissipation of energy employing varia-
tional theory. On the basis of the idea that the entropy gen-
eration of a thermal system at steady state should be a 
minimum, Prigogine [5] developed the principle of mini-
mum entropy generation. Furthermore, Bejan [6–9] devel-
oped expressions of entropy generation for heat and fluid 
flows and then introduced the principle of least entropy 
generation to the heat-transfer optimizations. Many research 
groups have done much work on heat transfer optimization 
using the concept of entropy; e.g. Poulikakos and Bejan 
[10], Erek and Dincer [11], Shah and Skiepko [12]. Their 
work showed that entropy can describe the irreversibility of 
heat transfer effectively. 

In the history of sciences, some principles have had more 
than one expression. In thermodynamics, for instance, the 
Clausius expression and Kelvin expression both describe 
the second law even though the expressions are different. In 
quantum mechanics, the Schrodinger equation and matrix 
mechanics reveal the quantum world in different ways.  

One may then ask whether entropy is the only concept 
that can be applied to describe the irreversibility of heat 
transfer. Before we answer this question, let us introduce a 
new concept, entransy [13], which was proposed by Guo et 
al. [13] to describe the potential energy of heat transfer by 
comparing electricity and heat transfer. Entransy was ini-
tially referred to as the heat transport potential capacity 
[14,15]. If a body has an internal energy U and temperature 
T, its entransy is defined as  

1 .
2

G UT=                     (2) 

Guo et al. [13] established the concept of entransy flux. 
They postulated that the entransy of a body represents its 
heat transport ability. This capacity does not only depend on 
the body’s temperature but also on its internal heat. The 
heat transport ability decreases when heat is transferred 
from a high-temperature body to a low-temperature body 
and entransy is dissipated. Employing the concept of en-
transy dissipation, they developed the principle of extre-
mum entransy dissipation and the principle of minimum 
thermal resistance. In recent years, these principles have 

been applied to optimize or enhance heat conduction 
[13,16–21], heat convection [13,22,23] and thermal radia-
tion [24,25] and determine the optimal designs of heat ex-
changers [26–29].  

Eq. (2) tells us that entransy is half the product of the in-
ternal energy and temperature of the system for a heat 
transfer process that does not involve heat-work conversion. 
We know that both the internal energy and temperature are 
state quantities. Therefore, like entropy, entransy is also a 
state quantity. Entropy can describe the irreversibility of 
heat transfer and be used to establish thermal equilibrium 
criteria for certain systems. This paper attempts to deter-
mine whether entransy can describe irreversibility and be 
used to establish thermal equilibrium criteria. 

1  Entropy increase principle and its thermal  
equilibrium criteria [1] 

Using the definition of entropy (eq. (1)), we investigate the 
thermodynamic cycle that is shown in Figure 1 and has n 
heat sources. The temperature of the ith heat source is Ti. 
The system Σ comes into contact with each heat source in 
turn. Finally, it returns to the first source and the cycle is 
complete.  

We assume that system Σ receives energy Qi from the ith 
heat source and outputs mechanical work W. According to 
the first law of thermodynamics,  

1

.
n

i
i

Q W
=

=∑                 (3) 

We consider an auxiliary heat source whose temperature 
is T0, and n Carnot engines working between the heat 
sources and the auxiliary heat source. We assume that the 
ith engine receives energy Qi0 from the auxiliary heat source 
and that the energy Qi′ that the ith heat source obtains from 
the ith engine is equal to the energy Qi that system Σ re-
ceives from the ith heat source. According to the first law of 
thermodynamics, the output mechanical work of all the en-
gines is  

0 0 0
1 1

,
n n

i i
i i

W Q Q Q W
= =

′= − = −∑ ∑          (4) 

where Q0 is the total energy that the Carnot engines receive 
from the auxiliary heat source and W is the output work of 
system Σ. We thus obtain 

0 0.W W Q+ =                (5) 

If system Σ and all the Carnot engines are treated as a 
large system, then the total system finishes its cycle while 
system Σ and the Carnot engines finish their cycles. Q0 is 
then the energy that the total system receives from the en-
vironment, and it is only from one auxiliary heat source.  
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Figure 1  Sketch of one thermodynamic cycle. 

Considering the Kelvin expression of the second law of 
thermodynamics and eq. (5), we obtain 

0 0 0.W W Q+ = ≤                 (6) 

In each Carnot cycle,  

0

0

.i i

i

Q Q
T T

′
=                   (7) 

As Qi′ is equal to Qi,  

0 0 0
1 1

.
n n

i
i

i i i

QQ Q T
T= =

= =∑ ∑              (8) 

Considering eq. (6) and that T0 is positive,  

1

0.
n

i

i i

Q
T=

≤∑                    (9) 

We know that the Carnot cycle is reversible. Therefore, if 
the energy Qi in eq. (9) is replaced by its opposite value, the 
equation remains tenable. Thus, 

1

0.
n

i

i i

Q
T=

−
≤∑                  (10) 

From eqs. (9) and (10), we obtain 

1

0.
n

i

i i

Q
T=

=∑                   (11) 

If the number of heat sources is infinite, and the tem-
perature differences of the adjacent heat sources are infini-
tesimal, eq. (9) can be rewritten as 

δ 0.Q
T

≤∫                   (12) 

This is the Clausius inequality. The equal sign in eq. (12) is 
tenable only when the process is reversible, while the sign 
of “less than” is tenable for any irreversible process. Ac-
cording to the definition of eq. (1), we obtain 

d 0.S ≥                   (13) 

This is the entropy increase principle, which indicates that 
the entropy of an isolated system will always increase. 
Therefore, entropy can be treated as an arrow of time, which 
gives an evolution direction for any physical process in an 
isolated system [2].  

The thermal equilibrium criterion of the isolated system 
with constant volume and internal energy can be established 
according to the entropy increase principle. When the sys-
tem reaches its thermal equilibrium state, the entropy of the 
system is a maximum, and  

d 0.S =                     (14) 

For system Σ with prescribed temperature and volume, 
the thermal equilibrium criterion can also be established. 
We assume that system Σ is in a much larger system Σ′. As 
system Σ′ is much larger than system Σ, the heat exchange 
between the systems has no effect on the temperature T of 
system Σ′. If system Σ′ and Σ are treated as one, this new 
system is surely an isolated system. According to eq. (14),  

( )0d d d d 0,S S S S S′ ′= + = + =          (15) 

when this new system reaches thermal equilibrium. We as-
sume that the change in the internal energy of system Σ is 
dU, which can only result from system Σ′. The entropy 
change of system Σ′ can then be expressed as 

dd .US
T

′ = −                  (16) 

Considering that T is given, Substituting eq. (16) into eq. 
(15) leads to 

d 0,F =                   (17) 

where F is the Helmholtz free energy, whose expression is 

.F U TS= −                  (18) 

For system Σ with prescribed temperature and volume, 
eqs. (17) and (18) tell us that the Helmholtz free energy is a 
minimum when the system is in thermal equilibrium. This is 
the thermal equilibrium criterion of the system with pre-
scribed temperature and volume. 

The entropy increase principle and its thermal equilib-
rium criteria are restated above on the basis of the concept 
of entropy and the first and second laws of thermodynamics. 
With these conclusions, the irreversibility of any physical 
process can be quantitatively calculated, and whether one 
isolated system or one system with prescribed temperature 
and volume is in thermal equilibrium can be judged. Corre-
sponding to the principle and thermal equilibrium criteria 
described above, similar principles can be established for 
heat transfer on the basis of the concept of entransy. 

2  Entransy decrease principle of heat transfer 
in an isolated system 

A common heat transfer process as shown in Figure 2 is  
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Figure 2  Sketch of heat transfer in an isolated system. 

investigated so as to determine if entransy can indicate the 
evolution direction of heat transfer. The figure shows that 
the isolated system is composed of two subsystems. The 
volumes of the subsystems and the internal energy of the 
system are invariant. The system and its subsystems are 
infinite from a microscopic point of view, and we can de-
fine the heat capacity, temperature and other parameters of 
the systems. The heat capacity, mass and temperature of 
subsystem 1 are c1, m1 and T1, respectively, while those of 
subsystem 2 are c2, m2 and T2. There is a plate with ideal 
heat insulation between the subsystems. We assume that 
there is no energy transfer between the subsystems before 
the plate is taken away. In an instant, the plate is removed 
and there is then heat transfer between the subsystems. For 
this kind of system, Han and Guo [30] proved that the en-
transy of the system decreases before and after the thermal 
equilibrium state is reached. We analyze the entransy 
change of the system when a small amount of heat is trans-
ferred between the subsystems hereafter. 

We consider the relationship between the internal energy, 
temperature and heat capacity of the system, U = cmT. The 
entransy of the subsystems can be obtained from eq. (2): 

2
1 1 1 1

1 ,
2

G c m T=                (19) 

2
2 2 2 2

1 .
2

G c m T=                (20) 

We suppose δQ is transferred from subsystem 1 to 2 in a 
period of time after the ideal heat insulation plate is re-
moved; then 

δ d δ .Q U W= +                (21) 

As the volumes of the subsystems do not change, δW is 
zero. The heat transfer between the subsystems can only 
affect the internal energy of the subsystems. Considering U 
= cmT, the temperatures of the subsystems after δQ is 
transferred can be expressed as 

( )1 1 1 1 1 1δ ,T c m T Q c m′ −=             (22) 

( )2 2 2 2 2 2δ .T c m T Q c m′ +=             (23) 

According to eq. (2), the entransy of the subsystems is then  

( )22
1 1 1 1 1 1 1 1 1

1 1 δ ,
2 2

G c m T c m T Q c m′ ′= = −      (24) 

( )22
2 2 2 2 2 2 2 2 2

1 1 δ .
2 2

G c m T c m T Q c m′ ′= = +     (25) 

The entransy change of the whole system is 

( ) ( )1 2 1 2d .G G G G G′ ′= + − +              (26) 

Substituting eqs. (19), (20), (24) and (25) into eq. (26) 
gives 

( )2 1
1d δ δ 2 ,
2

G Q Q T Tκ⎡ ⎤= + −⎣ ⎦          (27) 

where κ=1/c1m1+1/c2m2. 
If δQ > 0, according to the Clausius expression of the 

second law of thermodynamics, it is required that 

1 2.T T′ ′≥                     (28) 

Substituting eqs. (22) and (23) into eq. (28) gives 

2 1δ 0,Q T Tκ + − ≤               (29) 

2 1 δ 0.T T Qκ− ≤ − <              (30) 

Substituting eqs. (29) and (30) into eq. (27) and considering 
δQ > 0 yield 

d 0.G <                       (31) 

Let us consider an ideal heat transfer process in which 
the temperature difference of the subsystems is infinitesimal 
and the amount of heat transported has no effect on the 
temperatures of the subsystems. It is required that κ = 0 and 
T1 = T2. Therefore,  

( )2 1δ 2 0.Q T Tκ + − =              (32) 

Substituting eq. (32) into eq. (26) gives 

d 0.G =                    (33) 

From eqs. (31) and (33), the variation in entransy is 

d 0.G ≤                  (34) 

Eq. (34) tells us that the entransy of an isolated system 
never increases during heat transfer. The equal sign is ten-
able only when the process is an ideal heat transfer process 
with infinitesimal temperature difference, while the sign of 
“less than” is tenable for any heat transfer process in prac-
tice. This is the entransy decrease principle of heat transfer 
in an isolated system. 

As the physical parameter that describes the heat transfer 
ability, entransy is found always to decrease during the 
process of heat transfer in an isolated system. The irreversi-
bility of heat transfer processes is because of the loss of 
entransy or heat transfer ability. Once heat reaches a 
low-temperature body, it can never return to a high-    
temperature body. Similar to the entropy increase principle, 
the entransy decrease principle gives an evolution direction 
for any heat transfer process; that is, the entransy of an  
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isolated system always decreases. Therefore, it is also a 
time arrow for heat transfer. This principle can be consid-
ered an expression of the second law of thermodynamics for 
heat transfer. 

3  Thermal equilibrium criteria based on the  
entransy decrease principle 

3.1  Thermal equilibrium criterion of the isolated sys-
tem: the minimum entransy principle 

Similar to the thermal equilibrium criterion of the isolated 
system based on the concept of entropy, we can also estab-
lish a new thermal equilibrium criterion for the isolated 
system with prescribed internal energy and volume based on 
the concept of entransy.  

For any isolated system, the temperature of any part of 
the system should be the same and not change after the sys-
tem is in thermal equilibrium [1].  

As shown in Figure 3, the isolated system is composed of 
n parts. Initially, the heat capacity, temperature and mass of 
the ith part are ci, Ti and mi, respectively. The initial en-
transy of the system is the sum of each part: 

2
0

1

1 .
2

n

i i i
i

G m c T
=

=∑                (35) 

Heat is transferred if there are initially temperature dif-
ferences among parts of the system. After a period t, the 
internal energy of the ith part has changed by ΔUi, and the 
temperature of the ith part is 

.i t i i i iT T U m c− = + Δ                 (36) 

According to the first law of thermodynamics,  

1

0.
n

i
i

U
=

Δ =∑                  (37) 

The entransy of the system is  

( )22

1 1

1 1
2 2

n n

i i i t i i i i i i
i i

G m c T m c T U m c−
= =

= = + Δ∑ ∑   (38) 

on the basis of eq. (36). Therefore, the entransy decrease of 
the system from its initial state can be expressed as 

 

Figure 3  Sketch of an isolated system. 

( )2
dec 0

1

2 .
n

i i i i i
i

G G G T U U m c
=

⎡ ⎤= − = − Δ + Δ⎣ ⎦∑     (39) 

To find the extreme value of eq. (39) with the limiting 
condition of eq. (37), a functional is established as 

( )2

1 1

2 ,
n n

i i i i i i
i i

T U U m c Uλ
= =

⎡ ⎤∏ = − Δ + Δ + Δ⎣ ⎦∑ ∑    (40) 

where λ is the Lagrange multiplier. Letting the derivative of 
eq. (40) equal zero, we have 

( ) ( ) 0.i i i i
i

T U m c
U

λ∂∏
= − Δ + =

∂ Δ
+         (41) 

Therefore,  

( ).i i i iU m c TλΔ = −               (42) 

Substituting eq. (42) into eq. (37) gives 

1 1

.
n n

i i i i i
i i

m c T m cλ
= =

=∑ ∑             (43) 

Combining eqs. (36) and (42), we get 

1 1

.
n n

i t i i i i i
i i

T m c T m cλ−
= =

= =∑ ∑            (44) 

The above equation implies that the temperatures of differ-
ent parts of the system are the same (the system reaches 
thermal equilibrium) when the entransy of the system 
reaches its extremum value. From eq. (41), we get 

( )

2

2

1 0.
i ii

m cU
∂ ∏

= − <
∂ Δ

             (45) 

Therefore, when eq. (44) is justifiable, we find that  

decd 0.G =                    (46) 

Moreover, Gdec is a maximum. Thus,  

( )0 dec decd d d 0.G G G G= − = − =        (47) 

The entransy of the system is a minimum. 
The entransy decrease principle tells us that heat transfer 

decreases the entransy of the isolated system. On the basis 
of this principle, we find that the entransy is a minimum 
when the isolated system reaches thermal equilibrium. This 
is the thermal equilibrium criterion of the isolated system. It 
can also be referred to as the minimum entransy principle. 

3.2  Thermal equilibrium criterion of the closed system: 
the minimum free entransy principle 

As shown in Figure 4, system Σ is a closed system. The 
volumes of systems Σ and Σ′ are given, and system Σ′ is 
much bigger than Σ. If systems Σ and Σ′ are treated as one 
system Σ0 (Σ0 = Σ + Σ′), the whole system (Σ0) is isolated. If 
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Figure 4  Sketch of the closed system. 

we assume that system Σ′ has already reached thermal equi-
librium, then its temperature, mass and heat capacity are T ′, 
m′ (m′ is infinitely large) and c′, respectively. 

As system Σ′ is much bigger than Σ, the heat transfer 
between the systems has a negligible effect on Σ′ and T ′ 
does not change. The minimum entransy principle can be 
applied to Σ0 because it is an isolated system. At thermal 
equilibrium, we have 

( )0d d d d 0.G G G G G′ ′= + = + =         (48) 

There is no mechanical work for any subsystem as the 
volumes of Σ and Σ′ are given. The heat transfer between 
the systems can then only affect their internal energy. We 
assume that the internal energy change of Σ is dU. This 
change can only come from system Σ′. From eq. (2), the 
entransy change of system Σ′ is 

( )

( )

2 2

2

1 1d d
2 2

d d 2 .

G c m T U c m c m T

T U U c m

′ ′ ′ ′ ′ ′ ′ ′ ′= − −

′ ′ ′= − +
      (49) 

Recalling that m′ is infinitely large, we can drop the sec-
ond term in the above equation, giving 

d d .G T U′ ′= −                   (50) 

Substituting eq. (50) into eq. (48) gives 

0d d d 0.G G T U′= − =               (51) 

Considering that T ′ is a constant, we have 

( )d 0,G UT ′− =                 (52) 

where G and U are the entransy and internal energy for sys-
tem Σ, respectively. It is found from eqs. (49) and (50) that 
UT′ is the entransy increase for system Σ′ when all the in-
ternal energy of Σ is transferred to system Σ′. In other 
words, G and UT′ represent the entransy for internal energy 
U when it is in system Σ and Σ′ respectively. Corresponding 
to the definition of the free energy, we can define the free 
entransy for system Σ as 

F .G G UT ′= −                (53) 

For the closed system at thermal equilibrium, we have 

Fd 0.G =                   (54) 

From eq. (2) and U = cmT, it is noted that eq. (53) is a 
quadratic function of the temperature. Therefore, the value 
in eq. (53) is a minimum when eq. (54) holds true. The free 
entransy is a minimum when the closed system reaches 
thermal equilibrium. This is the thermal equilibrium crite-
rion for the closed system. It can also be referred to as the 
minimum free entransy principle. 

In [1], the thermal equilibrium criterion of the system 
with prescribed temperature and pressure is introduced on 
the basis of the entropy increase principle. However, the 
volume of that kind of system changes. This relates to me-
chanical work in the process. This paper only focuses on the 
heat transfer process without heat-work conversion, and 
thus, the thermal equilibrium criterion of the system with 
prescribed temperature and pressure is not discussed here. 

4  Verification of the entransy decrease princi-
ple and its thermal equilibrium criteria 

Let us consider the process of heat conduction in a simple 
isolated system as shown in Figure 5. The heat capacity, 
mass and temperature of the high-temperature solid body 
are cH, mH and TH, respectively, while those of the low- 
temperature solid body are cL, mL and TL, respectively. The 
contact area of the two bodies is A. The thermal resistance 
of the contact area is R.  

Assuming that the temperature of each body can be cal-
culated with the lumped parameter method, the control 
equations of the heat transfer process can be expressed as  

H L H
H H

T T Tc m A
Rτ

∂ −
=

∂
 and L H L

L L ,T T Tc m A
Rτ

∂ −
=

∂
  (55) 

where τ is time. We can simplify eq. (55) as 

( )H
H H L

T k T T
τ

∂
= − −

∂
 and ( )L

L L H ,T k T T
τ

∂
= − −

∂
  (56) 

where kH=A/cHmHR and kL=A/cLmLR. If we take both bodies 
as copper, then cH = cL = 386 J kg–1 K–1, mH = mL = 1 kg, 
and kH = kL = 10–2 s–1. The initial temperatures of the two 

 

Figure 5  Heat transfer process in a simple isolated system. 
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bodies are TH0 = 300 K and TL0 = 280 K. The temperature 
variations of the two bodies can then be obtained solving 
eq. (56). The results are shown in Figure 6. The entransy 
and entropy changes of the system with time are also ob-
tained as shown in Figure 7, in which the entransy is calcu-
lated with eq. (2) while the entropy change is calculated 
with eq. (1). 

Figure 6 shows that the temperatures of the two bodies 
gradually become 290 K, which is the thermal equilibrium 
temperature of the system. In Figure 7, the entropy of the 
system increases gradually and has an asymptotic value, 
which indicates that entropy can give the evolution direction 
of the heat transfer process and be a measure of the irre-
versibility. In addition, the asymptotic value of the entropy 
change shows that the thermal equilibrium criterion of the 
isolated system based on the concept of entropy, dS = 0, 
describes the thermal equilibrium state effectively. On the 
other hand, the entransy of the system decreases gradually, 
but it also has an asymptotic value. Similar to entropy, it is 
concluded that entransy can be used to give the evolution 
direction of the process and to measure the irreversibility. 
The asymptotic value of the entransy also shows that the 
thermal equilibrium criterion of the isolated system based 
on the concept of entransy, dG = 0, can describe the thermal 
equilibrium state effectively. 

Let us consider another closed system shown in Figure 8 
whose volume V and environment temperature Te are given. 
The environment can be treated as an infinitely great sys-
tem. The mass, heat capacity and initial temperature of the 
closed system are m, c and T0 respectively. The heat transfer 
coefficient between the closed system and the environment 
is h, and the heat transfer area is A. The control equation of 
the heat transfer can then be expressed as 

( )e ,Tcm hA T T
τ

∂
= −

∂
              (57)  

where T is the temperature of the closed system. 
Letting c = 386 J kg–1 K–1, m = 1 kg, Te = 300 K, T0 = 280 

K and hA=5 W K–1, the temperature of the closed system can  

 

Figure 6  Temperature changes of the two bodies. 

 

Figure 7  Entropy variation and change in entransy of the isolated system 
with time. 

 

Figure 8  Heat transfer process in a simple closed system. 

be determined using eq. (57), as well as the entropy increase 
and free entransy. The results are shown in Figure 9, where 
the entransy is calculated with eq. (2) while the entropy 
change is calculated with eq. (1).  

It is seen that the temperature of the closed system in-
creases gradually, and its asymptotic value is 300 K, which 
is the temperature of the environment and also the thermal 
equilibrium temperature of the closed system. At the same 
time, the entropy of the isolated system, which consists of 
the closed system and the environment, increases gradually  

 

Figure 9  Variations in the temperature and free entransy of the closed 
system and the entropy change during the heat transfer. 
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and has an asymptotic value, while the free entransy of the 
closed system decreases gradually and also has an asymp-
totic value. These variations demonstrate that both entropy 
and entransy can give the evolution direction of the heat 
transfer in the closed system. In addition, the minimum free 
entransy principle also describes the thermal equilibrium 
state effectively. 

From the above discussion, it is found that entropy is not 
the only physical parameter that can be taken as the arrow of 
time in heat transfer processes; entransy is another. Like en-
tropy, this new concept is also a measure of the irreversibility 
of heat transfer processes that do not involve work. At the 
same time, the thermal equilibrium criteria based on entransy 
also describe the thermal equilibrium state effectively. 

5  Conclusions 

On the basis of the concept of entransy and the first and 
second laws of thermodynamics, the entransy decrease 
principle for an isolated system is introduced in this paper. 
It is found that the entransy of an isolated system that does 
not involve work always decreases during heat transfer. 
This variation in entransy can be treated as the arrow of 
time in heat transfer and a measure of irreversibility. This 
principle can be taken as an expression of the second law of 
thermodynamics in heat transfer.  

The thermal equilibrium criteria of the isolated system and 
the closed system are also developed. The criteria are referred 
to as the minimum entransy principle and the minimum free 
entransy principle, respectively. It is found that when an iso-
lated system reaches thermal equilibrium, its entransy is a 
minimum. This is the minimum entransy principle. When a 
closed system reaches thermal equilibrium, its free entransy is 
also a minimum. This is the minimum free entransy principle. 
Therefore, like entropy, entransy can be regarded as the arrow 
of time in heat transfer processes and be used to describe the 
thermal equilibrium state of the isolated system and the 
closed system not involving work. 
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