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Lateral predictive coding is a recurrent neural network that creates energy-efficient internal representations by exploiting statis-
tical regularity in sensory inputs. Here, we analytically investigate the trade-off between information robustness and energy in
a linear model of lateral predictive coding and numerically minimize a free energy quantity. We observed several phase transi-
tions in the synaptic weight matrix, particularly a continuous transition that breaks reciprocity and permutation symmetry and
builds cyclic dominance and a discontinuous transition with the associated sudden emergence of tight balance between excitatory
and inhibitory interactions. The optimal network follows an ideal gas law over an extended temperature range and saturates the
efficiency upper bound of energy use. These results provide theoretical insights into the emergence and evolution of complex
internal models in predictive processing systems.
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1 Introduction

Predictive coding is an influential theory in computational
neuroscience with a long history tracing back to Kant and
Helmholtz [1-4], and its recent conceptual advances include
the Bayesian brain theory and the free energy principle of in-
formation processing and decision making [5-8]. Predictive
coding theory regards the brain as a multilayered hierarchi-
cal neuron network that builds an internal model for the ex-
ternal world and employs it to perceive sensory signals and
make predictions. To date, most studies on predictive coding
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have focused on feedforward and feedback interactions be-
tween different layers and have largely ignored lateral (hori-
zontal, recurrent) interactions within the same layer of neu-
rons. However, lateral interactions are abundant in biological
neural networks and play important roles in perception and
inference [9-13]. The brain consumes 50% of the body’s to-
tal metabolic energy in children and 20% in adults [14]. As a
large energy consumer, the brain must be capable of achiev-
ing energy-efficient information processing [15-19]. Lateral
predictive coding (LPC) may be an elegant evolutionary so-
lution to cope with the brain’s tight energy budget.

One basic function of lateral interactions is to reduce the
energy cost of internal representations. By adapting the
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synaptic weights according to the input correlation between
spatially adjacent neurons, the external drive to one neuron is
partially canceled by the messages from its neighboring neu-
rons, and its activity becomes weaker and sparser [20-23].
However, reducing the magnitude and redundancy of internal
representation compromises its information content, making
it less robust to external and internal noises [24-26]. How to
balance the conflicting demands of energy reduction and in-
formation robustness is an important issue in LPC. Nonethe-
less, LPC has been rarely discussed in the physics commu-
nity, in stark contrast to the large and enduring theoretical
enthusiasm for other basic neural network models, such as
the perceptron, Hopfield’s model of associative memory, and
restricted Boltzmann machine [27].

Here, we study phase transitions induced by the energy-
information trade-off in the simplest model of linear
LPC [28]. We introduce a temperature parameter T to in-
corporate the fitness effect of information robustness and de-
fine a free energy, which binds energy and function, as the
minimization objective [29-31]. We find that even if the
input signals are statistically symmetric among all N units,
the optimal synaptic weight matrix will spontaneously break
permutation (reciprocal) symmetry at a certain critical tem-
perature and form cyclic-dominant interaction patterns. An
ideal gas law E = (N/2)T is then followed by the energy E
of the multi-unit (N ≥ 3) LPC networks, achieving upper-
bound efficiency in energy use. At low temperatures, the
weight matrix experiences several further phase transitions,
one of which is a discontinuous transition to a tight balance
of excitatory and inhibitory interactions. Internal symmetries
within subgroups of units may also break, leading to multi-
level functional differentiation.

Our theoretical results reveal the emergence of struc-
tural complexity in LPC systems. These collective proper-
ties of non-reciprocity, correlation reduction, and excitation-
inhibition (EI) balance are qualitatively similar to the em-
pirical observations of real-life recurrent neural networks.
This simple theoretical model is helpful for understanding
the qualitative features and organizational principles of the
biological nervous system. As an initial attempt, we have left
many important issues untouched, such as nonlinear synaptic
interactions and nonquadratic energetic costs. More effort is
needed from the physics community to fully appreciate LPC
as a basic neural computing circuit.

2 Model and free energy

Consider a fully connected network of N units (each may be
a single neuron or a small region of the brain). Denote an
internal state vector as x = (x1, . . . , xN)⊤ and a sensory in-

put as s = (s1, . . . , sN)⊤. Upon receiving an input s, unit
i responds by changing its state xi according to linear LPC
dynamics [20, 22, 28],

dxi

dt
= si − xi −

∑
j,i

wi jx j , (1)

where positive (negative) synaptic weight wi j means that unit
j inhibits (excites) unit i. The steady-state encoding from
sensory input to internal representation is xs = (I +W)−1s,
with I being the identity matrix and W the synaptic weight
matrix. The convergence of the dynamics (1) requires that
the real part of every eigenvalue of (I +W) be positive (we
set a threshold value 10−5 and call it the eigenvalue bottom
line). We interpret

∑
j,i wi jx j as the predicted sensory input

to unit i and xi as the prediction error between the actual si

and the predicted value [9]. Assuming that the energy cost of
maintaining and transmitting a prediction error is quadratic
in xi, the mean energy E of an internal state is

E ≡
∑

s
P(s)x2

s = Tr
[(

I +W
)−1C

(
I +W⊤)−1

]
, (2)

where P(s) is the probability distribution of sensory inputs,
and C is the input correlation matrix with elements ci j ≡∑

s P(s)sis j. The total energy cost of representing M ≫ 1
sensory inputs is thenME.

An infinitesimal volume of the sensory space is trans-
formed by xs to an infinitesimal volume in the internal rep-
resentation space with Jacobian 1/Det(I +W), which is the
inverse determinant. The entropy of the internal states x is
then

S = − log
[
Det(I +W)

]
(3)

plus a constant, and the mutual information between s and
x is equal to this entropy up to a constant (see the deriva-
tion in Appendix A1). We can takeMS as the total entropy
of M internal states. A large entropy S is desirable so that
the encoding will be sensitive to variations in s and be robust
to noises in representing and transmitting x (the information
maximization principle [29]).

Minimizing energy (cost) E and maximizing entropy (in-
formation) S are mutually conflicting goals. We introduce a
temperature parameter T to quantify this energy-information
trade-off. In the thermodynamic limit of an infinite number
of sensory inputs (M→∞), the optimization objective is the
total free energyMF, with the coefficient F being

F = E − TS , (4)

which combines energetic and entropic effects [29-31].
The temperature embodies all external and internal fitness
stresses. At high T values, information sensitivity and ro-
bustness are the main fitness drivers, and the adaptation of
synaptic weights favors entropy S ; at the other limit of low
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T , reducing energy E becomes the dominant fitness con-
cern, and the weight matrix evolves toward energy minimiza-
tion. The thermodynamic equation accompanying free en-
ergy minimization is simply T = dE/dS .

We search for the global minimum of F at each fixed value
of T using a slow simulated annealing process and determine
the corresponding optimal weight matrix. The technical de-
tails are presented in Supplementary Information (these tech-
nical details could also be accessed from ref. [32]). We find
that E(T ) and S (T ) are singular at several critical points of T ,
and the optimal weight matrix W changes its qualitative prop-
erties at these points. Discontinuities in energy susceptibility
(dE/dT ) imply continuous phase transitions, and disconti-
nuities in energy itself manifest discontinuous phase transi-
tions. To demonstrate most explicitly the endogenous nature
of such phase transitions, in the following discussion we will
focus on symmetric and homogeneous sensory inputs: the
self-correlation cii = 1 for all inputs si and pair correlation
ci j = c being identical (c < 1) for the inputs of any two dif-
ferent units. The default internal model W is then reciprocal
(wi j = w ji) and permutation-symmetric (identical nondiago-
nal elements) [32].

The phase diagram for the simplest two-unit system (Fig-
ure 1) is a good starting point for understanding the opti-
mal LPC. A continuous reciprocity-breaking phase transi-
tion occurs for c < 2/3, with w12 and w21 gradually de-
viating from each other at the critical temperature T rb

2 =

(2−5c2/2)/(1−c2/4)2 [32]. When input correlation c exceeds
2/3, a local minimum of the free energy with w12 , w21 first
emerges in the reciprocal (w12 = w21) phase, and it then be-
comes the global minimum as T decreases to a certain critical
value that is strictly higher than T rb

2 . A discontinuous tran-
sition then occurs from the reciprocal phase to a reciprocity-
broken phase in which unit 2 inhibits unit 1 and unit 1 excites
unit 2.
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Figure 1 (Color online) Phase diagram for the N = 2 system. The
symmetry-breaking transition to w12 , w21 is continuous for c < 2/3 (blue
dashed line) and discontinuous for c > 2/3 (red solid line). The green dot
marks the tricritical point at c = 2/3 and T = 9/8. The inset shows the con-
tinuous transition for c = 0.6 and the discontinuous transition for c = 0.8.

3 Reciprocity-breaking and ideal gas law

For multi-unit systems containing N ≥ 3 units, our numeri-
cal optimization results and local stability analysis reveal that
the optimal internal model W is reciprocal (wi j = w ji) and
permutation-symmetric (all wi j being equal) at high temper-
atures. However, these properties break down spontaneously
as T drops below the critical value [32]

T rb
N = 2

( √
1 + (N − 1)c + (N − 1)

√
1 − c

)2
/N2 . (5)

However, eq. (5) does not apply for N = 2, indicating the
emergence of new collective properties for N ≥ 3 during this
continuous reciprocity-breaking phase transition. Indeed, we
find that the energy of the reciprocity-broken (wi j , w ji) op-
timal system exactly obeys the ideal gas law [32]

E =
N
2

T (N ≥ 3) (6)

in an extended temperature interval (T iglb
N , T rb

N ], with T iglb
N be-

ing the lower-bound temperature at which this ideal gas law
is deviated (Figure 2(a)).

One type of interaction pattern that realizes the ideal gas
law is the rotation-symmetric solution with weight parame-
ters wi (we require w1 ≤ . . . ≤ wN−1 to remove trivial degen-
eracies):
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Figure 2 (Color online) Results for N = 5 and c = 0.8. (a) E versus
T . The thin fitting lines have slopes of 2.5 and 2.0 (the critical temperatures
T rb

5 = 1.1783 and T iglb
5 = 0.3360, respectively). (b) Examples of cyclic-

dominant and EI-balanced optimal matrices at T ≈ 0.1383, and F(T ) and
E(T ) for these two branches of solutions. Solid (dashed) links in the interac-
tion graphs indicate positive (negative) weights.
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W =



0 w1 w2 · · · wN−1

wN−1 0 w1 · · · wN−2

wN−2 wN−1 0 · · · wN−3
...

...
...
. . .

...

w1 w2 w3 · · · 0


. (7)

There is cyclic dominance (CD) among the N units, such that
unit i + 1 is most strongly inhibited by unit i and it most
strongly inhibits unit i+2 and so on. Rotation-symmetric so-
lutions are impossible for N = 2, and there is only one such
solution for N = 3, 4, but there are infinitely many degenerate
solutions for N ≥ 5 [32].

We can define a quantity OCD, which compares the most
dominant global cycle of directed interactions with the re-
verse directed cycle of interactions, to measure the degree of
cyclic dominance:

OCD = 1 − min
(p1,...,pN )

∣∣∣∣∣∑N−1
i=1 wpi+1 pi∑N−1
i=1 wpi pi+1

∣∣∣∣∣ , (8)

where (p1, . . . , pN) denotes a permutation of the N units. For
example, the weight matrix shown in the right panel of Fig-
ure 2(b) has a very high value of OCD = 0.996. Through nu-
merical computations, we find that the ideal gas law can be
achieved by cyclic-dominant weight matrices with or with-
out rotational symmetry and also by two-component matrices
composed of excitatory and inhibitory units [32].

What is the importance of the ideal gas law (6)? In terms
of the eigenvalues ϵi of the symmetric matrix (I+W)−1C(I+
W⊤)−1, we have E =

∑
i ϵi and 2S =

∑
i ln ϵi − ln Det(C).

The entropy is then upper-bounded by S ≤ (N/2) ln(E/N) −
(1/2) ln Det(C) at each energy E, and the equality holds only
if all the eigenvalues ϵi are identical (see Appendix A2). If
this upper bound of entropy can be saturated within a con-
tinuous interval of E, then eq. (6) will be achieved due to
energy-information competition, which means the most ef-
ficient use of energy to reach the upper bound of informa-
tion robustness. An appealing statistical property is that the
internal states are composed of independent components of
equal magnitudes [20, 33], with ⟨x2

i ⟩ = E/N to achieve en-
ergy equipartition and ⟨xix j⟩ = 0 for j , i to eliminate inter-
nal pair correlations (here ⟨·⟩ denotes averaging over all the
samples). We notice a likely closely related biological fact
that the neuron pair correlations of the visual cortex are very
weak even for highly correlated sensory inputs [34].

As the temperature decreases to the lower critical value
T iglb

N , it will no longer be possible for an optimal weight ma-
trix to exactly obey eq. (6) and at the same time keep all its
complex eigenvalues above the bottom line. The ideal gas
law will then break down, and a kink of the energy function
E(T ) will be observed. For N = 5 and c = 0.8, the energy

slope changes from 2.5 to 2.0 at T iglb
5 = 0.3360 (Figure 2(a)).

This continuous transition is not associated with any symme-
try change.

4 Discontinuous phase transitions

The energy discontinuity at T = 0.1383 in the example
curve of Figure 2(a) signifies a discontinuous phase transi-
tion. Indeed, the free energy near this temperature has two
minima, which are organized into two branches with dis-
tinct energies (Figure 2(b)). One branch corresponds to the
one-component CD network, which is almost completely in-
hibitory. The other branch corresponds to a two-component
EI-balanced network: The two excitatory units 1 and 2 of
group gE have permutation symmetry, while the three units
3, 4 and 5 of group gI have cyclically dominant interactions
within themselves and strongly inhibit group gE . This pat-
tern agrees with the vital biological fact of EI competition
and balance [35-38].

A simple measure of EI balance is to compute the net input
weights of the individual units,

OEI =
1
N

N∑
i=1

[
1 −

∣∣∣∑ j,i wi j

∣∣∣∑
j,i |wi j|

]
. (9)

A value of OEI substantially above zero indicates a highly EI-
balanced network in which the excitatory inputs are largely
canceled by the inhibitory inputs for most of the units. For
example, OEI = 0.626 for the weight matrix shown in the
middle panel of Figure 2(b).

After the transition to the optimal EI-balanced network,
the ideal gas law is then approximately (though not exactly)
recovered at lower temperatures (Figure 2(a)), indicating that
EI-balance is beneficial for energy usage efficiency. This
benefit cannot be obtained if all synaptic weights are re-
stricted to positive values (inhibitory) [32].

The phase diagram for the system containing N = 5 units
is shown in Figure 3. The β1 and β2 regions in this di-
agram correspond to one-component cyclic-dominant opti-
mal networks (a subregion of β1 also contains EI-balanced
ones). The γ1-γ4 regions correspond to different types of EI-
balanced optimal networks. The phase boundaries are pre-
cisely determined by the singularities of E(T ), and we can
also define quantitative measures such as OCD and OEI to de-
scribe these different phases [32]. The ideal gas law is exact
in regions β1 and γ1 but approximate in γ2-γ4. The discontin-
uous transition from γ2 to γ3 is associated with breaking the
internal rotational symmetry of group gI and leads to func-
tional differentiation of the three units 3, 4 and 5 (see ref. [32]
for more details). The phase diagram for the smallest multi-
unit system (N = 3) is qualitatively similar to Figure 3; and
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Figure 3 (Color online) Phase diagram for N = 5. The dashed line obeys
eq. (5); the solid lines indicate discontinuous transitions, and the dotted lines
mark continuous transitions attributed to the eigenvalue bottom line con-
straint. Region α, permutation-symmetric; β1-β2, cyclic dominant; γ1-γ4

(and part of β1), EI-balanced; δ, an intermediate phase. β1 and γ1 obey the
ideal gas law, eq. (6).

we also report numerical results for the larger system of
N = 10 units to demonstrate the generality of our conclu-
sions [32].

5 Discussion and conclusion

Our theoretical work attempted to consider energy and func-
tion simultaneously in a single model and revealed that the
trade-off between energy reduction and information robust-
ness can induce the spontaneous breaking of permutation
symmetry in a lateral predictive coding system and drive
the formation of cyclic dominance and the sudden emer-
gence of excitation-inhibition balance among the network
units. We discovered an ideal gas law (6) of internally rep-
resenting the sensory inputs as equal-magnitude independent
components. Our theoretical results qualitatively agree with
some important biological facts, such as nonreciprocal inter-
actions, excitation-inhibition balance, and weak internal pair
correlations. These results may also have algorithmic impli-
cations.

For simplicity, we assumed that the input correlation ma-
trix C is uniform with a single parameter c. A natural ex-
tension of this work is to study the ideal gas law (6) for
heterogeneous sensory inputs. Our ongoing analytical and
numerical computations confirm that eq. (6) and continuous
and discontinuous phase transitions will also be observed for
nonuniform matrices C1) [32].

The existence of discontinuous phase transitions and the
associated multiple free energy minima may render the op-
timal weight matrices difficult to acquire through local and
gradual Hebbian learning processes [12, 39, 40]. This issue
needs to be further explored. It is also very interesting to

study phase transitions in nonlinear LPC models with energy
cost being a sum

∑
i |xi| of absolute values and internal pre-

diction being a rectified linear function max
(
0,

∑
i, j wi jx j

)
or

another more complicated nonlinear function [41]. We ex-
pect to observe rich continuous and discontinuous phase tran-
sitions in these more realistic models. These nonlinear LPC
systems may lead to enhanced sensitivity to fine details in
typical input vectors.
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Appendix

A1 On the definition of entropy

Suppose there is noise in the mapping from the sensory in-
put s = (s1, . . . , sN)⊤ to the internal representation x =
(x1, . . . , xN)⊤,

xi = gi(s) + ξi , (a1)

where ξi for i = 1, . . . ,N are independent Gaussian random
variables with mean zero and variance σ2. For the linear LPC
system, the deterministic function gi(s) is

gi(s) =
N∑

j=1

( I
I +W

)
i j

s j , (a2)

where I is the identity matrix, Iii = 1 and Ii j = 0 for i , j.
The mutual information between x and s is

I[ x; s ] = H[x] − H[ x|s ] , (a3)

where H[x] and H[s] are the entropies of the internal states x
and sensory inputs s, respectively, and H[ x|s ] is the con-
ditional entropy of x given s. Notice that H[s] depends
only on the probability distribution P(s) of the sensory in-
puts s, so it can be considered a constant. Conditional en-
tropy H[ x|s ] only depends on the property of the noise vec-
tor (ξ1, . . . , ξN)⊤, and so it can also be considered a constant.
Therefore, we have I[ x; s ] = H[x] + I0, with I0 being a
constant. To increase this mutual information, we should in-
crease the entropy H[x] of internal states x.

The marginal distribution Q(x) of internal states x is

Q(x) =
∫

dsP(s)
N∏

i=1

[
1

√
2πσ2

exp
(
− (xi − gi(s))2

2σ2

)]
≈ |Det (I +W)| P

(
(I +W)x

)
. (a4)

Eq. (a4) is valid for small noises (σ2 being sufficiently
small). The entropy of x is then

H[x] ≡ −
∫

dxQ(x) ln Q(x)

= − ln
∣∣∣∣Det

(
I +W

)∣∣∣∣ + H[s]. (a5)

Again because H[s] does not depend on the weight matrix
W, we see that H[x] = − ln

∣∣∣Det(I +W)
∣∣∣ + H0, with H0 being

a constant. For our LPC problem, the real parts of the eigen-
values of I +W must be positive. The determinant of I +W
then must be positive. This requirement explains the entropy
formula (3).

A2 On the ideal gas law

Let us define an auxiliary symmetric matrix M for a general
weight matrix W as:

M =
I

I +W
C

(
I

I +W

)⊤
, (a6)

and denote the N nonnegative eigenvalues of this matrix as
ϵ1, . . . , ϵN . Then, the energy E and entropy S of the LPC
system can be expressed as:

E =
∑

i

ϵi, (a7)
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S =
1
2

∑
i

ln ϵi −
1
2

ln Det(C
)
. (a8)

Applying the sum-product inequality

1
N

N∑
i=1

ϵi ≥
(∏

i

ϵi
) 1

N
, (a9)

we obtain the following upper bound for entropy S as a func-
tion of energy E:

S ≤ N
2

ln
( E

N

)
− 1

2
ln Det(C

)
. (a10)

This upper bound of S is attained if and only if all the eigen-
values ϵi take the same value E/N. If this is the case for a
continuous range of E, then by applying T = dE

dS as required
by the minimization of the free energy F, we obtain the ideal
gas law E = N

2 T .
From the ideal gas law, we can easily derive that

C =
T
2
(
I +W

)(
I +W

)⊤
, (a11)

which means that the general form of I +W is

I +W =

√
2
T

C1/2U , (a12)

where U is a certain real orthogonal matrix satisfying UU⊤ =
U⊤U = I. When all nondiagonal elements of the correlation
matrix C take the same value c, the square root of C is ex-
pressed as:

C1/2 =
√

1 − c I

+

(√
1 + (N − 1)c −

√
1 − c

)
N


1

1
...

1


[
1 1 . . . 1

]
. (a13)

Because the diagonal elements of W are zero, we see from
eq. (a12) that each column of the orthogonal matrix U must
satisfy the additional condition of

N∑
j=1

(
C1/2)

i jU ji =

√
T
2
, (i = 1, . . . ,N). (a14)

If the temperature T is too large, these N conditions (a14)
cannot be satisfied by any orthogonal matrix U. When T is
lowered to the critical value T rb

N as given by eq. (5), we find
that these conditions are uniquely satisfied by the orthogo-
nal matrix U = I. At this critical value T rb

N , the matrix W is
still permutation-symmetric, and all its nondiagonal elements
are

wi j =

√
1 + (N − 1)c −

√
1 − c

√
1 + (N − 1)c + (N − 1)

√
1 − c

. (a15)

For the ideal gas law to hold at T < T rb
N , the constraints

(a14) require that the i-th column vector of U should be stay-
ing on an (N − 1)-dimensional ellipsoid of an N-dimensional
hypersphere of unit radius. These N constraints are compat-
ible with the constraint of U being an orthogonal matrix, as
long as N ≥ 3 (details are given in ref. [32]).


	Energy-information trade-off induces continuous and discontinuous phase transitions in lateral predictive coding
	Introduction
	Model and free energy
	Reciprocity-breaking and ideal gas law
	Discontinuous phase transitions
	Discussion and conclusion
	Appendix
	On the definition of entropy
	On the ideal gas law



