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To obtain more accurate correlation dimension estimations for chaotic time series, a novel scaling region identification method is 
developed. First, points that obviously do not belong to the scaling region associated with the whole double logarithm correlation 
integral curve are removed using the K-means algorithm. Second, a point-slope-error algorithm is developed to recognize a possi-
ble scaling region. Third, the K-means algorithm is used again to further remove a small interval of interfering points in the possi-
ble scaling region to obtain a more precise scaling region. The correlation dimension of four typical chaotic attractors and five 
curves generated by the Weierstrass-Mandelbrot fractal function were calculated using the proposed method. These calculated 
values were very close to the respective theoretical fractal dimensions. Moreover, the effectiveness of our method in identifying 
the scaling region was compared with existing methods. Results show that our method can distinguish the scaling region objec-
tively, accurately, automatically and quickly, making estimations of the correlation dimension more precise and affording signifi-
cant improvements in nonlinear analysis. 
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Developments in chaos and fractal theories have offered 
new ideas in solving nonlinear problems. The correlation 
dimension D2 is mainly used in chaotic time series process-
ing and analysis. Together with the Lyapunov exponent and 
K-entropy, this parameter is one of the more critical char-
acteristic parameters used to measure chaotic properties of 
nonlinear time sequences [1]. Based on the Phase-space 
Reconstruction [2–4] and Takens Embedding Theorem 
[5,6], the G-P algorithm for calculating the correlation di-
mension was proposed in 1983 by Grassberger and Procac-
cia [7,8]. This opened up a path for the study of chaotic time 
series appearing in practical applications. 

The scaling region is a domain with measurement in-
variability in which the object exhibits self-similarity over a 
range of scales, a property that is characteristic of fractals.  
                      
*Corresponding author (email: hzhu@cumt.edu.cn) 

When calculating the correlation dimension, the scaling 
region can be simply considered as the straight line portion 
of the entire double logarithm correlation integral curve, the 
slope of which defines the correlation dimension. Thus, the 
identification of the scaling region plays a vital role in de-
termining the calculational accuracy of the correlation di-
mension. 

However, the G-P algorithm provides no criteria that 
would lead to an identification of the scaling region. Many 
researchers have dedicated themselves to such a search [9]. 
A quick and easy estimate of the correlation dimension is 
afforded by visual inspection [10], namely choosing by eye 
a relatively straight portion from the whole curve. Obvi-
ously, this method relies heavily on human judgment and 
subjective criteria because different people can obtain dif-
ferent results for the same curve. Therefore, researchers 
seek a more systematic and objective solution for recogniz-
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ing the scaling region to obtain better correlation dimension 
estimates. 

Various methods have been developed and these include 
the following. Yokoza et al. [11] proposed their largest line-
arity method which calculated the upper limit of the scaling 
region through an empirical formula. This method is short 
on providing objectivity and has some limitations in its op-
eration. An alternative method using a three-segment poly-
line approximation [12] that aimed at minimizing the over-
all error was developed. It achieves the best approximation 
for the piecewise-linear fit of the curve with the slope of the 
middle polyline taken to be the correlation dimension. The 
computational cost of this approach is great and the method 
lacks a theoretical basis. Maragos et al. [13] also tried to 
calculate the upper limit of the scaling region using an em-
pirical formula, which again lacks a certain objectivity. 
Hong et al. [14] thought that the compressibility of the 
logarithm data could weaken the differences between the 
scaling region and other regions, but suggested that the 
similar ratio of the image could be recovered by taking out 
the logarithmic curve. They presented the self-similar ratio 
algorithm which had a complicated computational process 
that is not useful in practical applications. A self-adaptive 
method [15] was proposed to give a more steady, reliable 
and systematic identification of the scaling region based on 
the notion of standard deviation. Meanwhile, the genetic 
algorithm was also used to reduce the computation time. 
This method offers more objectivity in identifying the scal-
ing region, but has not been universally adopted. Dang et al. 
[16] proposed a method involving grouped recursive com-
puter-recognition based on two so-called appraisal indices, 
confidence level and correlation. However, detailed tech-
niques for choosing the initial scale value for the specific 
system are unavailable. Founded on clustering analysis the-
ory, Yang et al. [17] presented a solution to identify auto-
matically the non-scale region. Although this technique can 
deal more effectively with irregular correlation integral 
curves, there still exists some shortcomings; for instance, it 
cannot identify the scaling region accurately. Lai et al. [18] 
considered that a good scaling region did not only depend 
on the window length alone, but was associated with the 
embedding dimension m and delay time τ. 

To improve the calculational accuracy of the correlation 
dimension, a novel method based on the K-means algorithm 
and the point-slope-error algorithm is studied to identify the 
scaling region. The outline of this method is as follows. 
First, a 2-means algorithm is performed to rule out points 
that clearly do not belong to the scaling region. Second, 
using the point-slope-error algorithm, a possible scaling 
region is recognized from the points remaining in the first 
step. Third, this 2-means algorithm is implemented again to 
identify the actual scaling region from the possible scaling 
region. Points from the actual scaling region are utilized in a 
least-square method to obtain an accurate estimate of the 
correlation dimension. The effectiveness of the proposed 

new identification method is verified by calculating the 
correlation dimension of attractors from various well-known 
chaotic systems, including the Lorenz attractor and Hénon 
attractor, and the correlation dimension of signals generated 
from the Weierstrass-Mandelbrot (W-M) fractal function. 

1  Correlation dimension and scaling region 

The correlation dimension D2 is a type of fractal dimension 
that helps to characterize fractals such as strange attractors 
of chaotic systems [19–21]. The fractal dimension is a pa-
rameter describing the space-filling degree of a fractal object, 
while the correlation dimension is an important characteris-
tic parameter that quantitatively describes the “strangeness” 
of fractal attractors; it also provides the main criterion to 
distinguish a chaotic system from others. 

The phase-space reconstruction technique should be used 
initially when calculating the correlation dimension with the 
G-P algorithm. The intention here is to recover the strange 
attractor of the chaotic system through mapping the 
1-dimensional time series into a higher-dimensional phase 
space. Specifically, given a suitable embedding dimension 
m≥2D+1 (D is the dimension of the strange attractor) and 
time delay τ, the time series x1, x2, ···, xn will be restructured 
as a series of vectors in m-dimensional phase space: 

2 ( 1)[ , , , , ],i i i i i mX x x x xτ τ τ+ + + −= i=1, 2,···,N,      (1) 

where Xi is the reconstructed phase space vector, and N is 
the number of vectors given by N = n–(m–1) × τ. 

The Euclidean distances between each vector point Xi 
and the other (N–1) points are calculated in m-dimensional 
phase space. Then, the frequency of each distance falling 
within the volume element with hyperspherical radius r is 
obtained. Thus, the correlation integral function Cm(r) is 
established, as shown in eq. (2). 

( )( ) ( 1),m
i j

i jC r H r X X N N
≠

= − − −∑       (2) 

where H (·) is the Heaviside function defined as H(x)=0 if 
x≤0 and H(x)=1 if x>0. 

Set rmin and rmax as the respective minimum and maxi-
mum distance between points. If the radius r≤rmin, none of 
points will fall in the volume element and Cm(r)=0; in con-
tradistinction, if r≥rmax, all points will fall in the volume 
element and Cm(r)=1. It can be seen that Cm(r) is a cumula-
tive distribution function reflecting the distribution prob-
ability of the distance less than r between pairs of points on 
the chaotic attractor. The cumulative correlation function is 
related to the correlation dimension D2 by the power law 

( ) 2( ) ,  ( 0).D
mC r r r∝ →               (3) 

This results in D2 being defined as 

( )2 0
limd ln / d ln .mr

D C r r
→

=             (4) 
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For deterministic systems, graphs of lnCm(r) against lnr 
should be plotted first by increasing the value of r until 
lnCm(r) does not vary with lnr. At this stage, the slope of the 
lnr-lnCm(r) curve over the linear region can be calculated by 
the least-square method, giving a numerical estimation of 
the correlation dimension. 

The above-mentioned linear region is considered to be 
the scaling region. Visual inspection is generally adopted to 
identify the scaling region as the process is simple and fast 
albeit subjective and haphazard. For the same curve, the 
scale or the upper/lower limit of the scaling region as de-
termined by different people can differ, making a variation 
in calculation results of the correlation dimension. There-
fore, an accurate and objective identification of the scaling 
region is essential and preferable. Figure 1 displays an ex-
ample of the scaling region as judged by the naked eye. 

In addition, the selection of the embedding dimension m 
and delay time τ is significant in estimations of D2. How-
ever it is difficult to predetermine these two parameters. In 
this study, the embedding dimension m begins from value 3 
and proceeds successively higher dimensions until the esti-
mated value of D2 stabilizes or fluctuates within a small 
error range (the relative error rD=(D2(m2)–D2(m1))/D2(m1) 
≤5% is a reasonable range) [22]. It can be seen from Figure 
1(a) that by increasing m two linear regions of the adjacent 
lnr-lnCm(r) curves begin to align more closely which means 
that D2 begins to converge gradually. The time delay τ is 
calculated by the autocorrelation function which is the more 
widely used and established method. 

2  The novel scaling region identification method 

The K-means algorithm, first introduced by MacQueen [23] 
and then developed by Hartigan and Wong [24], is a classic 
clustering algorithm based on distance. The aim of the 
K-means algorithm is to partition n observations into k 
clusters in which each observation belongs to the cluster with 
the nearest mean. The algorithm comprises the following 

steps: (1) Place k points into the space represented by the 
objects that are being clustered. These points represent ini-
tial group centroids. (2) Assign each object to the group that 
has the closest centroid. (3) Recalculate the positions of the 
centroids. Repeat steps 2 and 3 until the centroids no longer 
move. This algorithm produces a separation of the objects 
into groups from which the metric that is to be minimized 
can be calculated. 

The first derivative curve lnr-lnCm(r)′ curve is composed 
of points presenting slopes between neighboring points of 
the lnr-lnCm(r)′ curve. The scaling region in this curve is a 
linear region, and the slope of a line is a constant. Thus, 
points (lnr, lnCm(r)′) in the scaling region fluctuate slightly 
around a constant value, while points outside the scaling 
region are accompanied by larger fluctuations as illustrated 
in Figure 1(b). Taking this fact and the feature of the 
K-means algorithm into consideration, points on the 
lnr-lnCm(r) curve can be classified according to whether 
they lie in the scaling region. The distribution of these two 
kinds of points in the lnr-lnCm(r) curve is crossed, which 
divides the curve into several intervals. The interval con-
taining the most points is retained, the others are ignored. 

Note that the new method states that all lnr-lnCm(r) 
curves are drawn from rmin to rmax with incremental step d. 
In this case, the number of points in a curve is n=fix((rmax– 
rmin)/d). The curve satisfies lnCm(r)=-∞ if r≤rmin and 
lnCm(r)=0 if r≥rmax. 

As an illustration, consider the lnr-lnCm(r) curve of the 
Hénon attractor with an embedding dimension of m=10; the 
2-means algorithm was utilized to recognize the scaling 
region. It can be seen that the lnr-lnCm(r) curve separates 
into several regions by two kinds of points. The region, 
shown in Figure 2(a) between two vertical dashed lines, 
corresponds to the larger cluster (including the most con-
secutive points) and was retained, while other regions 
(shown in scaled-up view in Figure 2(b)) were extracted. 
This latter region is short in appearance compared with the 
former region but includes quite a number of points. This is 
due to the fact that the logarithm coordinate compresses 

 

Figure 1  One example of the computation of the correlation dimension for a chaotic time series of length N=5000 with m ranging from 3 to 13. (a) lnCm(r) 
versus lnr; (b) lnCm(r)′ versus lnr. The region between the two dashed lines recognized by naked eyes is considered as the scaling region. 
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Figure 2  Scaling region identification of the lnr-lnCm(r) and lnr-lnCm(r)′ curves for the Hénon attractor with embedding dimension m = 10 using the pro-
posed method. (a) The first step with 2-means algorithm; (b) the extracted region by 2-means algorithm; (c) the second step with point-slope-error algorithm; 
(d) the third step with 2-means algorithm again and the region between two dashed lines considered as the actual scaling region and yielding the accurate 
correlation dimension D2. 

scale making the x-coordinate uniformly-spaced points (r, 
Cm(r)) appear densely-distributed as lnr goes backward but 
becomes sparser as lnr goes forward. Therefore, such points 
will impart a negative bias on the correlation dimension calcu-
lation if these were not removed. A little fluctuation is seen still 
to remain in the retained portion of the lnr-lnCm(r)′ curve in 
Figure 2(a). This signifies that the actual scaling region cannot 
be completely identified by solely the K-means algorithm. 

This letter presents a new identification method for situa-
tions where the scaling region as recognized only by the 
K-means algorithm is non-ideal. The fact that the points in 
the lnr-lnCm(r)′ curve represent slopes between adjacent 
points in the lnr-lnCm(r) curve can be considered as a body 
of measurements to be used to estimate the correlation di-
mension. We intend to identify the scaling region based on 
a comprehensive application of the K-means and principles 
used in statistics. First, the 2-means algorithm is used to 
classify points over the scale [lnrmin, lnrmax]. The “parasitic 
error” of the measured value can be eliminated from this 
step, as seen clearly in Figure 2(a) and (b). Second, the 
point-slope-error algorithm is developed. The arithmetic 
mean value Sm and standard deviation σ of the points in the 
lnr-lnCm(r)′ curve retained from the former step are com-
puted, and the error range is set at (Sm–kσ, Sm+kσ), where k 
is the control parameter for the error range and can be cal-
culated from the formula k=fix(2(Smax–Smin)/σ). Points in the 
error range are not necessarily consecutive; therefore, a 
scale region containing the most points is retained as a pos-

sible scaling region. In addition, based on numerous ex-
perimental data, the scaling region for practical time series 
is sometimes relatively restricted, in which case, the error 
range can be suitably widened. Figure 2(c) demonstrates the 
point that the point-slope-error algorithm recognizes a re-
gion considered as the possible scaling region (the red lines) 
from the portion between the two vertical dashed lines in 
Figure 2(a), as well as that the lines within this region fluc-
tuate gently. However, this scaling region is not sufficiently 
precise because there are some points that still do not be-
long to the actual scaling region. Third, the 2-means algo-
rithm is applied again to extract that part corresponding to 
interfering points to get a more precise scaling region 
shown between the two dashed lines in Figure 2(d). It is this 
portion from which points of the lnr-lnCm(r) curve are used 
to accurately estimate D2 using the least-square method. 

The above identification process was programmed using 
Matlab software to automatically recognize the scaling re-
gion. The proposed method provides an accurate, effective, 
automatic and rapid identification of the scaling region that 
takes only a few seconds to reach 5000 points. 

3  Verification of the method 

3.1  Classical chaotic signals 

Chaotic signals are very sensitive to initial conditions and 
have random transformation characteristics, the long-term 



 Ji C C, et al.   Chinese Sci Bull   March (2011) Vol.56 No.9 929 

behavior of which cannot be forecaste [25,26]. In this sec-
tion, the well known Lorenz attractor (Figure 3(a)) and the 
Hénon attractor (Figure 3(b)) are chosen mainly to verify 
the effectiveness of the proposed method. Grassberger and 
Procaccia [7,8] estimated the Hausdorff dimension to be 
2.06±0.01 and the correlation dimension to be 2.05±0.01 for 
the Lorenz attractor, and a correlation dimension of 
1.25±0.02 for the Hénon map. Russel [27] estimated the 
Hausdorff dimension to be 1.261±0.003 for the Hénon map. 

The Lorenz system, named after Lorenz in 1963, is a three- 
dimensional autonomous system of differential equations: 

( ) ,  ,  ,x x y y xz rx y z xy bzσ= − + = − + − = −     (5) 

where σ, r and b are positive real parameters, which were 
developed to demonstrate the unpredictable behavior of 
weather. For a typical set of parameter values (σ=10, r=8/3, 
and b=28), the system is chaotic and unpredictable but not 
completely random as evidenced by the well known butter-
fly pattern called the Lorenz attractor displayed in Figure 
3(a). The system was solved by the Runge-Kutta method 
with a time step of 0.01s and initial values x0=12, y0=2, 
z0=9. A 50000×3 matrix was obtained by taking a sampling 
interval of 1s over a total sampling time length of 500s. The 
transient data were removed and a time series including 
10000 data points of y variables was taken for the study. 

The Hénon map, introduced by Michel Hénon in 1976, is 
a discrete-time dynamical system defined by the equations: 

2
1 11 ,  .n n n n nx y ax y bx+ += + − =             (6) 

The map depends on two parameters, a and b, and for the 
particular values a = 1.4 and b = 0.3, the Hénon map is cha-
otic. With randomly generated initial values of x0 and y0, 
15000 iterates of Hénon map were obtained to plot the Hé-
non attractor shown in Figure 3(b). Here, the transient data 
were also removed and a time series including 10000 points 
for the y variable was taken to identify the scaling region 
and to perform the correlation dimension calculation. 

For the Lorenz attractor, the embedding dimension m 
ranged from 3 to 12 and the time delay τ was 14 computed 
by the autocorrelation function, while for the Hénon map m 
ranged from 3 to 14 and τ was 1. Figure 4(a) and (b) show 

the lnr-lnCm(r) curve and lnr-lnCm(r)′ curve respectively for 
the Lorenz attractor; Figure 4(c) and (d) show the 
lnr-lnCm(r) curve and lnr-lnCm(r)′ curve for the Hénon map. 
It can be seen from Figure 4(a) and (c) that the curves in the 
two correlation integral logarithm plots become more 
aligned and the distance between each successive lines be-
come narrower in the scaling regions with increasing em-
bedding dimension m, illustrating the correlation dimension 
obtained for the scaling region tend to a single value for 
sufficiently large m. 

The scaling region identification and correlation dimen-
sion computation were conducted for both attractors. Figure 
5(a) and (b) demonstrate a sequence of D2(m) obtained from 
slopes of the linear scaling regions in the double logarithm 
correlation integral plots, and a sequence of relative errors 
rD(m) by increasing m for the corresponding attractors. 
From these figures, we observe that D2(m) tends to a con-
stant with the exception of minor fluctuations within a small 
error bound as m increases. Estimated correlation dimen-
sions computed based on our new scaling region identifica-
tion method and theoretical correlation dimensions, as well 
as Hausdorff dimensions for the Lorenz and Hénon maps, 
are listed in Table 1. 

In addition, correlation dimensions of the Rössler attrac-
tor and logistic map were also estimated to further verify the 
effectiveness of the proposed method. The Rössler system is 
described by three coupled non-linear differential equations 
(eq. (7)). Given parameters a=0.2, b=0.2, c=5.7 and initial 
values x0=–1, y0=0, z0=1, a time series of 10000 points for 
the y variable was obtained by the same data processing 
technique for the Lorenz system. The correlation dimension 
of Rössler attractor as estimated in this paper is compared 
with reported fractal dimensions, which have been listed in 
Table 1. The logistic map is known for its modeling of how 
bug populations achieve dynamic equilibrium, as well as 
being a very simple model yielding chaotic dynamics (eq. 
(8)). With parameter values of λ=3.6 and λ=3.9, where the 
system is extremely chaotic, calculations of the correlation 
dimension for the logistic map were performed from their 
respective time series with lengths of 10000; these were 
also compared with reported correlation dimensions and are 
shown in Table 1. 

 

Figure 3  Attractor plots for (a) Lorenz attractor in the phase space of the variables (x, y, z) and (b) Hénon attractor in the phase space of the variables (x, y). 
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Figure 4  Correlation integral C(r) as a function of sphere radius r with embedding dimension m varying from 3 to 12; (a) lnCm(r) versus lnr for the Lorenz 
attractor; (b) lnCm(r)′ versus lnr for the Lorenz attractor; (c) lnCm(r) versus lnr for the Hénon attractor; (d) lnCm(r)′ versus lnr for the Hénon attractor. 

( ) ( ),  ,  .x y z y x ay z b z x c= − + = + = + −      (7) 

( )1 1 .n n nx x xλ+ = −               (8) 

From Table 1, it is clear that the correlation dimensions of the 
attractors stabilize in acceptable error ranges after the embed-
ding dimension reaches a certain value. The estimated corre-
lation dimension based on the proposed scaling region identi-
fication method is sufficiently close to theoretical values or 
other reported fractal dimensions, thereby illustrate- ing the 
reasonable effectiveness of the new scaling region identifi-
cation method. 

3.2  Weierstrass-Mandelbrot (W-M) fractal function  
curves 

The W-M function, which is continuous everywhere but 
differentiable nowhere, is a well known fractal function for 

which the Hausdorff-Besicovitch dimension exceeds unity 
[30]. The function has been widely applied in the study of 
those profiles that appear to have self-affinity and self- 
similarity. It can be expressed in the following form 

( ) ( ) ( ) ( )1 2 cos 2π ,
l

D D n n

n n
X t G r r t

∞
− − −

=

= ∑          (9) 

where D is the fractal dimension of the profile and 1<D<2; G is 
the scaling constant; r is a constant with r>1 (r =1.5 is suitable 
and practicable for general fractal cases); rn is the frequency 
mode corresponding to the reciprocal of the wavelength λ; L is 
the profile length; n1 corresponds to the low cut-off frequency 
of the profile under measurement and rn1=1/L. 

The correlation dimension D2 of the fractal curve gener-
ated by the W-M function was calculated using the G-P 
algorithm and compared with the corresponding given frac-
tal dimension D as a further test of the validity of the pro-
posed method. Fractal curves with D=1.1, 1.3, 1.5, 1.7 and 

Table 1  Comparison between experimental D2 values obtained by the proposed new method and theoretical D2 as well as other fractal dimensions for the 
Lorenz attractor, Hénon map, Rössler attractor and logistic map 

Experimental D2 
Attractor 

m=9 m=10 m=11 m=12 
Theoretical D2 Other reported fractal dimension D 

Lorenz 2.046 2.056 2.064 2.064 2.05±0.01 [7] 2.06±0.01 [7] (Hausdorff dimension) 

Hénon 1.233 1.241 1.241 1.240 1.25±0.02 [8] 1.261±0.003 [27] (Hausdorff dimension) 

Rössler 2.009 2.070 2.072 2.071  2.01–2.02 [28] 

λ =3.6 1.043 1.046 1.037 1.042 0.98 [29]  
Logistic 

λ =3.9 0.982 0.979 0.976 0.980 0.99 [29]  
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Figure 5  Correlation dimension D2 (m) and relative error rD (m) as functions of embedding dimension m for (a) Lorenz attractor and (b) Hénon attractor. 

1.9 after 10000 iterations were generated. Due to space 
limitations, Figure 6 illustrates three approximated curves 
with D=1.1, D=1.5 and D=1.9, from which it can be seen 
that the curves become more and more complicated as D 
increases because the fractal dimension reflects the degree 
of variational complexity of the profile. The results of the 
correlation dimension computation and five profiles given 
set fractal dimensions are listed in Table 2, along with their 
absolute errors. It is not difficult to discern that the two di-
mensions are very close. Thus, the scaling region can be 
recognized objectively and accurately using the proposed 
method to derive more precise values of the fractal dimen-
sion. This further supports the view that the proposed 
method is effective. 

3.3  Comparisons with existing methods 

Two commonly-used scaling region identification methods, 
viz. the visual inspection method and the K-means algorithm 
method, were chosen to illustrate the accuracy and objectivity 

Table 2  Comparison between the estimated D2 value obtained by the 
proposed new method and the given fractal dimension D as well as the 
absolute error between the two dimensions 

Given fractal dimension D Estimated D2 Absolute error 

1.1 1.125 0.025 

1.3 1.324 0.024 

1.5 1.498 –0.002 

1.7 1.706 0.006 

1.9 1.900 0.000 

 
of the present methodology. The correlation dimensions of 
the Lorenz and Hénon attractors with embedding dimension 
m=12 were calculated based on the above three methods. 
Using the visual inspection method, five volunteers were 
invited to scrutinize by eye the double logarithmic correla-
tion integral curve and select a region with good linearity. 
The least square method was applied to fit the selected five 
regions to obtain estimated values of the correlation dimen-
sion, the average value of which was considered as the actual 
correlation dimension. Table 3 demonstrates the calculation  

 

Figure 6  Examples of the Weierstrass-Mandelbrot function (eq. (9)), each graph displays 10000 points of a Weierstrass-Mandelbrot function with r=1.5, 
G=10–3 and L=1. t presents the sequence number of the points. The given fractal dimensions are (a) D=1.1; (b) D=1.5 and (c) D=1.9. 
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Table 3  Comparison between correlation dimensions calculated from 
three scaling region identification methods 

Attractor 
Visual inspection 

method 
K-means  

algorithm method 
Proposed  

new method 

Lorenz 2.100±0.061 2.381 2.064 

Hénon 1.334±0.056 1.407 1.240 

 
results of the three methods. 

Clearly, as compared with the theoretical fractal dimen-
sion in Table 1, the new method affords higher precision 
than either the visual inspection method or the K-means 
algorithm method. 

4  Discussion 

(1) A new method for scaling region identification was pro-
posed by formulating a point-slope-error algorithm and 
combining it with the K-means algorithm. This can recog-
nize the scaling region objectively and accurately making 
the estimation of the correlation dimension more precise. 

(2) Attractors from four well known chaotic systems as 
well as five fractal curves generated from the W-M function 
were chosen to estimate their correlation dimensions using 
our method. The results of the correlation dimension com-
putation were close to theoretical fractal dimensions, 
thereby verifying the effectiveness of the proposed method. 

(3) By comparing the correlation dimension calculation 
of two of the well-known attractors, the calculation accu-
racy of the new method was found to be superior to visual 
inspection or K-means algorithm methods. 

(4) The new scaling region identification method was 
easily implemented and performed by a computer; the pro-
cedure recognized the scaling region objectively, accurately, 
automatically and quickly. This development has important 
significance for chaotic analyses within nonlinear time se-
ries studies. 
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