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Quantum federated learning (QFL) enables collaborative training of a quantum machine learning (QML) model among multiple
clients possessing quantum computing capabilities, without the need to share their respective local data. However, the limited
availability of quantum computing resources poses a challenge for each client to acquire quantum computing capabilities. This
raises a natural question: Can quantum computing capabilities be deployed on the server instead? In this paper, we propose a
QFL framework specifically designed for classical clients, referred to as CC-QFL, in response to this question. In each iteration,
the collaborative training of the QML model is assisted by the shadow tomography technique, eliminating the need for quantum
computing capabilities of clients. Specifically, the server constructs a classical representation of the QML model and transmits
it to the clients. The clients encode their local data onto observables and use this classical representation to calculate local gra-
dients. These local gradients are then utilized to update the parameters of the QML model. We evaluate the effectiveness of our
framework through extensive numerical simulations using handwritten digit images from the MNIST dataset. Our framework
provides valuable insights into QFL, particularly in scenarios where quantum computing resources are scarce.
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1 Introduction

Machine learning has made significant progress and brought
revolutionary changes across various fields [1-5]. However,
the reliance of machine learning on sensitive data within the
centralized training framework, where data are collected on
a single device, poses risks of data leakage. In response, fed-
erated learning [6] has emerged as a decentralized training
framework that allows multiple devices to collaboratively
train a machine learning model without sharing their data.

*Corresponding authors (Sujuan Qin, email: qsujuan@bupt.edu.cn; Fei Gao, email:
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In the era of big data, as the scale of data continues to
increase, the computational requirements for machine learn-
ing are expanding. Simultaneously, theoretical research in-
dicates that quantum computing holds the potential to ac-
celerate the solution of certain problems that pose chal-
lenges to classical computers [7-9]. Consequently, the field
of quantum machine learning (QML) [10-12] has gained
widespread attention, with several promising breakthroughs.
On one hand, quantum basic linear algebra subroutines,
such as Fourier transforms, eigenvector and eigenvalue com-
putations, and linear equation solving, exhibit exponential
quantum speedups compared to their well-established clas-
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sical counterparts [13-15]. These subroutines bring quan-
tum speedups in a range of machine learning algorithms, in-
cluding least-squares fitting [16], gradient descent [17-19],
principal component analysis [20], semidefinite program-
ming [21], and support vector machines [22, 23]. Addi-
tionally, another significant development in this field is the
quantum neural network (QNN), which is a hybrid quantum-
classical machine learning model [24-27]. QNN has demon-
strated success in various tasks, including classification [28-
36], regression [37-39], generative learning [40-42], and re-
inforcement learning [43, 44].

Quantum federated learning (QFL) [45] extends the con-
cept of data privacy preservation into the field of QML.
Specifically, the QFL framework consists of a classical server
and multiple quantum clients. During each training itera-
tion, the client utilizes its data-encoding quantum states and
its QML model to calculate the local gradient. The local
gradients of all the clients are then uploaded to the server.
The server performs an aggregation process using the re-
ceived local gradients and shares the global gradient with all
clients for updating their model parameters. Since the pro-
posal of QFL, significant research progress has been made in
various aspects, including frameworks [46, 47], privacy pro-
tocols [48-52], performance optimization techniques [53],
and considerations for application-specific scenarios [54,55].
However, the scarcity of quantum computing resources poses
a challenge for each client to acquire quantum computing ca-
pabilities, thereby restricting the applicability of QFL. To
overcome this challenge, a solution is to deploy quantum
computing capabilities on the server rather than on clients.
In this regard, two relevant works were proposed [50, 56],
which enable clients with limited quantum technologies to
collaboratively train the QML model on the server. Specifi-
cally, Sheng et al. [56] proposed a distributed secure quantum
machine learning protocol where clients perform single-qubit
preparation, operation, and measurement. Additionally, Li
et al. [50] proposed a private distributed learning framework
based on blind quantum computing [57], where clients pre-
pare single qubits for transmission to the server. Although the
preparation of single qubits may not pose significant chal-
lenges, ensuring high fidelity in the transmission of qubits
through the quantum channel remains a complex issue under
current conditions. Thus, the absence of QFL applicable to
classical clients emphasizes the necessity for further research
in this particular scenario.

In this paper, we propose a QFL framework specifically
designed for classical clients, referred to as CC-QFL. In our
framework, we encode the local data of each client onto ob-
servables instead of quantum states. During the collabora-
tive training of the QML model on the server, we employ the
shadow tomography technique [58-63] to remove the neces-

sity of quantum computing capabilities for clients. In detail,
the server constructs a classical representation of the QML
model, which is then transmitted to the clients. Leveraging
this classical representation, clients calculate local gradients
based on data-encoding observables, and these local gradi-
ents are subsequently utilized to update the parameters of the
QML model. We conduct extensive numerical simulations
of our framework using handwritten digit images from the
MNIST dataset. The excellent numerical performance vali-
dates the feasibility and effectiveness of CC-QFL. Our frame-
work contributes to the advancement of QFL, particularly in
scenarios where quantum computing resources are limited.

2 QFL framework

In this section, we present the conventional framework of
QFL. To provide a clear description, we begin with a detailed
introduction to the QNN model which represents a hybrid
quantum-classical machine learning model.

2.1 Structure of QNN model

The QNN model begins by encoding the classical data x ∈ Rd

onto a quantum state ρ(x). This data encoding process in-
volves applying an encoding quantum circuit U(x) to an ini-
tial state ρ0. Following the data encoding process, a param-
eterized quantum circuit V(θ) is applied to ρ(x), where the
model parameters θ ∈ Rp can be updated during the train-
ing process. Afterward, the resulting state is measured with
respect to an observable O, yielding the following parameter-
ized expectation value:

E(θ) = Tr[V(θ)ρ(x)V†(θ)O], (1)

where ρ(x) = U(x)ρ0U†(x).
Now, E(θ) can be used to calculate a loss function L(θ)

that quantifies the difference between the predicted output
of the QNN model and the expected output. The selec-
tion of L(θ) depends on the task type. For regression tasks,
mean squared error is commonly used, while for classifica-
tion tasks, cross-entropy loss is often employed. In train-
ing the QNN model, classical optimization methods such as
stochastic gradient descent (SGD) [64] are employed to iter-
atively update θ to optimize L(θ).

2.2 Framework of QFL

Now, we provide a detailed introduction to QFL which com-
prises a classical server and N quantum clients. Given that
the i-th client holds the local data:

D(i) = {x(i)
j }

mi
j=1, (2)
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where x(i)
j ∈ Rd, and mi represents the number of data held by

the i-th client. In each training iteration, each client i encodes
its local data D(i) onto quantum states:

ρ(i) = {ρ(x(i)
j )}mi

j=1, (3)

where ρ(x(i)
j ) = U(x(i)

j )ρ0U†(x(i)
j ). Next, each client i utilizes

its data-encoding quantum states ρ(i) and its parameterized
quantum circuit V(θ) to calculate the local gradient gLocali

based on the specific form of the loss function L(θ). The lo-
cal gradients of all the clients {gLocali }Ni=1 are then uploaded to
the server. The server performs an aggregation process using
{gLocali }Ni=1 and obtains the global gradient:

gGlobal =

N∑
i=1

wi gLocali . (4)

In the natural setting, the weight wi = mi/m, where m rep-
resents the total number of data from all clients. The server
shares gGlobal with all clients, allowing each client to update
its corresponding model parameters as follows:

θ ← θ − ηgGlobal, (5)

where η represents the learning rate. The process of calculat-
ing local gradients, aggregating these gradients, and updating
the model parameters on each client is repeated iteratively
until a predefined number of iterations is reached. The com-
plete framework of QFL is illustrated in Figure 1.

However, the limited availability of quantum computing
resources presents a challenge as clients may struggle to ac-
quire their quantum computing capabilities, consequently re-
stricting the practicality of QFL. To address this challenge,
it is worth considering a paradigm shift by placing quantum
computing capabilities on the server instead of the clients.

In the following section, we will provide a comprehensive
description of our QFL framework specifically designed for
classical clients, referred to as CC-QFL.

3 Main results: CC-QFL framework

As a fundamental component of the QFL framework, we first
introduce our QNN model.

3.1 Structure of our QNN model

In our QNN model, we directly apply a parameterized quan-
tum circuit V(θ) to an initial state ρ0 to obtain a parameter-
ized quantum state ρ(θ), where the model parameters θ ∈ Rp

can be updated during the training process. Subsequently,
we measure ρ(θ) with respect to a data-encoding observable
O(x), where the classical data x ∈ Rd, resulting in the fol-
lowing parameterized expectation value:

Ẽ(θ) = Tr[ρ(θ)O(x)], (6)

where ρ(θ) = V(θ)ρ0V†(θ), and O(x) =
∑l

h=1 ch(x)Oh. The
coefficient ch(x) ∈ R associated with the Hermitian matrix
Oh is the h-th component of c(x) ∈ Rl obtained by a multi-
variable function c(·) : Rd → Rl. Specifically, c(·) could
be a linear function that maintains the domain dimension,
i.e., l = d. A simple example is c(x) = x, resulting in
O(x) =

∑d
i=1 xiOi, where xi is the i-th component of x ∈ Rd.

Additionally, c(·) could be a more complex function which
makes the data encoding approach more flexible.

Now, Ẽ(θ) can be used to calculate a loss function L̃(θ),
and classical optimization methods such as SGD can be em-
ployed to iteratively update θ during the training process

Classical server

Quantum client 1

Local model 1

⋯

Local data (1)

Quantum client N

Aggregation

Local 1Global GlobalLocalN

{ Local 1
, ⋯ , LocalN

} → Global

Encoding quantum circuit Parameterized quantum circuit

Local model NLocal data ( )

Encoding quantum circuit Parameterized quantum circuit

Figure 1 (Color online) Illustration of QFL framework. In each training iteration, each quantum client i encodes its local data D(i) onto quantum states and
utilizes its parameterized quantum circuit V(θ) to calculate the local gradient gLocali . These local gradients {gLocali }Ni=1 are then uploaded to the classical server.
The server aggregates {gLocali }Ni=1 to obtain the global gradient gGlobal and subsequently shares gGlobal with all clients. Each client then updates its model
parameters θ.
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to optimize L̃(θ). In detail, according to the chain rule,
the derivatives {∂L̃(θ)/∂θk}pk=1 can be calculated using Ẽ(θ)
and the derivatives {∂Ẽ(θ)/∂θk}pk=1. Furthermore, due to the
“parameter shift rule” [65, 66], ∂Ẽ(θ)/∂θk can be expressed
as:

∂Ẽ(θ)/∂θk = [Ẽθk+(θ) − Ẽθk−(θ)]/2, (7)

where Ẽθk±(θ) denotes Ẽ(θ) with θk being θk ± π/2. In sum-
mary, calculating {∂L̃(θ)/∂θk}pk=1 can be transformed into cal-
culating the following expectation values:

{Ẽ(θ), Ẽθk±(θ)}pk=1. (8)

A notable characteristic of our QNN model is the en-
coding of classical data x onto the observable O(x) instead
of the quantum state ρ(x). This characteristic distinguishes
our model from conventional QNN models as described in
sect. 2.1.

3.2 Framework of CC-QFL

The significance of the aforementioned characteristic be-
comes particularly evident in scenarios where N classical
clients collaboratively train a QNN model, leveraging the
quantum computing capabilities of the server, without the
need to share their respective local data. In this context, each
client i encodes its local data D(i) (eq. (2)) onto observables:

O(i) = {O(x(i)
j )}mi

j=1, (9)

where O(x(i)
j ) =

∑l
h=1 ch(x(i)

j )Oh. The initial state ρ0 and
the parameterized quantum circuit V(θ) are deployed on the
server. Furthermore, in order to remove the necessity of

quantum computing capabilities for clients, the collaborative
training of the QNN model is assisted by the shadow tomog-
raphy technique [58]. This technique constructs the classical
representation of the given state to evaluate the expectation
values of certain observables classically. A more detailed de-
scription of the shadow tomography technique is provided in
Appendix.

The collaborative training of the QNN model consists
of two important phases: (i) An acquisition phase where
the server constructs a classical representation of the pa-
rameterized quantum states {(ρ(θ), ρθk±(θ)}pk=1, where ρ(θ) =
V(θ)ρ0V†(θ), and ρθk±(θ) denotes ρ(θ) with θk being θk±π/2.
(ii) An evaluation phase where clients leverage this classical
representation and data-encoding observables of all clients
{O(i)}Ni=1 to calculate local gradients {gLocali }Ni=1 for updating
the model parameters θ. The complete training procedure of
CC-QFL is described in Algorithm 1.

During the acquisition phase, the server repeatedly exe-
cutes a simple measurement procedure. This procedure in-
volves randomly selecting a unitary operator W from a fixed
ensemble W to rotate the n-qubit parameterized quantum
state ρ(θ), followed by a computational-basis measurement.
Upon receiving the n-bit measurement outcome |b(θ)⟩ :
b(θ) ∈ {0, 1}n, a completely classical post-processing step ap-
plies the inverted quantum channelM−1 to W†|b(θ)⟩⟨b(θ)|W,
where M−1 depends on the ensemble W. Consequently, a
classical snapshot ρ̂(θ) of ρ(θ) is obtained from a single mea-
surement, given by

ρ̂(θ) =M−1(W†|b(θ)⟩⟨b(θ)|W). (10)

By repeating the aforementioned procedure M times, the
classical shadow (classical representation) S (ρ(θ); M) of ρ(θ)

Algorithm 1 Training procedure of CC-QFL
Input: the initial state ρ0, the parameterized quantum circuit V(θ) with θ ∈ Rp, the number of measurements M, the learning rate η, the number of clients N,

the number of data held by the i-th client mi, the loss function L̃(θ), and the number of iterations T
Output: the trained model parameters θ(T )

1: Initialize: the random model parameters θ(1)

2: while 1 ≤ t ≤ T do
3: Construct the classical shadows S(t)

Global (eq. (12)) of the parameterized quantum states {(ρ(θ(t)), ρθk±(θ(t))}pk=1 by the server, where ρ(θ(t)) =
V(θ(t))ρ0V†(θ(t)), and ρθk±(θ(t)) denotes ρ(θ(t)) with θk being θk ± π/2

4: Transmit S(t)
Global to clients

5: while 1 ≤ i ≤ N do
6: Calculate local gradient g(t)

Locali
by the i-th client, leveraging S(t)

Global, data-encoding observables O(i) (eq. (9)), and the specific form of the loss

function L̃(θ(t))
7: Set i← i + 1
8: end while
9: Upload local gradients of all clients {g(t)

Locali
}Ni=1 to the server

10: Aggregate {g(t)
Locali

}Ni=1 as described in eq. (4) to obtain the global gradient g(t)
Global by the server

11: Update model parameters θ(t) by the server according to eq. (5)
12: Set t ← t + 1
13: end while
14: return the trained model parameters θ(T )
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is obtained and defined as:

S (ρ(θ); M) = {ρ̂ j(θ)}Mj=1, (11)

where ρ̂ j(θ) = M−1(W†j |b j(θ)⟩⟨b j(θ)|W j). The server ul-
timately constructs the classical shadows of parameterized
quantum states {(ρ(θ), ρθk±(θ))}pk=1. These classical shadows
are expressed as:

SGlobal = {(S (ρ(θ); M), S (ρθk±(θ); M)}pk=1. (12)

Then, SGlobal are transmitted to clients. Note that the server
needs to explicitly indicate to the clients the corresponding
parameter component for each classical shadow.

During the evaluation phase, each client i leverages
SGlobal and its data-encoding observables O(i) to evalu-
ate the expectation values {Ẽ(i)(θ), Ẽ(i)

θk±(θ)}pk=1 (eq. (8)) us-
ing median of means estimation as described in Algo-
rithm a1. This estimation method provides the approxi-
mations {Ẽ(i)

Approx(θ), Ẽ(i)
Approx;θk±(θ)}pk=1 of {Ẽ(i)(θ), Ẽ(i)

θk±(θ)}pk=1,
which are used to calculate the corresponding local gradient
gLocali based on the specific form of the loss function L̃(θ).

Subsequently, the local gradients of all clients {gLocali }Ni=1
are uploaded to the server. The server performs an aggrega-
tion process using {gLocali }Ni=1 to obtain the aggregated global

gradient gGlobal as described in eq. (4). Finally, the server
updates its model parameters θ according to eq. (5). The pro-
cess of constructing classical shadows, calculating local gra-
dients, aggregating these gradients, and updating the model
parameters on the server is repeated iteratively until a prede-
fined number of iterations is reached.

In summary, our framework allows multiple classical
clients to collaborate in training a QNN model. By encoding
the local data of each client onto observables and employing
the shadow tomography technique, the clients can actively
participate in the training process without the need to share
their local data while leveraging the quantum computing ca-
pabilities of the server. The complete framework of CC-QFL
is depicted in Figure 2.

3.3 Analysis of complexity

In our framework, the central step involves the client utiliz-
ing a classical shadow of the n-qubit parameterized quantum
state ρ(θ), i.e., S (ρ(θ); M) = {ρ̂ j(θ)}Mj=1, to evaluate the ex-
pectation value Tr[ρ(θ)O(x)] on a classical computer. Here,
M represents the size of the classical shadow, and O(x) =∑d

i=1 xiOi encodes d-dimensional classical data x = [xi]d
i=1.

Quantum server

×

Aggregation

{ Local 1
,⋯ , Local } → Global

Classical client 1

Evaluation phase 

××

1

⋯

1
(1)

⋯ (1)

Global = { 1, ⋯ , }

Local 1Global GlobalLocal

⋯

Classical client N

Evaluation phase 

1
( )

⋯ ( )

Parameterized circuit

Parameterized circuit

Parameterized circuit

× Local 1
= { 1

(1)
, ⋯ ,

(1)
} × Local = { 1

( )
, ⋯ ,

( )
}

Figure 2 (Color online) Illustration of CC-QFL framework. Each classical client i encodes its local data D(i) onto observables O(i), while the initial state ρ0

and the parameterized quantum circuit V(θ) are deployed on the quantum server. In each training iteration, the server constructs the classical shadows SGlobal

of the parameterized quantum states {(ρ(θ), ρθk±(θ))}pk=1. SGlobal are then transmitted to the clients. Each client i leverages SGlobal and its data-encoding ob-
servables O(i) to calculate the corresponding local gradient gLocali . The local gradients of all clients {gLocali }Ni=1 are uploaded to the server. The server performs
an aggregation process using {gLocali }Ni=1 to obtain the aggregated global gradient gGlobal. Finally, the server updates its model parameters θ.
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Based on the detailed setting of shadow tomography tech-
nique in our framework, including the ensembleW used to
construct the classical shadow and the specific form of Her-
mitian matrix Oi, we elaborately analyze the sample com-
plexity, i.e., the size of the classical shadow M, and the com-
putational complexity of evaluating Tr[ρ(θ)O(x)] up to an ad-
ditive error ϵ′ = O(dϵ) as follows.

3.3.1 Sample complexity

Here, we summarize the main results given in Theorem S1
and Lemma S1 of ref. [58] as follows.

Fact 1 Fix the ensembleW used to construct the classical
shadow of the n-qubit parameterized quantum state ρ(θ). The
classical shadow of size

M = O(log(d)maxi∈[d]∥Oi − (Tr(Oi)/2n)I∥2shadow/ϵ
2) (13)

suffices to evaluate d expectation values Tr(ρ(θ)O1), · · · ,
Tr(ρ(θ)Od) up to an additive error ϵ. Here, each Oi is an arbi-
trary 2n×2n Hermitian matrix, and the shadow norm ∥·∥2shadow
is defined by

maxγEW∼W
∑

b(θ)∈{0,1}n
⟨b(θ)|WγW†|b(θ)⟩⟨b(θ)|WM−1(·)W†|b(θ)⟩2,

(14)

where γ represents an arbitrary n-qubit density matrix, and
M−1(·) denotes an inverted quantum channel that depends on
the ensembleW.

From eq. (13), it is evident that the sample complexity is
determined by the norm ∥Oi − (Tr(Oi)/2n)I∥2shadow for i ∈ [d].
The shadow norm ∥ · ∥2shadow as described in eq. (14) depends
on the ensembleW and the specific form of Oi. In our frame-
work,W = Cl(2)⊗n, where Cl(2) represents the single-qubit
Clifford group generated by Hadamard and phase gates. In
addition, each Oi generally represents a k-local Pauli observ-
able, with the specific form of

Oi = Pi,1 ⊗ · · · ⊗ Pi,n, (15)

where {Pi,s1 , · · · , Pi,sk } ∈ {σx, σy, σz}, and Pi,s = I for
s ∈ {1, · · · , n} \ {s1, · · · , sk}. As a result, the norm ∥Oi −
(Tr(Oi)/2n)I∥2shadow = 3k. The detailed derivation process can
be found in Lemma S3 of ref. [58]. Therefore, to evaluate
Tr[ρ(θ)O(x)] up to an additive error ϵ′ = O(dϵ), the sample
complexity is M = O(log(d)3k/ϵ2).

3.3.2 Computational complexity

The client utilizes the classical shadow S (ρ(θ); M) =

{ρ̂ j(θ)}Mj=1 of the n-qubit parameterized quantum state ρ(θ)
to evaluate the expectation value Tr[ρ(θ)O(x)]. Essen-
tially, the client needs to evaluate Tr(ρ(θ)Oi) for i ∈ [d],

where the evaluation of each Tr(ρ(θ)Oi) requires values of
{Tr(ρ̂1(θ)Oi), · · · ,Tr(ρ̂M(θ)Oi)}. Given that the sample com-
plexity M of evaluating Tr[ρ(θ)O(x)] up to an additive error
ϵ′ = O(dϵ) has been analyzed in sect. 3.3.1, we only focus
on the analysis of the computational complexity involved in
calculating each Tr(ρ̂ j(θ)Oi).

In the context of our framework, the ensemble W =

Cl(2)⊗n, resulting in the corresponding inverted quantum
channelM−1 defined by

M−1(X1 ⊗ · · · ⊗ Xn) = ⊗n
s=1(3Xs − I), (16)

where each Xs is an arbitrary 2 × 2 Hermitian matrix. Subse-
quently, the classical snapshot ρ̂ j(θ) as described in eq. (10)
has a more concrete representation, given by

ρ̂ j(θ) = ⊗n
s=1(3W†j,s|b j,s(θ)⟩⟨b j,s(θ)|W j,s − I), (17)

where W j,s ∈ Cl(2), and |b j,s(θ)⟩ : b j,s(θ) ∈ {0, 1}. The de-
tailed derivation process can be found in Proposition S2 of
ref. [58]. Furthermore, each Hermitian matrix Oi is a k-local
Pauli observable as described in eq. (15). As a result, the
computational complexity of calculating each Tr(ρ̂ j(θ)Oi) is
O(n) by using the Gottesman-Knill theorem [67].

In conclusion, the client’s computational complexity of
evaluating Tr[ρ(θ)O(x)] up to an additive error ϵ′ = O(dϵ)
is O(nd log(d)3k/ϵ2), which implies the computational com-
plexity scales polynomially with the system size n and
the data dimension d. In other words, our framework is
also suitable for practical applications when handling high-
dimensional datasets. Table 1 briefly summarizes the detailed
setting of shadow tomography technique in our framework
and the corresponding analytical results.

4 Experiment results

We perform numerical simulations of our CC-QFL frame-
work using the TensorFlow Quantum [68] simulation plat-
form. These simulations employ handwritten digit images
from the MNIST dataset, which comprises 70000 images.
The experimental setting is as follows.

Table 1 The detailed setting of shadow tomography technique in our frame-
work and the corresponding analytical results

Symbol Definition

EnsembleW W = Cl(2)⊗n

Hermitian matrix Oi Oi is a k-local Pauli observable

Classical snapshot ρ̂ j(θ) ρ̂ j(θ) = ⊗n
s=1(3W†j,s |b j,s(θ)⟩⟨b j,s(θ)|W j,s − I)

Additive error ϵ′ ϵ′ = O(dϵ)

Complexity Result

Sample complexity O(log(d)3k/ϵ2)

Computational complexity O(nd log(d)3k/ϵ2)
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First, we preprocess the handwritten digit images. Each
image is flattened into a one-dimensional vector of length
784, representing its 28 × 28 pixels. Due to the compu-
tational limitations of the simulation, we normalize the im-
age and perform dimensionality reduction using the principal
component analysis algorithm [69]. This reduces the vector
length to 8. The resulting image is denoted as x = [xi]8

i=1.
The classical clients encode x onto the 8-qubit observable
O(x) =

∑8
i=1 xiσ

z
i , where σz

i is the Pauli Z operator acting
on the i-th qubit. The parameterized quantum circuit is a 5-
layer hardware efficient ansatz [70], which is deployed on
the quantum server. To construct the corresponding classical
shadows, the server measures each qubit independently in a
random Pauli basis.

In the subsequent sections, we will present the perfor-
mance of single-client and multi-client CC-QFL frameworks
in a binary classification task. To achieve this, we employ the
cross-entropy loss function.

4.1 Performance of single-client CC-QFL

In the single-client CC-QFL framework, a classical client uti-
lizes the quantum computing capabilities of the server to train
its classifier model without the need to upload its local data
to the server. The classification task involves accurately clas-
sifying handwritten digit images of the numbers “3” and “6”
from the MNIST dataset. The client has a total of 2640 im-
ages, with 2000 images allocated for the training set and the
remaining 640 images reserved as the test set. The specific
parameter settings of the experiment can be found in Table 2.

The training and testing results of our numerical simula-
tions are plotted in Figure 3(a). During the first 20 epochs,
it is observed that the training loss exhibits a rapid decrease,
while both the training accuracy and test accuracy show a
rapid increase following a slight decline. Upon reaching con-
vergence, the training accuracy and test accuracy reached

Table 2 Parameter settings for single-client and multi-client CC-QFL

Parameter Single-client Multi-client

Num of clients 1 3

Num of classes 2 (“3” or “6”) 2 (“3” or “6”)

Num of qubits 8 8

Circuit depth 5 5

Data distribution – non-i.i.d

Training set (per client) 2000 700

Test set (per client) 640 220

Optimizer Adam Adam

Learning rate 0.003 0.003

Loss function cross-entropy cross-entropy

98.69% and 98.24%, respectively. These results demonstrate
that the single-client CC-QFL achieves excellent numerical
performance in the binary classification task on the MNIST
dataset.

4.2 Performance of multi-client CC-QFL

Compared with the single-client scenario, our primary focus
lies in the performance of the multi-client CC-QFL, where
N classical clients leverage the quantum computing capabili-
ties of the server to collaboratively train the classifier model,
without the need to upload their respective local data to the
server. In this scenario, with N=3, the classification task fo-
cuses on accurately classifying handwritten digit images of
the numbers “3” and “6” from the MNIST dataset. Each
client is assigned a total of 920 images, with 700 images
allocated for the training set and the remaining 220 images
reserved for the test set. Considering the uniqueness of each
client in real-world scenarios, the training data should satisfy
non-i.i.d. To address this, we utilize Leaf [71] to process the
MNIST dataset, ensuring that each client has a distinct pro-
portion of handwritten digit labels. To visualize the non-i.i.d
nature of the training data, the corresponding heterogeneity

(a) (b)

Figure 3 (Color online) Performance of CC-QFL in the binary classification task on the MNIST dataset. (a) The numerical results of the single-client
scenario. (b) The numerical results of the multi-client scenario (N = 3). Here, the training loss, training accuracy, and test accuracy are represented by solid
lines in blue, green, and orange, respectively.
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is depicted in Figure 4. The specific parameter settings of the
experiment can be found in Table 2.

The training and testing results obtained from our numer-
ical simulations are illustrated in Figure 3(b). The numerical
results reveal a significant decrease in training loss during
the first 20 epochs. Furthermore, both the training accuracy
and test accuracy demonstrate a notable increase around the
10th epoch. At convergence, the training accuracy achieves
98.69%, and the test accuracy reaches 98.05%, which is com-
parable to the numerical results achieved in the single-client
scenario. The excellent numerical performance validates the
feasibility and effectiveness of multi-client CC-QFL.

5 Conclusions

In this paper, we present a novel QFL framework designed
to address scenarios involving limited quantum computing
resources. This framework allows classical clients to col-
laboratively train a QML model while ensuring the privacy
of their data. In contrast to the conventional QFL frame-
work, our framework involves deploying the QML model on
the server instead of the clients and encoding the classical
data onto observables rather than quantum states. Further-
more, the shadow tomography technique assists in the train-
ing of the QML model and eliminates the need for clients to
possess quantum computing capabilities in the conventional
QFL framework. Our framework extends the potential ap-
plications of QFL, particularly in situations where quantum
computing resources are scarce.

Furthermore, there remain several intriguing aspects that
require further investigation. One aspect of the investiga-
tion involves exploring different approaches for encoding
classical data onto observables and analyzing their impact
on the effectiveness of the QML model training to derive
more appropriate data encoding approaches. An additional
investigation aspect involves mitigating the potential leak-
age of client data to the server through gradient inversion
attacks [72, 73]. In this regard, the adoption of secure gra-
dient aggregation strategies is crucial. Our framework can

Figure 4 (Color online) Heterogeneity of the training data. We illustrate
the proportion of handwritten digit labels (“3” and “6”) on each client, where
each client contains a total of 700 images.

naturally integrate with existing techniques such as homo-
morphic encryption [74] or differential privacy [75,76] to en-
hance client data security. Moreover, the exploration of novel
strategies holds significant value.
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The shadow tomography technique, proposed by Huang et
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Algorithm a1 Shadow tomography technique for evaluating expectation values
Stage 1: Construct classical shadow
Input: the n-qubits unknown state ρ, the set of unitary operatorsW, and the number of measurements M
Output: the classical shadow S (ρ; M) = {ρ̂1, · · · , ρ̂M}
1: for j = 1 to M do
2: Randomly select a unitary operator W j fromW and apply W j to ρ
3: Measure in the computational basis and obtain b j ∈ {0, 1}n
4: Apply the inverted quantum channelM−1 to W†j |b j⟩⟨b j |W j and obtain ρ̂ j =M−1(W†j |b j⟩⟨b j |W j), whereM−1 depends on the setW
5: end for
6: return the classical shadow S (ρ; M) = {ρ̂1, · · · , ρ̂M}

Stage 2: Evaluate expectation values
Input: the set of observables {Oi}di=1, and the classical shadow S (ρ; M) = {ρ̂1, · · · , ρ̂M}
Output: the approximations {õi}di=1 of the expectation values {oi}di=1, where oi = Tr(Oiρ)

1: Divide S (ρ; M) into M2 equally sized chunks {ρ̂(1)
1 , · · · , ρ̂

(1)
M1
}, · · · , {ρ̂(M2)

1 , · · · , ρ̂(M2)
M1
}, where M = M1 × M2

2: for i = 1 to d do
3: for h = 1 to M2 do
4: Evaluate oi using the h-th chunk and obtain the h-th approximation õ(h)

i =
1

M1

∑M1
l=1 Tr(Oiρ̂

(h)
l )

5: end for
6: Calculate the median of the M2 approximations and obtain the final approximation õi = median

{
õ(1)

i , · · · , õ
(M2)
i

}
7: end for
8: return the approximations {õi}di=1

plication of this technique is to construct the classical shadow
of ρ in order to evaluate the expectation values {oi}di=1 of cer-
tain observables {Oi}di=1 classically. Here, oi = Tr(Oiρ).

Specifically, a simple measurement procedure is repeat-
edly executed to construct the classical shadow of ρ. This
procedure involves randomly selecting a unitary operator
W from a fixed ensemble W to rotate ρ, followed by a
computational-basis measurement. Upon receiving the n-bit
measurement outcome |b⟩ : b ∈ {0, 1}n, the classical mem-
ory can efficiently store a classical description of W†|b⟩⟨b|W,
according to the Gottesman-Knill theorem [67]. It is instruc-
tive to consider the average mapping from ρ to W†|b⟩⟨b|W as
a quantum channel given by

M(ρ) = E[W†|b⟩⟨b|W], (a1)

where M depends on the ensemble W. Consequently,
a completely classical post-processing step applies the in-
verted quantum channel M−1 to the measurement outcome
W†|b⟩⟨b|W. Subsequently, a classical snapshot ρ̂ of ρ is ob-
tained from a single measurement, given by

ρ̂ =M−1(W†|b⟩⟨b|W). (a2)

By repeating the aforementioned procedure M times, the

classical shadow of ρ is obtained and defined as:

S (ρ; M) = {ρ̂ j}Mj=1, (a3)

where ρ̂ j = M−1(W†j |b j⟩⟨b j|W j). S (ρ; M), with a sufficient
size M, can efficiently evaluate {oi}di=1. Specifically, S (ρ; M)
is divided into equally sized chunks, and multiple indepen-
dent estimators are constructed. Subsequently, the approx-
imations {õi}di=1 of {oi}di=1 are obtained by using the median
of means estimation [77]. The detailed procedure is summa-
rized in Algorithm a1.

The described procedure can be applied to various distri-
butions of random unitary operators. One prominent example
is tensor products of random single-qubit Clifford circuits. In
this example, where each qubit is independently measured in
a random Pauli basis, it can also be referred to as random
Pauli measurements. The resulting classical shadow can be
efficiently stored in classical memory using the stabilizer for-
malism. Furthermore, an interesting result demonstrates that
O(log(d)3k/ϵ2) random Pauli measurements of ρ suffice to
evaluate H bounded observables {Oi}di=1 that are tensor prod-
ucts of k single-qubit observables. This evaluation guarantees
|õi − oi| ≤ ϵ with high probability for any i ∈ [d].
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